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Reminder on Free g -Factors

� g -Factors of EM and non EM origin

� Free electron g -factor

� QED Series:

g − 2

2
=

α

2π
− 0.328 . . .

(α
π

)2
+ . . .

� Accuracy of modern theory Δg/g ∼ 10−13, Kinoshita et al
(2007)
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Experiment and Determination of α

� Experimentally Δg/g ∼ 10−13 (Hanneke, Fogwell, Gabrielse,
2008):

ge
2

= 1.001 159 652 180 73 (28), δ = 2.8× 10−13

� Measurement of the free electron g -factor – best way to
measure α

α−1 = 137.035 999 084 (51), δ = 3.7× 10−10
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Additional Corrections to g -Factors due to Binding

� Relativistic corrections, matrix element of eγ ·A (Breit, 1928):

gb = 2

[
1− (Zα)2

3
− (Zα)4

12
+ . . .

]

� Leading radiative-recoil corrections of order α(Zα)2 (Faustov,
1970; Grotch, 1970; Close, Osborn, 1971)

� Other corrections series over αn(Zα)k , recoil corrections
me/MN , etc. (1995-present, review by Mohr et al, 2008)

� Accuracy of modern theory Δgb/gb ∼ 10−11
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What is Measured

� Interaction Hamiltonian for hydrogenlike ion in external
magnetic field

Hint = cμe · μN − μb
e · B− μb

N · B

= 2π�ΔνHFSs · I− gb
e

e�

2mec
se · B− gb

N

e�

2MNc
I · B

� Ratio fs/fc of spin-flip to cyclotron frequency is

fs
fc

= gb
e

2q

Mi

me
=

gb
2(Z − 1)

Mi

me

� Experiments are done in hydrogenlike 12C 5+ (Z = 6) and
hydrogenlike 16O7+ (Z = 8). Nuclear spin I = 0
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What is Measured

� Experimentally (Häffner, Werth, Verdu, 2003)

fs(
12C 5+)

fc(12C 5+)
= 4 376.210 4989 (23), δ = 5.2× 10−10

fs(
16O7+)

fc(16O7+)
= 4 164.376 1837 (32), δ = 7.6× 10−10

� Perspective (Quint et al, 2008): error of fs/fc about
10−12 − 10−13– comparable to accuracy of free electron
g -factor

How to use these precise results?
� fs/fc is the best way to measure electron mass in atomic units:
Δme/me = 5× 10−10, 4− 6 times more precise than direct
comparison of cyclotron frequencies for free electron and ion

Eides, Gribov-80, ICTP, May 26, 2010 Universal Corrections



Outline
Bound State g-Factors

High Spin Nonrelativistic QED
Calculation of Leading Corrections

Conclusions

Free g-Factors
Bound g-Factors
Leading Relativistic and Recoil Corrections

Phenomenological Summary

fs
fc

= gb
e

2q

Mi

me
=

gb
2(Z − 1)

Mi

me

� We need precise theory of gb or precise measurement of
Mi/me to utilize the frequency measurements

� Accuracy of modern theory Δgb/gb ∼ 10−11 for 12C 5+ and
16O7+

� Classical leading relativistic and recoil corrections of order
(Zα)2 were calculated for spin one half constituents
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Problem of Spin Dependence

� What about corrections of order (Zα)2 for other spins? Spin
of 12C 5+ and 16O7+ nuclei is zero

� No agreement in the literature, results are contradictory!

