2146-7

Gribov-80 Memorial Workshop on Quantum Chromodynamics and Beyond'

26-28 May 2010

Universal Corrections to Gyromagnetic Ratios of Bound Particles with Arbitrary Spins

Michael Eides
University of Kentucky
U.S.A.

Universal Corrections to Gyromagnetic Ratios of Bound Particles with Arbitrary Spins

Michael I. Eides
Department of Physics and Astronomy, University of Kentucky, USA
Petersburg Nuclear Physics Institute, Gatchina, Russia
Gribov-80 Memorial Workshop
May 26-28, 2010, ICTP, Trieste

Outline

Bound State g-Factors
Free g-Factors
Bound g-Factors
Leading Relativistic and Recoil Corrections
High Spin Nonrelativistic QED
Basics
Relativistic QED for Arbitrary Spin
Nonrelativistic Hamiltonian
Calculation of Leading Corrections
Effective Two-Particle Hamiltonian
Separation of Center of Mass Motion
Calculation of Leading Corrections
The BMT Equation
Conclusions

Reminder on Free g-Factors

- g-Factors of EM and non EM origin
- Free electron g-factor

- QED Series:

$$
\frac{g-2}{2}=\frac{\alpha}{2 \pi}-0.328 \ldots\left(\frac{\alpha}{\pi}\right)^{2}+\ldots
$$

- Accuracy of modern theory $\Delta g / g \sim 10^{-13}$, Kinoshita et al (2007)

Experiment and Determination of α

- Experimentally $\Delta g / g \sim 10^{-13}$ (Hanneke, Fogwell, Gabrielse, 2008):

$$
\frac{g_{e}}{2}=1.00115965218073(28), \quad \delta=2.8 \times 10^{-13}
$$

- Measurement of the free electron g-factor - best way to measure α

$$
\alpha^{-1}=137.035999084(51), \quad \delta=3.7 \times 10^{-10}
$$

Additional Corrections to g-Factors due to Binding

- Relativistic corrections, matrix element of er • A (Breit, 1928):

$$
g_{b}=2\left[1-\frac{(Z \alpha)^{2}}{3}-\frac{(Z \alpha)^{4}}{12}+\ldots\right]
$$

- Leading radiative-recoil corrections of order $\alpha(Z \alpha)^{2}$ (Faustov, 1970; Grotch, 1970; Close, Osborn, 1971)
- Other corrections series over $\alpha^{n}(Z \alpha)^{k}$, recoil corrections m_{e} / M_{N}, etc. (1995-present, review by Mohr et al, 2008)

- Accuracy of modern theory $\Delta g_{b} / g_{b} \sim 10^{-11}$

What is Measured

- Interaction Hamiltonian for hydrogenlike ion in external magnetic field

$$
\begin{gathered}
H_{i n t}=c \boldsymbol{\mu}_{e} \cdot \boldsymbol{\mu}_{N}-\boldsymbol{\mu}_{e}^{b} \cdot \mathbf{B}-\boldsymbol{\mu}_{N}^{b} \cdot \mathbf{B} \\
=2 \pi \hbar \Delta \nu_{H F S} \mathbf{s} \cdot \mathbf{I}-g_{e}^{b} \frac{e \hbar}{2 m_{e} c} \mathbf{s}_{e} \cdot \mathbf{B}-g_{N}^{b} \frac{e \hbar}{2 M_{N} c} \mathbf{I} \cdot \mathbf{B}
\end{gathered}
$$

- Ratio f_{s} / f_{c} of spin-flip to cyclotron frequency is

$$
\frac{f_{s}}{f_{c}}=g_{b} \frac{e}{2 q} \frac{M_{i}}{m_{e}}=\frac{g_{b}}{2(Z-1)} \frac{M_{i}}{m_{e}}
$$

- Experiments are done in hydrogenlike ${ }^{12} C^{5+}(Z=6)$ and hydrogenlike ${ }^{16} O^{7+}(Z=8)$. Nuclear spin $I=0$

What is Measured

- Experimentally (Häffner, Werth, Verdu, 2003)

$$
\begin{array}{ll}
\frac{f_{s}\left(1^{12} C^{5+}\right)}{f_{c}\left({ }^{12} C^{5+}\right)}=4376.2104989(23), & \delta=5.2 \times 10^{-10} \\
\frac{f_{s}\left({ }^{16} O^{7+}\right)}{f_{c}\left({ }^{16} O^{7+}\right)}=4164.3761837(32), & \delta=7.6 \times 10^{-10}
\end{array}
$$

- Perspective (Quint et al, 2008): error of f_{s} / f_{c} about $10^{-12}-10^{-13}$ - comparable to accuracy of free electron g-factor

How to use these precise results?

