

2146-14

Gribov-80 Memorial Workshop on Quantum Chromodynamics and Beyond'

26 - 28 May 2010

New exact solutions of perfect fluid hydrodynamics: yj gqt { 'cpf 'crrdecvkqpu'kp'j ki j / energy experiments

Marton Nagy MTA KFKI Research Institute for Particle and Nuclear Physics Hungary

Exact solutions of perfect fluid hydrodynamics: theory and applications in high-energy experiments

Márton Nagy

MTA KFKI RMKI, Budapest, Hungary

Gribov-80 Memorial Workshop

Trieste, Italy

27 May, 2010

Outline

- Heavy-ion physics: studying the phase structure of QCD matter
- Collective phenomena: experimental signs of phase structure
- Hydrodynamical modelling: exact vs. numerical
- Solutions to the hydrodynamical equations
 - Nonrelativistic solutions
 - Review of well-known solutions
 - Recent results in relativistic perfect fluid hydrodynamics
- Phenomenological applications

Motivation

Goal of heavy-ion physics: Understand the phase structure of the strongly interacting matter (hard task)

- Experimentally: the matter created in heavy-ion collisions is an almost perfect fluid
 - Hydrodynamics is the only way which dynamically connects the initial state, the final state, and the equation of state (EoS)
 - To explore the EoS is perhaps the final aim: but we can get to it only by knowing properly the space-time picture of the collisions
 - Lots of models failed to describe the observations correctly
- Hydrodynamical modelling can tell about the dynamics of the matter, thus finally on the equation of state

Perfect fluid hydrodynamics

Perfectness of the fluid: important question

- In the relativistic case, even the equations are not welldefined for viscous fluids
- In nonrelativistic case, equations are easier to solve
- Surprisingly, they lead to a good description of the observables
- Elliptic flow: scaling behaviour predicted

Hydrodynamics naturally leads to scaling

Relativistic hydrodynamics

Only assumption: local thermal equilibrium & local energymomentum conservation (no internal scale -> scaling laws)

Stress-energy-momentum tensor:

- Equations follow from that its fourdivergence vanishes

$$T_{\mu\nu} = w u_{\mu} u_{\nu} - p g_{\mu\nu}$$

$$\partial_{\nu}T^{\mu\nu} = 0$$

Equations for perfect fluid:

- Euler equation: $w u^{\nu} \partial_{\nu} u^{\mu} = (g^{\mu\rho} - u^{\mu} u^{\rho}) \partial_{\rho} p$

- Energy conservation:
$$w\partial_{\mu}u^{\mu} = -u^{\mu}\partial_{\mu}arepsilon$$

- Entropy conservation: $\partial_{\mu} (\sigma u^{\mu}) = 0.$

Hydrodynamical modelling

Different types of hydrodynamical models in heavy ion physics:

- Hydrodynamics inspired parametrization: describes just the final state (at freeze-out), time evolution not considered
- Numerical models: solve the equations numerically
- Parametric solutions: exact solutions with fit parameters
- Models based on exact solutions: either use a particular solution directly, or a parametrization that simplifies to known exact solutions
- A hydrodynamical model is a combination of

initial conditions + dynamical equations + freeze-out condition

- Common: calculate observables from thermal distributions

Historical solutions

Landau-Khalatnikov solution: implicit, exact, accelerating 1+1D

- Used in the description of elementary particle reactions (p+p in cosmic rays); hydrodynamics really "begins" in p+p (not in e⁺+e⁻)
- Initially: a finite slab of matter, final observables: approximately Gaussian rapidity distribution; formulas are complicated

L. D. Landau, Izv. Akad. Nauk Ser. Fiz. 17, 51 (1953)

Hwa-Bjorken solution: exact explicit 1+1D, boost-invariant

- Final rapidity distribution is constant), but important for estimating initial energy density

R. C. Hwa, Phys. Rev. D 10, 2260 (1974), J. D. Bjorken, Phys. Rev. D 27, 140 (1983)

Nonrelativistic solutions

In the NR limit, there are many 1+3D realistic exact solutions:

- First exact Hubble-like solution in a broad class (with finite density):