� Discrepancy between both results for 12C 5+ and 16O7+ at the
level of (0.2− 0.3)× 10−10

What is the spin dependence of leading corrections?
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NRQED Lagrangian

� Construct most general nonrelativistic Lagrangian compatible
with gauge, Galilean invariance and discrete symmetries

� Renormalizability is not important, use all vertices compatible
with symmetries

� Predictive power is still there, expansion goes over
v/c ∼ p/(mc)

� Building blocks: D = ∇− ieA = i(p− eA), E, B, and S.
� For higher spin particles we include polynomials in the
components of the spin – higher irreducible intrinsic multipole
moments

� Determine coefficients comparing scattering amplitudes of
relativistic and nonrelativistic theories

� Use nonrelativistic Hamiltonian for bound state calculations
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NRQED Lagrangian

L = φ+

{
iD0 +

D2

2m
+

D4

8m3
+ cF

es · B
2m

+ cD
e(D · E− E ·D)

8m2

+cQ
eQij(DiEj − EiDj)

8m2
+ cS

ies · (D× E− E×D)

8m2

+cW 1
e[D2(s · B) + (s · B)D2]

8m3
+ cW 2

−eD i (s · B)D i

4m3

+cp′p
e[(s ·D)(B ·D) + (D · B)(s ·D)]

8m3
+ . . .

}
φ

D0 = ∂0 + ieA0, D = ∇− ieA = i(p− eA).
Qij = si sj + sjsi − (2/3)s2δij
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Relativistic Construction

� Next task is to find the coefficients

What about relativistic QED for charged particles with arbitrary spin?

� For spin one charged particles W± sector of renormalizable
EW theory (W± and photon)

� No Lagrangian theory for higher spins

� One-photon relativistic vertices for arbitrary spin were
constructed by Khriplovich et al (1996)

� For spin one the NRQED Hamiltonians obtained from the
Lagrangian renormalizable theory and from the relativistic
diagram technique are identical
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Relativistic Construction

� Charged particles are described by completely symmetric

spinors ξ =
{
ξ
α1α2...αp

β̇1β̇2...β̇q

}
� For integer spin p = q = s, for half integer p = s + 1/2,

q = s − 1/2.

� Under spatial reflection dotted and undotted indices trade
places =⇒ two spinors ξ and η, ξα → iηα̇, ηα̇ → iξα

� ”Standard representation”: φ = (ξ + η)/2, χ = ξ − η)/2,
χ→ 0 when v → 0

ψ =

√
mc2

Ep

(
(1 + (Σ·v)2

8c2
)φ

Σ·v
2c φ

)
≈
(

(1 + (Σ·v)2
8c2

− p2

4m2c2
)φ

Σ·v
2c φ

)
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One-Photon Terms

� Nonrelativistic normalization Ep/(mc)ψ̄ψ = φ+φ = 1.
Corresponds to Foldy-Wouthuysen tranformation

� EM interaction is (−ejμAμ)
� One-photon vertex

Γμ =
(p1 + p2)μ

2m
Fe(q

2, τ)− Fm(q
2, τ)

Σμνq
ν

2m

q = p2 − p2, Σμν – the generalization of σuν , Sμ –covariant
spin four-vector, τ = (q · S)2, and Fe(0, 0) = 1,
Fm(0, 0) = g/2
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One-Photon Terms

� Intrinsic electric and magnetic multipole moments arise in
expansion of form factors over S · q

� Only Fe(0, 0) = 1, Fm(0, 0) = g/2 generate leading
corrections to g -factors

� Nonrelativistic expansion of matrix elements ψ̄JμψA
μ

generates nonrelativistic vertices with one external field
� Matrix element of J0 generates

V0 = eA0−e(g−1)∇ · E
8m2

Σ2

3
−e(g−1)s · (E× p)

2m2
+e(g−1)λQij∇iEj

2m2

� Σ2 = 4s, λ = 1/(2s − 1) for integer spin;
Σ2 = 4s + 1, λ = 1/(2s) for half integer spin
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One-Photon Terms

� Qij = si si + sjsi − 2
3δi js

2 is the quadrupole moment
� Coefficients before the Darwin and quadrupole terms do
depend on spin!

