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Three approaches to 2D quantum geometry

One is the continuous approach, in which the theory is defined
through the functional integral over the Riemannian metric gμν(X),
with appropriate gauge fixing. The choice of the conformal gauge
leads to quantum Liouville theory (coupled to matter fields), and
for that reason this approach is often called the Liouville Gravity.

The other is the discrete approach, based on the idea of approx-
imating the fluctuating 2D geometry by an ensemble of planar
graphs, so that the continuous theory is recovered in the scaling
limit where the planar graphs of very large size dominate. The
discrete approach is usually referred to as the Matrix Models, since
technically the ensemble of the graphs is usually generated by the
perturbative expansion of the integral over N × N matrices, with
N sent to infinity to guarantee the planarity of the graphs .

There exists the third approach —2d Topological gravity. Witten
built axiomatics of this theory by studying intersection theory .
It was conjectured and checked (for genus-zero) that correlation
numbers in Topological gravity and in Matrix models coincide. It
should be mentioned that the coincidence takes place if correlation
numbers in OMM are calculated in KdV frame.



Continuous approach Discret approach

↓ ↓

”Liouville Gravity” ”Matrix Models”

Impressive body of evidence that the two describe the same reality:

• Operators OLG
k and OMM

k have identical scale dimensions

• Some correlation numbers coincide:

〈OLG
1 ...OLG

n 〉 = 〈OMM
1 ...OMM

n 〉
But with ”naive” identification many correlation numbers are not

in agreement.

Resolution: Resonance relations:

[Ok] = [Ok1
] + [Ok2

]



A conjecture was proposed and checked that there exists a so

called “resonance” transformation in MM, such that the corre-

lation functions in the both theories will coincide. Indeed the

”resonance” transformation in MM is the transformation from the

”KdV” background and the choice of the obsevables to a different

one (”CFT frame”). The explicit form of the transformation was

established for particular case, namely for the Minimal quantum

gravity MG2/2p+1 and the One-Matrix Model (OMM) with p criti-

cal points. There exist also the tird approach to 2D gravity,namely,

Witten topological gravity and conjectured its equivalence to Ma-

trix models. He checked this equivalence for correlators of parti-

tion function for genus zero. The concidence takes place when

correlation numbers in OMM are calculated in KdV frame.



1. Minimal Gravity

1.1. Quantum Geometry∑
topologies

∫
D[g]D[φ] e−S[g,φ]

g(x) - Riemannian metric , φ - ”matter” fields

〈 Õk1
...ÕkN

〉 =
∫

Õk1
...ÕkN

e−S[g,φ] D[g, φ]

Õk =
∫
M

Ok(x) dμg(x)

Ok(x) - local fields (built from φ and g).
Generating function: {λ} = {λ1, ..., λn}

Z({λ}) =
∫

D[g, φ] e−Sλ[g,φ] ,

Sλ[g, φ] = S0[g, φ] +
∑
k

λk Õk

〈 Õk1
...ÕkN

〉 = ∂NZ({λ})
∂λk1

...∂λkN

∣∣∣∣∣
λ=0

The parameters {λ} are the coordinates in the”theory space” Σ.



1.2. Conformal Matter, and Liouville Gravity

gμν Tmatter
μν = − c

12
R

Conformal Gauge gμν = e2bϕ ĝμν: ⇒ Decoupling

S[g, φ] → SL[ϕ] + SGhost[B, C] + SMatter[φ]

with

SL[φ] =
1

4π

∫ √
ĝ

[
ĝμν∂μϕ∂νϕ + Q R̂ ϕ + 4πμ e2b ϕ

]
d2x ,

SGhost[B, C] =
1

2π

∫ √
ĝ Bμν∇μCν d2x ,(

Bμν = Bνμ , ĝμνBμν = 0
)
,

26− c = 1 + 6Q2 Q = b + 1/b .

(SMatter[φ] is conformally invariant, with the central charge c).