J. Bondorf, S. Garpman, J. Zimányi, Nucl. Phys. A 296 320 B 37 483 (1978)

- Directional Hubble velocity field, general temperature profile:

T. Csörgő, Acta Phys. Polon. B 37 483 (2006)

- Directional Hubble velocity field, Gaussian density profile, for arbitrary temperature-dependent speed of sound:

T. Csörgő, S. V. Akkelin, Y. Hama, B. Lukács, Y. M. Sinyukov, PRC 67 034904 (2003)

To my best knowledge, this is the only exact solution where arbitrary EoS (e.g. lattice QCD results) can be directly utilized (at $\mu_{R}=0$)

- Buda-Lund hydrodynamical model: based on these solutions, describes scaling of elliptic flow, RHIC HBT puzzle, etc ...

Relativistic solutions

Homogeneous expansion:

- An example: spherical expansion & ellipsoidally symmetric pressure:

$$u^{\mu} = \frac{x^{\mu}}{\tau} \qquad s = \frac{r_x^2}{\dot{X}_0^2 t^2} + \frac{r_y^2}{\dot{Y}_0^2 t^2} + \frac{r_z^2}{\dot{Z}_0^2 t^2}$$

T. Csörgő, L. P. Csernai, Y. Hama, T. Kodama, Heavy Ion Phys. A 21, 73 (2004)

- Many other solutions ...
- 1+1D, interpolation between Landau-Khalatnikov & Hwa-Bjorken:
 - valid for arbitrary (constant) speed of sound

A. Bialas, R. Janik, R. Peschanski, Phys. Rev. C 76 054901 (2007)May 27, 2010Márton Nagy - Gribov-80 Memorial Workshop, Trieste, Italy

Relativistic solutions

- First accelerating explicit solution: constant acceleration in rest frame
- Framework for Unruh-effect
- An extension:

$$v = \frac{2tr}{t^2 + r^2} \rightarrow v = \tanh \lambda \eta,$$

For a very stiff EoS (κ =1), the equations become a wave-equation for a potential function: <u>exact</u> solution for <u>any initial condition</u>

M. Nagy, T. Csörgő, M. Csanád, Phys. Rev. C 77 024908 (2008) (see also: M. Borshch, V. Zhdanov, SIGMA 3, 16 (2007))

Applications

Rapidity distribution: finite

- Acceleration parameter fitted to RHIC measurements (BRAHMS)
 - energy density: a ~120% increase compared to the Bjorken-estimate, and with more realistic EoS, conjectured further ~50%: Bjorken estimate: 5 GeV/fm³, improved estimate is ~15 GeV/fm³,
 - Critical value: 1 GeV/fm³, ~170MeV, qualitative agreement with the temperature measurement at PHENIX (~300 MeV based on thermal photons) since ϵ ~T⁴

May 27, 2010 Márton Nagy - Gribov-80 Memorial Workshop, Trieste, Italy

New relativistic solutions

A special problem investigated:

- Can the <u>collisionless</u> evolution of matter particles <u>maintain</u> local thermal <u>equilibrium</u> (contrary to intuition)?
- In the nonrelativistic case: there are such expanding solutions
- Relativistic case: new results

Generalizing these solutions:

- Interesting solutions on their own: regular, spatially finite pressure
- Rotating and coasting, realistic 3D solutions (for the first time)

M. I. Nagy, arXiv:0909.4285

New relativistic solutions

Example of the new solutions:

Already known (μ =0)

Other generalizations:

Rotating relativistic solutions: maybe useful for studying non-central collisions (e.g. local parity violation ...)

Summary

Exact (parametric) hydrodynamical solutions:

- Useful in heavy-ion physics: follow the time evolution (constraints on initial conditions provided we know the final state), or if initial state is modelled, constrains EoS from data
- It is natural to develop the models with exact solutions (challenging)
- Now: there are many exact solutions, some of them are realistic in EoS (works for any speed of sound), realistic in geometry (3D expansion, ellipsoidal symmetry) or realistic in flow profile: asymptotics (Hubble), or acceleration

Future work needed:

 New exact results are essential steps in understanding the dynamics of heavy-ion reactions, leading to understanding the properties of the QCD matter experimentally

Thank you for your attention!