Matrix element of J generates

Vs = −e(A · p+ p · A)
2m

− g
e

2m
(s · B)(1− p2

2m2
)

−(g − 2)
e

2m
(s · B) p2

2m2
+ (g − 2)

e

2mc

(p · B)(s · p)
2m2

One-photon Hamiltonian

H =
p2

2m
+ V0 + Vs
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One-Photon Terms

One-photon Hamiltonian

H =
p2

2m
− e(A · p+ p · A)

2mc
+ eA0 − (g − 1)e

∇ · E
8m2

Σ2

3

−(g − 1)e
s · (E× p)

2m2
+ e(g − 1)λ

Qij∇iEj

2m2
− g

e

2m
(s ·B)(1− p2

2m2
)

−(g − 2)
e

2m
(s · B) p2

2m2
+ (g − 2)

e

2m

(p · B)(s · p)
2m2

� Coefficients before the Darwin and quadrupole terms do
depend on spin!

� Magnetic terms exactly like in nonrelativistic reduction in spin
one half case after Foldy-Wouthuysen transformation

� This Hamiltonian is not gauge invariant, two-photon terms are
missing
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Two-Photon Terms

� Regular recipe is to restore two-photon terms from Z -diagrams

� Easy calculation for spin one half gives

H2γ =
e2

2m
A2 + (g − 1)

e2

2m2
s · (E× A)

� Another idea: restore two-photon terms from gauge invariance
� Recall: NRQED Hamiltonian is constructed from

D = ∇− ieA = i(p− eA), E, B, and S.
� Any gauge noninvariant term with two fields has a partner
with one field
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NRQED Hamiltonian

� Can there be gauge invariant terms with two fields?

� They are of too high order in Zα

� We use gauge invariance to restore two-field terms from
one-field terms p→ p− eA

NRQED Hamiltonian

H = φ+
{
(p− eA)2

2m
+ eA0 − (g − 1)e

∇ · E
8m2

Σ2

3

−(g−1)e s · (E× (p− eA))

2m2
+e(g−1)λQij∇iEj

2m2
−g e

2m
(s·B)(1− p2

2m2
)

−(g − 2)
e

2m
(s · B) p2

2m2
+ (g − 2)

e

2m

(p · B)(s · p)
2m2

}
φ
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NRQED Hamiltonian

� What about loop diagrams?

� Value of g includes all loop corrections to free g -factor

� Other loop corrections are of too high order in Zα

� For spin one case this Hamiltonian follows from Electroweak
Theory

� NRQED Hamiltonian is sufficient for calculation of nonrecoil
corrections

� Nonrecoil correction of order (Zα)2 are universal!
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Two-Particle Hamiltonian

From Field Theory to Quantum Mechanics

� Effective two-particle QM Hamiltonian

H = H1 + H2 + Hint

� Free Hamiltonians Hi – one-particle sector of NRQED

� Interaction Hamiltonian from one-photon exchange
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One-photon exchange interaction for arbitrary spins (r = r1 − r2)

Vint = e1e2

[
1

4πr
− (g1 − 1)

1

8m2
1

Σ2
1

3
δ(r)− (g1 − 1)

3λ1
π

r i r jQ
(1)
ij

8m2
1r

5

−(g2−1) 1

8m2
2

Σ2
2

3
δ(r)−(g2−1)3λ2

π

r i r jQ
(2)
ij

8m2
2r

5
−r(r · p1) · p2

8πm1m2r3
− p1 · p2
8πm1m2r

−(g1 − 1)
2s1 · (r × p1)

16πm2
1r

3
+ g1

2s1 · (r × p2)

16πm1m2r3

+(g2 − 1)
2s2 · (r × p2)

16πm2
2r

3
− g2

2s2 · (r × p1)

16πm1m2r3

+
g1g2

16πm1m2

(
s1 · s2
r3

− 3(s1 · r)(s2 · r)
r5

− 8π

3
s1 · s2δ(r)

)]

Eides, Gribov-80, ICTP, May 26, 2010 Universal Corrections



Outline
Bound State g-Factors

High Spin Nonrelativistic QED
Calculation of Leading Corrections

Conclusions

Effective Two-Particle Hamiltonian
Separation of Center of Mass Motion
Calculation of Leading Corrections
The BMT Equation