Correlation numbers 〈 Õk1
...ÕkN

〉 with

Õk =
∫

Vk(x)Φk(x) d2x

Φk(x) - (spinless) primary fields of the matter CFT, with the

conformal dimensions (Δk,Δk) Vk(x) - ”gravitational dressings”,

Vk(x) = e2ak ϕ(x) , ak(Q− ak) + Δk = 1

Gravitational dimensions of Õk control the scale dependence of

the corr. functions:

Õk ∼ μδk , δk = −ak

b

1.3. Correlation numbers

〈 Õk1
...Õkn 〉 = |(x1 − x2)(x2 − x3)(x3 − x1)|2 ×∫

d2x4...d2xn 〈Ok1
(x1)Ok2

(x2)Ok3
(x3)Ok4

(x4)...Okn(xn) 〉︸ ︷︷ ︸
↓

〈Vk1
(x1)...Vkn(xn) 〉Liouville 〈Φk1

(x1)...Φkn(xn) 〉Matter



1.4. Matter CFT: ”Minimal Models”

Mp/q c = 1− 6
(p− q)2

pq

Finite number of primary fields

Φ(n,m) (n = 1, ..., p− 1 , m = 1, ..., q − 1 , n ≤ m) ,

with (in principle) computable correlation functions, e.g.

〈Φ(n1,m1)
(x1)...Φ(n4,m4)

(x4) 〉MM =

∑
(n,m)

C
(n,m)
(n1,m1)(n2,m2)

C
(n,m)
(n3,m3)(n4,m4)

|F(n,m)(Δi|x)|2

Fusion rules:

Φ(n1,m1)
Φ(n2,m2)

=
N∑

n=|n1−n2|+1

M∑
m=|m1−m2|+1

[Φ(n,m)] ,

with

N = min(n1 + n2 − 1,2p− n1 − n2 − 1) ,

M = min(m1 + m2 − 1,2q −m1 −m2 − 1)



1.5. ”Yang-Lee series” of the Minimal Models M2/2p+1
• M2/2p+1 has p primary fields

Φk ≡ Φ(1,k+1) , k = 0,1, ..., p− 1 (p, p + 1, ...,2p− 1)

Fusion rules

[Φk1
][Φk2

] =
k1+k2∑

k=|k1−k2| : 2
[Φk] , [Φk] = [Φ2p−k−1]

Φk = Φ2p−k−1

• Correlation functions:

〈Φk 〉 = δk,0, 〈ΦkΦk′ 〉 ∼ δk,k′

〈Φk1
Φk2

Φk3
〉 = 0

if

{
k1 + k2 < k3, etc, for k1 + k2 + k3 even

k1 + k2 + k3 < 2p− 1 for k1 + k2 + k3 odd

〈Φk1
...Φkn 〉 = 0

if

{
k1 + ... + kn−1 < kn, for k1 + ... + kn even

k1 + ... + kn < 2p− 1 for k1 + ... + kn odd



• Generating function: {λ} = {λ1, λ2, ..., λp−1}

ZMG(μ, {λ}) =

〈
exp

{
−

p−1∑
i=1

λi Õi

}〉
MG2/2p+1

The cosmological constant μ may be treated as μ = λ0

S[MG] = ... + μ
∫

e2bϕ(x) d2x︸ ︷︷ ︸+...

Õ0 =
∫

V0(x)Φ0(x) d2x , Φ0 = I

Dimensions:

λk ∼ μ
k+2
2 , k = 0,1, ..., p− 1

By the definition

〈 Õk1
...Õkn 〉 =

∂nZMG(μ, {λi})
∂λk1

...∂λkn

∣∣∣∣∣{λi}=0
, {λi} = {λ1, ..., λn}



2. Matrix Models

Continuous limit of the ensemble of planar graphs =Quantum Geometry

2.1.One-matrix Model The planar graphs = Feynmann diagrams

associated with the perturbative evaluation of the matrix integral

Z = log
∫

dM e
−N tr

(
1
2 M2−∑n=3

αn
n! Mn

)

M- Hermitian N × N matrix, N being the device for sorting out

the topologies

Z = N2 Z0 + Z1 + ... + N2−2g Zg + ...

Each term Zg generates discretized surfaces, of the topology g,

made of triangles and higher polygons, with the weights deter-

mined by αi.

• We concentrate on g = 0 (sphere) Σ -space of the ”poten-

tials” V (M) =
∑

n=3
αn
n! Mn.

The one-Matrix Model exhibits an infinite set of multi-critical

points, labelled by the integer p = 1,2,3, ....



In the scaling limit the partition function is expressed through the

solution of the ”string equation”

P(u) = 0 , (1)

where P(u) is the p + 1-degree polynomial

P(u) = up+1 + t0 up−1 +
p−1∑
k=1

tk up−k−1 , (2)

with the parameters tk describing the relevant deviations from the

p-critical point . The singular part of the Matrix Model partition

function Z(t0, t1, ..., tp−1) is expressed through P(u) as follows

Z =
1

2

∫ u∗

0
P2(u) du , (3)

where u∗ = u∗(t0, t1, ..., tp−1) is the suitably chosen root of the

polynomial , i.e. P(u∗) = 0.