- f_{s} / f_{c} is the best way to measure electron mass in atomic units: $\Delta m_{e} / m_{e}=5 \times 10^{-10}, 4-6$ times more precise than direct comparison of cyclotron frequencies for free electron and ion

Phenomenological Summary

$$
\frac{f_{s}}{f_{c}}=g_{b} \frac{e}{2 q} \frac{M_{i}}{m_{e}}=\frac{g_{b}}{2(Z-1)} \frac{M_{i}}{m_{e}}
$$

- We need precise theory of g_{b} or precise measurement of M_{i} / m_{e} to utilize the frequency measurements
- Accuracy of modern theory $\Delta g_{b} / g_{b} \sim 10^{-11}$ for ${ }^{12} C^{5+}$ and ${ }^{16} O^{7+}$
- Classical leading relativistic and recoil corrections of order $(Z \alpha)^{2}$ were calculated for spin one half constituents

Problem of Spin Dependence

- What about corrections of order $(Z \alpha)^{2}$ for other spins? Spin of ${ }^{12} C^{5+}$ and ${ }^{16} O^{7+}$ nuclei is zero
- No agreement in the literature, results are contradictory!
- Discrepancy between both results for ${ }^{12} \mathrm{C}^{5+}$ and ${ }^{16} \mathrm{O}^{7+}$ at the level of $(0.2-0.3) \times 10^{-10}$

What is the spin dependence of leading corrections?

NRQED Lagrangian

- Construct most general nonrelativistic Lagrangian compatible with gauge, Galilean invariance and discrete symmetries
- Renormalizability is not important, use all vertices compatible with symmetries
- Predictive power is still there, expansion goes over $v / c \sim p /(m c)$
- Building blocks: $\mathbf{D}=\nabla-i e \mathbf{A}=i(\mathbf{p}-e \mathbf{A}), \mathbf{E}, \mathbf{B}$, and \mathbf{S}.
- For higher spin particles we include polynomials in the components of the spin - higher irreducible intrinsic multipole moments
- Determine coefficients comparing scattering amplitudes of relativistic and nonrelativistic theories
- Use nonrelativistic Hamiltonian for bound state calculations

NRQED Lagrangian

$$
\begin{aligned}
\mathcal{L}= & \phi^{+}\left\{i D_{0}+\frac{\mathbf{D}^{2}}{2 m}+\frac{\mathbf{D}^{4}}{8 m^{3}}+c_{F} \frac{e \mathbf{s} \cdot \mathbf{B}}{2 m}+c_{D} \frac{e(\mathbf{D} \cdot \mathbf{E}-\mathbf{E} \cdot \mathbf{D})}{8 m^{2}}\right. \\
& +c_{Q} \frac{e Q_{i j}\left(D_{i} E_{j}-E_{i} D_{j}\right)}{8 m^{2}}+c_{S} \frac{i e \mathbf{s} \cdot(\mathbf{D} \times \mathbf{E}-\mathbf{E} \times \mathbf{D})}{8 m^{2}} \\
+ & c_{W 1} \frac{e\left[\mathbf{D}^{2}(\mathbf{s} \cdot \mathbf{B})+(\mathbf{s} \cdot \mathbf{B}) \mathbf{D}^{2}\right]}{8 m^{3}}+c_{W 2} \frac{-e D^{i}(\mathbf{s} \cdot \mathbf{B}) D^{i}}{4 m^{3}} \\
& \left.+c_{p^{\prime} p} \frac{e[(\mathbf{s} \cdot \mathbf{D})(\mathbf{B} \cdot \mathbf{D})+(\mathbf{D} \cdot \mathbf{B})(\mathbf{s} \cdot \mathbf{D})]}{8 m^{3}}+\ldots\right\} \phi \\
D^{0}= & \partial^{0}+i e A^{0}, \mathbf{D}=\nabla-i e \mathbf{A}=i(\mathbf{p}-e \mathbf{A}) . \\
Q_{i j}= & s_{i} s_{j}+s_{j} s_{i}-(2 / 3) \mathbf{s}^{2} \delta_{i j}
\end{aligned}
$$

Relativistic Construction

- Next task is to find the coefficients

What about relativistic QED for charged particles with arbitrary spin?