Two-Particle Hamiltonian

� Electric field is due to Coulomb potential
� This is interaction potential without external field
� Restore vector potential by the minimal substitution

pi → pi − eAi , Ai = B× ri/2
� Total QM two-particle Hamiltonian (only relevant terms)

H = H1 + H2 + Hint

H1 =
(p1 − e1A1)

2

2m1
− g1

e1
2m1

(s1 · B)(1− p21
2m2

1

)

−(g1 − 2)
e1
2m1

(s1 · B) p21
2m2

1

+ (g1 − 2)
e1
2m1

(p1 · B)(s1 · p1)
2m2

1

Terms with electric field are included in Hint
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Two-Particle Hamiltonian

� H1 → H2 when 1→ 2

� Interaction Hamiltonian (only the Coulomb term and
spin-orbit terms with magnetic field)

Hint =
e1e2
4πr

+e1e2

[
−(g1−1)2s1 · (r × (p1 − e1A1))

16πm2
1r

3
+g1

2s1 · (r × (p2 − e2A2))

16πm1m2r3

+(g2 − 1)
2s2 · (r × (p2 − e2A2))

16πm2
2r

3
− g2

2s2 · (r × (p1 − e1A1))

16πm1m2r3

]
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Problem with Center of Mass

� Goal: separate internal properties of the bound system

� Center of mass motion does not separate in magnetic field

� Analogy with degenerate PT in QM: unperturbed wave
functions should diagonalize perturbation

� Idea: composite particle in weak external field should respond
to field like charged elementary particle

� Charged particle in magnetic field rotates on Landau orbit, its
momentum is not conserved [H,p] �= 0

� Position of the center of Landau orbit is conserved (we use
symmetric gauge, A = B× r/2), hence pseudomomentum is
conserved

[H,p+ eA] = 0
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Problem with Center of Mass

� CM coordinates: r = r1 − r2, R = μ1r1 + μ2r2, P = p1 + p2,
p = (p1 − p2)/2 + (μ2 − μ1)P/2, μi = mi/(m1 +m2)

� Unperturbed Hamiltonian for bound system

H0 =
(p1 − e1A1)

2

2m1
+

(p2 − e2A2)
2

2m2
+ VC (|r1 − r2|))

� Neither total momentum, nor pseudomomentum are
conserved: [H0,P] �= 0, [H0,P+ (e1 + e2)A(R)] �= 0

� Sum of pseudomomenta of constituents is conserved

[H0,P+ (e1 + e2)A(R) + (e1μ2 − e2μ1)A(r)] = 0

� Remedy: Unitary transformation U = e−i(e1μ2−e2μ1)A(r)·R
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Unitary Transformation

H ′0 = U−1H0U =
[P− QA(R)− qA(r)]2

2(m1 +m2)
+
[p− (e1μ

2
2 + e2μ

2
1)A(r)]

2

2mr

Q = e1 + e2, q = 2(e1μ2 − e2μ1)

U−1
(
P+(e1+e2)A(R)+(e1μ2−e2μ1)A(r)

)
U = P+(e1+e2)A(R)

� After transformation pseudomomentum is conserved

[H ′0,P+ (e1 + e2)A(R)] = 0

� In all calculations one should use the unitary transformed
Hamiltonian
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Spin Part of the Hamiltonian

Spin-dependent terms contain factors

p1−e1A(r1)→ μ1

[
P−(e1+e2)A(R)

]
+

[
p−[e1−(e1+e2)μ

2
1]A(r)

]

p2−e2A(r2)→ μ2

[
P−(e1+e2)A(R)

]
−
[
p−[e2−(e1+e2)μ

2
2]A(r)

]
After unitary transformation interaction terms with vector
potential change form
Transformed spin-dependent Hamiltonian for the first particle (only
terms magnetic field)
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Bound g -Factors

H
′(1)
spin = −g1

e1
2m1

(s1B)

(
1− p2

2m2
1

)
− (g1 − 2)

e1
2m1

(s1B)
p2

2m2
1

+(g1 − 2)
e1
2m1

(pB)(s1p)