It is important to remember that Z really gives only the singular

part of the Matrix Model partition function.



Take

t0 = μ −”cosmological constant”

Then

[u] = [μ
1
2] , [tk] = [μ

k+2
2 ] , [Z] = [μ

2p+3
2 ] ,

exactly the gravitational dimensions of MG2/2p+1,

tk ∼ λk , k = 0,1,2, ..., p− 1.

Convenient to separate t0 = μ and {ti} = {t1, t2, ..., tp−1}

Matrix Model correlation numbers:

〈Ok1
...Okn 〉MM ≡ ∂nZMM(μ, {ti})

∂tk1
...∂tkn

∣∣∣∣∣{ti}=0
, {ti} = {t1, ..., tn}



With the (naive) identification tk ∼ λk one would expect

〈Ok1
...Okn 〉MM = 〈 Õk1

...Õkn 〉MG × [Leg factors]

This expectation fails.
Since

P(u) = up+1 + μ up−1 +
p−1∑
k=1

tk up−k−1 , Z =
1

2

∫ u∗

0
P2(u) du

we have u∗(μ,0, ...,0) =
√

μ, and

∂Z

∂tk

∣∣∣∣∣{t=0}
=
∫ u∗

0
P(u)

∂P(u)

∂tk
du

∣∣∣∣∣{t=0}
= − 2μ

2p−k+1
2

(2p− k − 1)(2p− k + 1)

∂2Z

∂tk∂tk′

∣∣∣∣∣{t=0}
=
∫ u∗

0

∂P(u)

∂tk

∂P(u)

∂tk′
du

∣∣∣∣∣{t=0}
=

μ
2p−k−k′−1

2

2p− k − k′ − 1

etc

in sharp contrast with

〈 Õk 〉MG = 0 , k = 1,2, ..., p− 1 (since 〈Φk 〉CFT = 0)

〈 ÕkÕk′ 〉MG ∼ δkk′ , (since 〈ΦkΦk′ 〉CFT ∼ δkk′)



2.3. Resonance transformations

[tk] = [μ
k+2
2 ] , [λk] = [μ

k+2
2 ]

It is possible to have, e.g.

[tk] = [λk1
][λk2

] (k = k1 + k2 + 2 ≥ 2)

(k = 0,1,2, ..., p− 1). I.e.

tk = λk +
p−1∑

k1,k2=0
k1+k2=k+2

c
k1k2
k λk1

λk2
+ higher order terms

Thus

t0 = λ0 = μ ,

t1 = λ1 , ([t1] = [μ3/2])

t2 = λ2 + A2 μ2 , ([t2] = [μ2])

t3 = λ3 + B3 μ λ1 , ([t3] = [μ][t1])

t4 = λ4 + A4 μ3 + B4 μ λ2 + C4 λ2
1

etc



generally

tk = λk + Ak μ
k+2
2︸ ︷︷ ︸+

n≤k/2∑
n=0

Bk−2n
k μn λk−2n︸ ︷︷ ︸+

1

2

∑
n=0

∑
k1+k2=k−2−2n

C
k1,k2
k μn λk1

λk2︸ ︷︷ ︸+...

↑

ZMM({t}) → Z̃MM({λ}) ≡ ZMM({t(λ)})
The right thing to expect is

∂NZ̃MM({λ})
∂λk1

...∂λkN

= 〈 Õk1
...Õkn 〉MG

under special choice of the ”Liouville coordinates” {λ1, ..., λn}.



Thus,Problem: Finding the ”Liouville coordinates” {λ}, such that

• One-point numbers:

〈 Õk 〉MM =
∂Z̃(μ, {λ})

∂λk

∣∣∣∣∣{λ}=0
= 0 for k = 1,2, ..., p− 1

• Two-point numbers:

〈 ÕkÕk′ 〉MM =
∂2Z̃(μ, {λ})

∂λk∂λk′

∣∣∣∣∣{λ}=0
∼ δkk′

• Three-point numbers:

〈 Õk1
Õk2

Õk3
〉MM =

∂3Z̃(μ, {λ})
∂λk1

∂λk2
∂λk3

∣∣∣∣∣{λ}=0
= 0

obey the fusion rules.