- For spin one charged particles $W^{ \pm}$sector of renormalizable EW theory ($W^{ \pm}$and photon)
- No Lagrangian theory for higher spins
- One-photon relativistic vertices for arbitrary spin were constructed by Khriplovich et al (1996)
- For spin one the NRQED Hamiltonians obtained from the Lagrangian renormalizable theory and from the relativistic diagram technique are identical

Relativistic Construction

- Charged particles are described by completely symmetric spinors $\xi=\left\{\begin{array}{c}\left.\left.\xi_{\dot{\beta}_{1} \dot{\beta}_{2} \ldots \dot{\beta}_{q}}^{\alpha_{1} \alpha_{2} \ldots \alpha_{\rho}}\right\}, ~\right\}\end{array}\right\}$
- For integer spin $p=q=s$, for half integer $p=s+1 / 2$, $q=s-1 / 2$.
- Under spatial reflection dotted and undotted indices trade places \Longrightarrow two spinors ξ and $\eta, \xi^{\alpha} \rightarrow i \eta_{\dot{\alpha}}, \eta_{\dot{\alpha}} \rightarrow i \xi^{\alpha}$
- "Standard representation" : $\phi=(\xi+\eta) / 2, \chi=\xi-\eta) / 2$, $\chi \rightarrow 0$ when $v \rightarrow 0$

$$
\psi=\sqrt{\frac{m c^{2}}{E_{p}}}\binom{\left(1+\frac{(\boldsymbol{\Sigma} \cdot \boldsymbol{v})^{2}}{8 c^{2}}\right) \phi}{\frac{\boldsymbol{\Sigma} \cdot \boldsymbol{v}}{2 c} \phi} \approx\binom{\left(1+\frac{(\boldsymbol{\Sigma} \cdot \boldsymbol{v})^{2}}{8 c^{2}}-\frac{\mathbf{p}^{2}}{4 m^{2} \cdot c^{2}}\right) \phi}{2 c}
$$

One-Photon Terms

- Nonrelativistic normalization $E_{p} /(m c) \bar{\psi} \psi=\phi^{+} \phi=1$.

Corresponds to Foldy-Wouthuysen tranformation

- EM interaction is $\left(-e j_{\mu} A^{\mu}\right)$
- One-photon vertex

$$
\Gamma_{\mu}=\frac{\left(p_{1}+p_{2}\right)_{\mu}}{2 m} F_{e}\left(q^{2}, \tau\right)-F_{m}\left(q^{2}, \tau\right) \frac{\Sigma_{\mu \nu} q^{\nu}}{2 m}
$$

$q=p_{2}-p_{2}, \Sigma_{\mu \nu}$ - the generalization of $\sigma_{\mu \nu}, S_{\mu}$-covariant spin four-vector, $\tau=(q \cdot S)^{2}$, and $F_{e}(0,0)=1$,
$F_{m}(0,0)=g / 2$

One-Photon Terms

- Intrinsic electric and magnetic multipole moments arise in expansion of form factors over $S \cdot q$
- Only $F_{e}(0,0)=1, F_{m}(0,0)=g / 2$ generate leading corrections to g-factors
- Nonrelativistic expansion of matrix elements $\bar{\psi} J_{\mu} \psi A^{\mu}$ generates nonrelativistic vertices with one external field
- Matrix element of J_{0} generates

$$
V_{0}=e A_{0}-e(g-1) \frac{\nabla \cdot \mathbf{E}}{8 m^{2}} \frac{\Sigma^{2}}{3}-e(g-1) \frac{\mathbf{s} \cdot(\mathbf{E} \times \mathbf{p})}{2 m^{2}}+e(g-1) \lambda \frac{Q_{i j} \nabla_{i} E_{j}}{2 m^{2}}
$$

- $\Sigma^{2}=4 s, \lambda=1 /(2 s-1)$ for integer spin; $\Sigma^{2}=4 s+1, \lambda=1 /(2 s)$ for half integer spin

One-Photon Terms

- $Q_{i j}=s_{i} s_{i}+s_{j} s_{i}-\frac{2}{3} \delta_{i j} \mathbf{s}^{2}$ is the quadrupole moment
- Coefficients before the Darwin and quadrupole terms do depend on spin!
Matrix element of \mathbf{J} generates

$$
\begin{gathered}
V_{s}=-\frac{e(\mathbf{A} \cdot \mathbf{p}+\mathbf{p} \cdot \mathbf{A})}{2 m}-g \frac{e}{2 m}(\mathbf{s} \cdot \mathbf{B})\left(1-\frac{\mathbf{p}^{2}}{2 m^{2}}\right) \\
-(g-2) \frac{e}{2 m}(\mathbf{s} \cdot \mathbf{B}) \frac{\mathbf{p}^{2}}{2 m^{2}}+(g-2) \frac{e}{2 m c} \frac{(\mathbf{p} \cdot \mathbf{B})(\mathbf{s} \cdot \mathbf{p})}{2 m^{2}}
\end{gathered}
$$