2m2
1

−e1e2(g1 − 1)

2s1 ·
(
r ×

[
p− [e1 − (e1 + e2)μ

2
1]A(r)

])
16πm2

1r
3

−e1e2g1
2s1 ·

(
r ×

[
p− [e2 − (e1 + e2)μ

2
2]A(r)

])
16πm1m2r3

Similar Hamiltonian for the second particle
Eides, Gribov-80, ICTP, May 26, 2010 Universal Corrections
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Bound g -Factors

Calculation of matrix elements is trivial

gbound
1 = g1

[(
1− μ22e

2
1e

2
2

2(4π)2n2

)

+
μ2e1e

2
2 [e1 − (e1 + e2)μ

2
1]

6(4π)2n2
+
μ1e1e

2
2 [e2 − (e1 + e2)μ

2
2]

3(4π)2n2

]

+(g1 − 2)

[
μ22e

2
1e

2
2

3(4π)2n2
+
μ2e1e

2
2 [e1 − (e1 + e2)μ

2
1]

6(4π)2n2

]
g2 is obtained by the substitution 1↔ 2
Corrections are universal for particles of any spin; depend only on
the g -factors, not on the magnitude of their spin. Why?
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Bargmann-Michel-Telegdi Equation

� Terms in NRQED Hamiltonian with derivatives of electric field
are irrelevant for corrections to g -factors

� In semiclassical approximation trajectory of charged particle
with spin in external magnetic field does not depend on spin.
Spin is a QM correction of order �.

� The BMT equation for spin motion
(Bargmann-Michel-Telegdi, 1959) is valid when we neglect
field gradients and preserve only linear in field terms

� Only relativistic invariance and nonrelativistic limit are needed
for derivation!
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Bargmann-Michel-Telegdi Equation

� In three-dimensional form

ds

dt
=

e

2mc
s×

{(
gs − 2 +

2

γ

)
B− (gs − 2)γ

1 + γ

v · Bv
c2

+

(
gs − 2γ

1 + γ

)
[E× v]

c

}

� The coefficients are universal for all spins!

� BMT is a Heisenberg equation for spin

i�
ds

dt
= [s,H]
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Bargmann-Michel-Telegdi Equation

H = − e�

2mc
s ·
{(

gs − 2 +
2

γ

)
B− (gs − 2)γ

1 + γ

v · Bv
c2

+

(
gs − 2γ

1 + γ

)
[E× v]

c

}
Nonrelativistic limit and minimal substitution v→ (p− eA)/m

H ≈ − e�

2mc

{(
gs − (p− eA)2

m2c2

)
s·B−(gs−2) [(p− eA) · B][s · (p− eA)]

2m2c2

+(gs − 1)
s · [E× (p− eA)]

mc

}
Use this Hamiltonian to calculate corrections to bound state
g -factor (Eides, Grotch, 1997)
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Universal Nonrecoil g -Factor

Linear in external magnetic field terms

H ≈ − e�

2mc

{(
gs − p2

m2c2

)
s · B− (gs − 2)

(p · B)(s · p)
2m2c2

−e (gs − 1)
s · [E× A]

mc

}
� Nonrecoil bound state g -factor

gbound = gs

(
1− (Zα)2

3n2

)
+ (gs − 2)

(Zα)2

2n2

� Bound state g -factor naturally does not depend on magnitude
of spin

� The source of leading recoil relativistic corrections is the
one-photon exchange
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Summary

� NRQED Hamiltonian for charged particles of arbitrary spin
with all terms of order (Zα)2 is constructed

� For spin one case this Hamiltonian follows from the
renormalizable Lagrangian QED of charged vector bosons

� An explicit expression for all (nonrecoil and recoil) leading
binding (∼ (Zα)2) corrections to free g -factors is obtained

� Leading relativistic (∼ (Zα)2) corrections to bound state
g -factors are universal and do not depend on the magnitude
of particle spin
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