• Multi-point numbers obey fusion rules, e.g. For even k1+ ...+kn

〈 Õk1
Õk2

...Õkn 〉MM = 0 if kn > k1 + k2 + ... + kn−1

For odd k1 + ... + kn

〈 Õk1
Õk2

...Õkn 〉MM = 0 if k1 + k2 + ... + kn < 2p− 1

Building the Liouville coordinates order by order in {λ}:
◦ The resonance transforms do not affect odd parity correlation

functions.

◦ Starting from n = 4 there are not enough parameters to exter-

minate the ”wrong” correlation numbers:

[λk] = [μ
k+2
2 ] → [λk1+k2

] = [λk1
][λk2

][μ2]



3. Finding the Liouville coordinates

When one plugs tk(λ) , the polynomial

P(u) = up+1 + t0 up−1 +
p−1∑
k=1

tk up−k−1 , (4)

takes the form

P(u) = P0(u) +
p−1∑
k=1

λk Pk(u) + ... +
p−1∑
ki=1

λk1
...λkn

n!
Pk1...kn(u) + ...

where P0(u) and Pk1...kn(u) are the polynomials of u whose coef-
ficients involve non-negative powers of μ.

P0(u) = up+1 + C′0 μ up−1 + C′′0 μ2 up−3 + ...

Pk(u) = Ck up−k−1 + C′k μ up−k−3 + C′′k μ2 up−k−5 + ...

...

C′k, C′′k , ... are dimensionless constants related to the higher-order
coefficients in tk(λ) , and in general Pk1...kn(u) are polynomials of
the degree

p + 1− 2n−∑ ki ,

of similar structure. Of course, only polynomials of non-negative
degree appear, so that the sum in P(u) is finite.



When the fusion rules are violated, the correlation numbers then

vanish as well. This requirement for the n-point numbers imposes

strong conditions on the form of the polynomials Qk1...kn−1
(x),

which fix them uniquely.

Technically, this is done by constructing the polynomial Q(u), or-

der by order in λk. We have executed this program up to the fifth

order. For higher n direct calculations become rather involved.

But a quick glance at a few first orders immediately suggests the

general form,

Qk1...kn(u) =
(

d

du

)n−1
Lp−∑ k−n(u) ,

where again
∑

k = k1 + ... + kn.



The conjecture

The partition function of the one-MM is expressed through Q(u)

Z =
1

2

∫ u∗

0
Q2(u) du ,

u∗ is the solution of the ”string equation”

Q(u∗) = 0

Q(u) =
∑

n=0

p−1∑
k1,...kn=1

λk1
...λkn

n!
L

(n−1)
p−∑ k−n

(u)

Here we denote

L
(n)
k (u) =

(
d

du

)n

Lk(u)

The partition fuction Z coincides with the generating functions
of the correlation numbers in MG2/2p+1

Z =

〈
exp

{
−

p−1∑
i=1

λi Õi

}〉
MG2/2p+1



The method of orthogonal polynomials

The partition function in One-Matrix Model

Z(vk, N) = log
∫

dMe−V (vk,M)

where M is hermitian matrix N ×N and potential

V (vk, M) = N
p+1∑
k=1

vkM2k

Expansion to Feynman diagrams in respect to the coupling con-

stants vk can be interpreted as genus expansion

Z =
∞∑

h=0

N2−2hZh,

h− genus of surfaces



Now we want to compute the integral over M . The first step is

dioganlization the matrix M in the integral giving

Z(vk, N) = log
∫ N∏

i=1

dλiΔ
2(λ)e−

∑
i V (vk,λi)

{λi} − eigenvalues of M

(5)

Δ(λ) =
∏
i<j

(λi − λj)−Vandermonde determinant



Introducing the set of orthogonal polynomials Pn(λ) = λn + ...,∫ ∞
−∞

dλe−V (λ)Pn(λ)Pm(λ) = snδnm.

one obtains for the partition function

Z = N
N−1∑
k=1

(1− k/N) log(sk/sk−1).

Using the relation

λPk(λ) = Pk+1(λ) + RkPk−1(λ)

One gets ∫
e−V PkλPk−1dλ = Rksk−1 = sk (6)

Rk = sk/sk−1

Therefore

Z = N
N−1∑
k=1

(1− k/N) logRk



We obtain the relation for Rk using

ksk−1 =
∫

e−V P ′kPk−1 =
∫

e−V V ′PkPk−1.

V ′(λ) =
p+1∑
k=1

2kvkλ2k−1

and applying 2n− 1 times the previous relation for λPk(λ)

λ2n−1Pk = λ2n−2(Pk+1 + RkPk−1) =

= λ2n−3(Pk+2 + (Rk+1)Pk + (Rk)Pk + (RkRk−1)Pk−2) = ...