One-photon Hamiltonian

$$
H=\frac{\mathbf{p}^{2}}{2 m}+V_{0}+V_{s}
$$

One-Photon Terms

One-photon Hamiltonian

$$
\begin{gathered}
H=\frac{\mathbf{p}^{2}}{2 m}-\frac{e(\mathbf{A} \cdot \mathbf{p}+\mathbf{p} \cdot \mathbf{A})}{2 m c}+e A_{0}-(g-1) e \frac{\nabla \cdot \mathbf{E}}{8 m^{2}} \frac{\boldsymbol{\Sigma}^{2}}{3} \\
-(g-1) e \frac{\mathbf{s} \cdot(\mathbf{E} \times \mathbf{p})}{2 m^{2}}+e(g-1) \lambda \frac{Q_{i j} \nabla_{i} E_{j}}{2 m^{2}}-g \frac{e}{2 m}(\mathbf{s} \cdot \mathbf{B})\left(1-\frac{\mathbf{p}^{2}}{2 m^{2}}\right) \\
-(g-2) \frac{e}{2 m}(\mathbf{s} \cdot \mathbf{B}) \frac{\mathbf{p}^{2}}{2 m^{2}}+(g-2) \frac{e}{2 m} \frac{(\mathbf{p} \cdot \mathbf{B})(\mathbf{s} \cdot \mathbf{p})}{2 m^{2}}
\end{gathered}
$$

- Coefficients before the Darwin and quadrupole terms do depend on spin!
- Magnetic terms exactly like in nonrelativistic reduction in spin one half case after Foldy-Wouthuysen transformation
- This Hamiltonian is not gauge invariant, two-photon terms are missing

Two-Photon Terms

- Regular recipe is to restore two-photon terms from Z-diagrams

- Easy calculation for spin one half gives

$$
H_{2 \gamma}=\frac{e^{2}}{2 m} \mathbf{A}^{2}+(g-1) \frac{e^{2}}{2 m^{2}} \mathbf{s} \cdot(\mathbf{E} \times \mathbf{A})
$$

- Another idea: restore two-photon terms from gauge invariance
- Recall: NRQED Hamiltonian is constructed from $\mathbf{D}=\boldsymbol{\nabla}-i e \mathbf{A}=i(\mathbf{p}-e \mathbf{A}), \mathbf{E}, \mathbf{B}$, and \mathbf{S}.
- Any gauge noninvariant term with two fields has a partner with one field

NRQED Hamiltonian

- Can there be gauge invariant terms with two fields?
- They are of too high order in $Z \alpha$
- We use gauge invariance to restore two-field terms from one-field terms $\mathbf{p} \rightarrow \mathbf{p}-e \mathbf{A}$

NRQED Hamiltonian

$$
\begin{gathered}
H=\phi^{+}\left\{\frac{(\mathbf{p}-e \mathbf{A})^{2}}{2 m}+e A_{0}-(g-1) e \frac{\nabla \cdot \mathbf{E}}{8 m^{2}} \frac{\boldsymbol{\Sigma}^{2}}{3}\right. \\
-(g-1) e \frac{\mathbf{s} \cdot(\mathbf{E} \times(\mathbf{p}-e \mathbf{A}))}{2 m^{2}}+e(g-1) \lambda \frac{Q_{i j} \nabla_{i} E_{j}}{2 m^{2}}-g \frac{e}{2 m}(\mathbf{s} \cdot \mathbf{B})\left(1-\frac{\mathbf{p}^{2}}{2 m^{2}}\right) \\
\left.-(g-2) \frac{e}{2 m}(\mathbf{s} \cdot \mathbf{B}) \frac{\mathbf{p}^{2}}{2 m^{2}}+(g-2) \frac{e}{2 m} \frac{(\mathbf{p} \cdot \mathbf{B})(\mathbf{s} \cdot \mathbf{p})}{2 m^{2}}\right\} \phi
\end{gathered}
$$

NRQED Hamiltonian

- What about loop diagrams?
- Value of g includes all loop corrections to free g-factor
- Other loop corrections are of too high order in $Z \alpha$
- For spin one case this Hamiltonian follows from Electroweak Theory
- NRQED Hamiltonian is sufficient for calculation of nonrecoil corrections
- Nonrecoil correction of order $(Z \alpha)^{2}$ are universal!