Thus we arrive to the following formula for Rk

k

N
= W̃ (Rk, Rk±1, ..., Rk±p)

where

W̃ (Rk, Rk±1, ..., Rk±p) =

=
p+1∑
n=1

2nvn
∑

{σ2n−1}
Rk+m1

· ... ·Rk+mn

{σ2n−1} denotes all ”walks” which consist of 2n−1 steps, starting
in k and finishing in k − 1.



Evaluation of Z0 and Z1

Propose existence of smooth function R(ξ, N) of variable ξ ∈ [0,1],

and R( k
N , N) = Rk, and Taylor expansion for R(ξ + m/N, N)

R(ξ + m/N, N) = R(ξ, N) +
m

N
Rξ(ξ, N) +

m2

2N2
Rξξ(ξ, N) + O

( 1

N3

)
,

Thus

W̃ (R(ξ, N)) = W (R(ξ, N))+
1

N
W1(R(ξ, N))+

1

N2
W2(R(ξ, N))+O

( 1

N3

)
,

After calculation

W (R(ξ, N)) =
p+1∑
n=1

(2n)!

n!(n− 1)!
vnRn(ξ, N),

W1(R(ξ, N)) = 0,

W2(R(ξ, N)) =
RRξξ

6
W ′′(R(ξ, N)) +

RR2
ξ

12
W ′′′(R(ξ, N))



As a result we have

Z = N
N−1∑
k=1

(1− k/N) logR(ξ, N)

where R(ξ, N) is solution of equation

ξ = W (R(ξ, N)) +
RRξξ

6N2
W ′′(R(ξ, N)) +

RR2
ξ

12N2
W ′′′(R(ξ, N)) + O

( 1

N4

)
,

Assuming also the expansion

R(ξ, N) = R(ξ) +
1

N
R1(ξ) +

1

N2
R2(ξ) + ...,

thus

ξ = W (R(ξ)),

R1(ξ) = 0,

R2(ξ) = − R(ξ)

12W ′(R)

(
2RξξW

′′(R(ξ)) + R2
ξ W ′′′(R(ξ))

)
.



Passing from sum to integral in partition function, we use Euler-

Maclorein formula up to N0 terms

Z = N2
∫ 1

0
dξ(1− ξ) logR(ξ, N)− N

2
(F (1)− F (1/N))+

+
1

12
(F ′(1)− F ′(1/N)) + O(1/N),

where F (ξ) = (1− ξ) logR(ξ, N).

Then for partition function in genus-zero and genus-one we obtain

Z0 =
∫ 1

0
dξ(1− ξ) logR,

Z1 = − 1

12

∫ 1

0
dξ(1− ξ)

2RξξW
′′(R) + R2

ξ W ′′′(R)

W ′(R)
,

where R = R(ξ).



The vicinity of p-critical point

The p-critical point are defined by the system of equations

W (Rc) = 1, W ′(Rc) = 0, ... W (p)(Rc) = 0.

This system of equations, which determine coefficients vc
k, k =

1, ..., p, and define the Rc.

Consider small deviations δvk = vk− vc
k, and new coordinates tk in

vicinity of the critical point

W (Rc) = 1 + tp+1, W ′(Rc) = tp, ...

W (p−1)(Rc) = t0, W (p)(Rc) = 0.

Denoting u = R−Rc one can obtain

ξ = W (u) = up+1 + t0up−1 +
p−1∑
k=1

tkup−k−1 + 1.



Making a substitution ξ = 1− y, one can get

P(u) + y = 0,

and the string polynomial P(u) defined as

P(u) = up+1 + t0up−1 +
p−1∑
k=1

tkup−k−1

and u(y) is its solution.

Therefore for the partiton functions we obtain

Z0 =
1

Rc

∫ 1

0
dy y u(y),

Z1 = − 1

12

∫ 1

0
dy y

⎛
⎝2P′′(u)uyy + P′′′(u)u2

y

P′(u)

⎞
⎠



These expressions can be efficiently simplified and

we arrive to the final answer

Z0 =
1

2

∫ u∗

0
P2(u)du

Z1 = −logP′(u∗)
12

where

u∗ = u∗(t0, t1, ..., tp−1)

is the ”‘maximal” root of the polynomial P(u).

These formalae are indeed the explict expressions of the generating

finctions for the correlation numbers in genus zero and genus one.