Two-Particle Hamiltonian

From Field Theory to Quantum Mechanics

- Effective two-particle QM Hamiltonian

$$
H=H_{1}+H_{2}+H_{i n t}
$$

- Free Hamiltonians H_{i} - one-particle sector of NRQED
- Interaction Hamiltonian from one-photon exchange

One-photon exchange interaction for arbitrary spins $\left(\mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2}\right)$

$$
\begin{gathered}
V_{i n t}=e_{1} e_{2}\left[\frac{1}{4 \pi r}-\left(g_{1}-1\right) \frac{1}{8 m_{1}^{2}} \frac{\boldsymbol{\Sigma}_{1}^{2}}{3} \delta(\mathbf{r})-\left(g_{1}-1\right) \frac{3 \lambda_{1}}{\pi} \frac{r^{i} r^{j} Q_{i j}^{(1)}}{8 m_{1}^{2} r^{5}}\right. \\
-\left(g_{2}-1\right) \frac{1}{8 m_{2}^{2}} \frac{\boldsymbol{\Sigma}_{2}^{2}}{3} \delta(\mathbf{r})-\left(g_{2}-1\right) \frac{3 \lambda_{2}}{\pi} \frac{r^{i} r^{j} Q_{i j}^{(2)}}{8 m_{2}^{2} r^{5}}-\frac{\mathbf{r}\left(\mathbf{r} \cdot \mathbf{p}_{1}\right) \cdot \mathbf{p}_{2}}{8 \pi m_{1} m_{2} r^{3}}-\frac{\mathbf{p}_{1} \cdot \mathbf{p}_{2}}{8 \pi m_{1} m_{2} r} \\
-\left(g_{1}-1\right) \frac{2 \mathbf{s}_{1} \cdot\left(\mathbf{r} \times \mathbf{p}_{1}\right)}{16 \pi m_{1}^{2} r^{3}}+g_{1} \frac{2 \mathbf{s}_{1} \cdot\left(\mathbf{r} \times \mathbf{p}_{2}\right)}{16 \pi m_{1} m_{2} r^{3}} \\
+\left(g_{2}-1\right) \frac{2 \mathbf{s}_{2} \cdot\left(\mathbf{r} \times \mathbf{p}_{2}\right)}{16 \pi m_{2}^{2} r^{3}}-g_{2} \frac{2 \mathbf{s}_{2} \cdot\left(\mathbf{r} \times \mathbf{p}_{1}\right)}{16 \pi m_{1} m_{2} r^{3}} \\
\left.+\frac{g_{1} g_{2}}{16 \pi m_{1} m_{2}}\left(\frac{\mathbf{s}_{1} \cdot \mathbf{s}_{2}}{r^{3}}-\frac{3\left(\mathbf{s}_{1} \cdot \mathbf{r}\right)\left(\mathbf{s}_{2} \cdot \mathbf{r}\right)}{r^{5}}-\frac{8 \pi}{3} \mathbf{s}_{1} \cdot \mathbf{s}_{2} \delta(\mathbf{r})\right)\right]
\end{gathered}
$$

Two-Particle Hamiltonian

- Electric field is due to Coulomb potential
- This is interaction potential without external field
- Restore vector potential by the minimal substitution

$$
\mathbf{p}_{i} \rightarrow \mathbf{p}_{i}-e \mathbf{A}_{i}, \mathbf{A}_{i}=\mathbf{B} \times \mathbf{r}_{i} / 2
$$

- Total QM two-particle Hamiltonian (only relevant terms)

$$
\begin{gathered}
H=H_{1}+H_{2}+H_{i n t} \\
H_{1}=\frac{\left(\mathbf{p}_{1}-e_{1} \mathbf{A}_{1}\right)^{2}}{2 m_{1}}-g_{1} \frac{e_{1}}{2 m_{1}}\left(\mathbf{s}_{1} \cdot \mathbf{B}\right)\left(1-\frac{\mathbf{p}_{1}^{2}}{2 m_{1}^{2}}\right) \\
-\left(g_{1}-2\right) \frac{e_{1}}{2 m_{1}}\left(\mathbf{s}_{1} \cdot \mathbf{B}\right) \frac{\mathbf{p}_{1}^{2}}{2 m_{1}^{2}}+\left(g_{1}-2\right) \frac{e_{1}}{2 m_{1}} \frac{\left(\mathbf{p}_{1} \cdot \mathbf{B}\right)\left(\mathbf{s}_{1} \cdot \mathbf{p}_{1}\right)}{2 m_{1}^{2}}
\end{gathered}
$$

Terms with electric field are included in $H_{i n t}$

Two-Particle Hamiltonian

- $\mathrm{H}_{1} \rightarrow \mathrm{H}_{2}$ when $1 \rightarrow 2$
- Interaction Hamiltonian (only the Coulomb term and spin-orbit terms with magnetic field)

$$
\begin{gathered}
H_{i n t}=\frac{e_{1} e_{2}}{4 \pi r} \\
+e_{1} e_{2}\left[-\left(g_{1}-1\right) \frac{2 \mathbf{s}_{1} \cdot\left(\mathbf{r} \times\left(\mathbf{p}_{1}-e_{1} \mathbf{A}_{1}\right)\right)}{16 \pi m_{1}^{2} r^{3}}+g_{1} \frac{2 \mathbf{s}_{1} \cdot\left(\mathbf{r} \times\left(\mathbf{p}_{2}-e_{2} \mathbf{A}_{2}\right)\right)}{16 \pi m_{1} m_{2} r^{3}}\right. \\
\left.+\left(g_{2}-1\right) \frac{2 \mathbf{s}_{2} \cdot\left(\mathbf{r} \times\left(\mathbf{p}_{2}-e_{2} \mathbf{A}_{2}\right)\right)}{16 \pi m_{2}^{2} r^{3}}-g_{2} \frac{2 \mathbf{s}_{2} \cdot\left(\mathbf{r} \times\left(\mathbf{p}_{1}-e_{1} \mathbf{A}_{1}\right)\right)}{16 \pi m_{1} m_{2} r^{3}}\right]
\end{gathered}
$$

Problem with Center of Mass

- Goal: separate internal properties of the bound system
- Center of mass motion does not separate in magnetic field
- Analogy with degenerate PT in QM: unperturbed wave functions should diagonalize perturbation
- Idea: composite particle in weak external field should respond to field like charged elementary particle
- Charged particle in magnetic field rotates on Landau orbit, its momentum is not conserved $[H, \mathbf{p}] \neq 0$
- Position of the center of Landau orbit is conserved (we use symmetric gauge, $\mathbf{A}=\mathbf{B} \times \mathbf{r} / 2$), hence pseudomomentum is conserved

$$
[H, \mathbf{p}+e \mathbf{A}]=0
$$

Problem with Center of Mass

- CM coordinates: $\mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2}, \mathbf{R}=\mu_{1} \mathbf{r}_{1}+\mu_{2} \mathbf{r}_{2}, \mathbf{P}=\mathbf{p}_{1}+\mathbf{p}_{2}$,

$$
\mathbf{p}=\left(\mathbf{p}_{1}-\mathbf{p}_{2}\right) / 2+\left(\mu_{2}-\mu_{1}\right) \mathbf{P} / 2, \mu_{i}=m_{i} /\left(m_{1}+m_{2}\right)
$$

- Unperturbed Hamiltonian for bound system

$$
\left.H_{0}=\frac{\left(\mathbf{p}_{1}-e_{1} \mathbf{A}_{1}\right)^{2}}{2 m_{1}}+\frac{\left(\mathbf{p}_{2}-e_{2} \mathbf{A}_{2}\right)^{2}}{2 m_{2}}+V_{C}\left(\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|\right)\right)
$$

- Neither total momentum, nor pseudomomentum are conserved: $\left[H_{0}, \mathbf{P}\right] \neq 0,\left[H_{0}, \mathbf{P}+\left(e_{1}+e_{2}\right) \mathbf{A}(\mathbf{R})\right] \neq 0$
- Sum of pseudomomenta of constituents is conserved

$$
\left[H_{0}, \mathbf{P}+\left(e_{1}+e_{2}\right) \mathbf{A}(\mathbf{R})+\left(e_{1} \mu_{2}-e_{2} \mu_{1}\right) \mathbf{A}(\mathbf{r})\right]=0
$$

- Remedy: Unitary transformation $U=e^{-i\left(e_{1} \mu_{2}-e_{2} \mu_{1}\right) \mathbf{A}(\mathbf{r}) \cdot \mathbf{R}}$

Unitary Transformation

$$
\begin{aligned}
& H_{0}^{\prime}=U^{-1} H_{0} U=\frac{[\mathbf{P}-Q \mathbf{A}(\mathbf{R})-q \mathbf{A}(\mathbf{r})]^{2}}{2\left(m_{1}+m_{2}\right)}+\frac{\left[\mathbf{p}-\left(e_{1} \mu_{2}^{2}+e_{2} \mu_{1}^{2}\right) \mathbf{A}(\mathbf{r})\right]^{2}}{2 m_{r}} \\
& Q=e_{1}+e_{2}, q=2\left(e_{1} \mu_{2}-e_{2} \mu_{1}\right) \\
& U^{-1}\left(\mathbf{P}+\left(e_{1}+e_{2}\right) \mathbf{A}(\mathbf{R})+\left(e_{1} \mu_{2}-e_{2} \mu_{1}\right) \mathbf{A}(\mathbf{r})\right) U=\mathbf{P}+\left(e_{1}+e_{2}\right) \mathbf{A}(\mathbf{R})
\end{aligned}
$$

- After transformation pseudomomentum is conserved

$$
\left[H_{0}^{\prime}, \mathbf{P}+\left(e_{1}+e_{2}\right) \mathbf{A}(\mathbf{R})\right]=0
$$

- In all calculations one should use the unitary transformed Hamiltonian

Spin Part of the Hamiltonian

Spin-dependent terms contain factors

$$
\begin{aligned}
& \mathbf{p}_{1}-e_{1} \mathbf{A}\left(\mathbf{r}_{1}\right) \rightarrow \mu_{1}\left[\mathbf{P}-\left(e_{1}+e_{2}\right) \mathbf{A}(\mathbf{R})\right]+\left[\mathbf{p}-\left[e_{1}-\left(e_{1}+e_{2}\right) \mu_{1}^{2}\right] \mathbf{A}(\mathbf{r})\right] \\
& \mathbf{p}_{2}-e_{2} \mathbf{A}\left(\mathbf{r}_{2}\right) \rightarrow \mu_{2}\left[\mathbf{P}-\left(e_{1}+e_{2}\right) \mathbf{A}(\mathbf{R})\right]-\left[\mathbf{p}-\left[e_{2}-\left(e_{1}+e_{2}\right) \mu_{2}^{2}\right] \mathbf{A}(\mathbf{r})\right]
\end{aligned}
$$

After unitary transformation interaction terms with vector potential change form
Transformed spin-dependent Hamiltonian for the first particle (only terms magnetic field)

Bound g-Factors

$$
\begin{array}{r}
H_{\text {spin }}^{\prime(1)}=-g_{1} \frac{e_{1}}{2 m_{1}}\left(\mathbf{s}_{1} \mathbf{B}\right)\left(1-\frac{\mathbf{p}^{2}}{2 m_{1}^{2}}\right)-\left(g_{1}-2\right) \frac{e_{1}}{2 m_{1}}\left(\mathbf{s}_{1} \mathbf{B}\right) \frac{\mathbf{p}^{2}}{2 m_{1}^{2}} \\
+\left(g_{1}-2\right) \frac{e_{1}}{2 m_{1}} \frac{(\mathbf{p B})\left(\mathbf{s}_{1} \mathbf{p}\right)}{2 m_{1}^{2}} \\
-e_{1} e_{2}\left(g_{1}-1\right) \frac{2 \mathbf{s}_{1} \cdot\left(\mathbf{r} \times\left[\mathbf{p}-\left[e_{1}-\left(e_{1}+e_{2}\right) \mu_{1}^{2}\right] \mathbf{A}(\mathbf{r})\right]\right)}{16 \pi m_{1}^{2} r^{3}} \\
-e_{1} e_{2} g_{1} \frac{2 \mathbf{s}_{1} \cdot\left(\mathbf{r} \times\left[\mathbf{p}-\left[e_{2}-\left(e_{1}+e_{2}\right) \mu_{2}^{2}\right] \mathbf{A}(\mathbf{r})\right]\right)}{16 \pi m_{1} m_{2} r^{3}}
\end{array}
$$

Similar Hamiltonian for the second particle

Bound g-Factors

Calculation of matrix elements is trivial

$$
\begin{gathered}
g_{1}^{\text {bound }}=g_{1}\left[\left(1-\frac{\mu_{2}^{2} e_{1}^{2} e_{2}^{2}}{2(4 \pi)^{2} n^{2}}\right)\right. \\
\left.+\frac{\mu_{2} e_{1} e_{2}^{2}\left[e_{1}-\left(e_{1}+e_{2}\right) \mu_{1}^{2}\right]}{6(4 \pi)^{2} n^{2}}+\frac{\mu_{1} e_{1} e_{2}^{2}\left[e_{2}-\left(e_{1}+e_{2}\right) \mu_{2}^{2}\right]}{3(4 \pi)^{2} n^{2}}\right] \\
+\left(g_{1}-2\right)\left[\frac{\mu_{2}^{2} e_{1}^{2} e_{2}^{2}}{3(4 \pi)^{2} n^{2}}+\frac{\mu_{2} e_{1} e_{2}^{2}\left[e_{1}-\left(e_{1}+e_{2}\right) \mu_{1}^{2}\right]}{6(4 \pi)^{2} n^{2}}\right]
\end{gathered}
$$

g_{2} is obtained by the substitution $1 \leftrightarrow 2$
Corrections are universal for particles of any spin; depend only on the g-factors, not on the magnitude of their spin. Why?

Bargmann-Michel-Telegdi Equation

- Terms in NRQED Hamiltonian with derivatives of electric field are irrelevant for corrections to g-factors
- In semiclassical approximation trajectory of charged particle with spin in external magnetic field does not depend on spin. Spin is a QM correction of order \hbar.
- The BMT equation for spin motion (Bargmann-Michel-Telegdi, 1959) is valid when we neglect field gradients and preserve only linear in field terms
- Only relativistic invariance and nonrelativistic limit are needed for derivation!

Bargmann-Michel-Telegdi Equation

- In three-dimensional form

$$
\begin{aligned}
\frac{d \mathbf{s}}{d t}=\frac{e}{2 m c} \mathbf{s} & \times\left\{\left(g_{s}-2+\frac{2}{\gamma}\right) \mathbf{B}-\frac{\left(g_{s}-2\right) \gamma}{1+\gamma} \frac{\mathbf{v} \cdot \mathbf{B} \mathbf{v}}{c^{2}}\right. \\
& \left.+\left(g_{s}-\frac{2 \gamma}{1+\gamma}\right) \frac{[\mathbf{E} \times \mathbf{v}]}{c}\right\}
\end{aligned}
$$

- The coefficients are universal for all spins!
- BMT is a Heisenberg equation for spin

$$
i \hbar \frac{d \mathbf{s}}{d t}=[\mathbf{s}, H]
$$

Bargmann-Michel-Telegdi Equation

$$
\begin{aligned}
& H=-\frac{e \hbar}{2 m c} \mathbf{s} \cdot\left\{\left(g_{s}-2+\frac{2}{\gamma}\right) \mathbf{B}-\frac{\left(g_{s}-2\right) \gamma}{1+\gamma} \frac{\mathbf{v} \cdot \mathbf{B} \mathbf{v}}{c^{2}}\right. \\
&+\left.\left(g_{s}-\frac{2 \gamma}{1+\gamma}\right) \frac{[\mathbf{E} \times \mathbf{v}]}{c}\right\}
\end{aligned}
$$

Nonrelativistic limit and minimal substitution $\mathbf{v} \rightarrow(\mathbf{p}-e \mathbf{A}) / m$

$$
\begin{gathered}
H \approx-\frac{e \hbar}{2 m c}\left\{\left(g_{s}-\frac{(\mathbf{p}-e \mathbf{A})^{2}}{m^{2} c^{2}}\right) \mathbf{s} \cdot \mathbf{B}-\left(g_{s}-2\right) \frac{[(\mathbf{p}-e \mathbf{A}) \cdot \mathbf{B}][\mathbf{s} \cdot(\mathbf{p}-e \mathbf{A})]}{2 m^{2} c^{2}}\right. \\
\left.+\left(g_{s}-1\right) \frac{\mathbf{s} \cdot[\mathbf{E} \times(\mathbf{p}-e \mathbf{A})]}{m c}\right\}
\end{gathered}
$$

Use this Hamiltonian to calculate corrections to bound state g-factor (Eides, Grotch, 1997)

Universal Nonrecoil g-Factor

Linear in external magnetic field terms

$$
\begin{gathered}
H \approx-\frac{e \hbar}{2 m c}\left\{\left(g_{s}-\frac{\mathbf{p}^{2}}{m^{2} c^{2}}\right) \mathbf{s} \cdot \mathbf{B}-\left(g_{s}-2\right) \frac{(\mathbf{p} \cdot \mathbf{B})(\mathbf{s} \cdot \mathbf{p})}{2 m^{2} c^{2}}\right. \\
\left.-e\left(g_{s}-1\right) \frac{\mathbf{s} \cdot[\mathbf{E} \times \mathbf{A}]}{m c}\right\}
\end{gathered}
$$

- Nonrecoil bound state g-factor

$$
g_{\text {bound }}=g_{s}\left(1-\frac{(Z \alpha)^{2}}{3 n^{2}}\right)+\left(g_{s}-2\right) \frac{(Z \alpha)^{2}}{2 n^{2}}
$$

- Bound state g-factor naturally does not depend on magnitude of spin
- The source of leading recoil relativistic corrections is the one-photon exchange

Summary

- NRQED Hamiltonian for charged particles of arbitrary spin with all terms of order $(Z \alpha)^{2}$ is constructed
- For spin one case this Hamiltonian follows from the renormalizable Lagrangian QED of charged vector bosons
- An explicit expression for all (nonrecoil and recoil) leading binding $\left(\sim(Z \alpha)^{2}\right)$ corrections to free g-factors is obtained
- Leading relativistic $\left(\sim(Z \alpha)^{2}\right)$ corrections to bound state g-factors are universal and do not depend on the magnitude of particle spin