The same expressions can be obtained from the double scal-

ing limit and Douglas string equation.The double scaling limit

arises when N goes to ∞, while μ and tk lead to 0 proportionally

(N−2ε2)
2

2p+3 and (N−2ε2)
k+2
2p+3 correspondingly,

and ε is some finite parameter. Making suitable replacement

of variables, using the rescaling and performing the substitution

Z/N2 → Z for simplicity, we arrive to the expression for the parti-

tion function in the double scaling limit Z[μ, tk, ε]

Z[μ, tk, ε] =
∞∑

h=0

ε2hZh[μ, tk],

where ε is the parameter, which is responsible for genus expansion.



String equation

We can compute the partition functions Zh using the String equa-

tion which is the equation for function u(x, ε, μ, tk) , connected

with the partition function Z[μ, tk, ε] as

u(x, ε) =
d2Z

dx2

It looks as

[P̂ , Q̂] = 1

where

Q̂ = ε2d2 + u(x), d ≡ d

dx

P̂ = −
p+1∑
k=1

tp−1−kQ̂
k−1/2
+

are two differential operators

and Q̂
k−1/2
+ stands for the non-negative part of the pseudo-differential

operator Q̂k−1/2



We look for u(x) in the form

u(x, ε) =
∞∑

h=0

ε2huh(x)

where, obviously, uh

uh(x) =
d2Zh

dx2
.

It is known, that

[Q̂
k−1/2
+ , Q̂] =

dSk

dx
,

where the coefficients Sk(u) obey the recursion relation

dSk+1

dx
= u

dSk

dx
+

1

2
uxSk +

ε2

4

d3Sk

dx3
,

with the boundary conditions S0 = 1
2 and Sk(k �= 0) vanish at

u = 0.



Use the equations above one can obtain

[P̂ , Q̂] = 1 =⇒
p+1∑
k=1

tp−1−kSk(u) = −x

The solution of the recursion relations, including the first three

terms is

Sk(u) =
Ck

2k

22k+1

(
uk +

ε2k(k − 1)

6
uk−2uxx +

ε2k(k − 1)(k − 2)

12
uk−3u2

x

)
.

where Ck
2k =

(2k)!

k!k!

Thus after rescaling the parameter tk → 22k+1

Ck
2k

tk, we can obtain

that

P(u) + ε2
(
1

6
P′′(u)uxx +

1

12
P′′′(u)u2

x

)
= O(ε4),

where P(u) is the string polynomial and x = tp−1, t−2 = 1, t−1 =

0.



Using the expansion for u(x, ε), we get to the zeroth order in the

ε, that u0(x) obeys

P(u0) = 0,

therefore

u0 = u∗(t1, ..., tp−2, x),

where u∗ is the real maximal root of polynomial P(u). To the

second order in the ε gives for the u1(t1, ..., tp−2, x) the following

expression

u1 = −P
′′′(u∗)(u∗x)2 + 2P′′(u∗)u∗xx

12P′(u∗) .



Knowing u0 and u1 we can find corresponding the partition func-

tions Z0 and Z1, using the fact that if Z and u∗ are connected by

relation

∂2Z

∂x2
= f(u∗),

then

Z = −
∫ u∗

0
P(u)P′(u)f(u)du.

This formula can be checked by straightforward calculation.

Integrating by parts and omitting the regular terms, we arrived to

the expressions obtained above

Z0 =
1

2

∫ u∗

0
P2(u)du

and

Z1 = −logP′(u∗)
12

.



Evaluation of correlation numbers in genus-one in KdV frame

The singular part of the partition function on torus Z1(t0, t1, ...tp−1)

is

Z1 = −logP′(u∗)
12

,

where P(u) is the polynomial of degree p+1 (p is natural number)

P(u) = up+1 + t0up−1 +
p−1∑
k=1

tkup−k−1,

Formula for correlation numbers is

〈Ok1
...Okn〉1 =

∂nZ1

∂tk1
...∂tkn

∣∣∣∣∣
t1=...=tp−1=0

〈Ok〉1 =
p + k

24
u−k−2

c ,

〈Ok1
Ok2

〉1 =
(p + 2 + k1 + k2)(k1 + k2) + 2p− k1k2

48
u
−k1−k2−4
c ,



Comparison with Topological Gravity

E.Witten recursion relation

〈σk1
σk2

...σks〉0 = k1
∑

S=X∪Y

〈σk1−1
∏

i∈X

σki
σ0〉0〈σ0

∏
j∈Y

σkj
σks−1

σks〉0,

〈σk1
σk2

...σks〉1 =
1

12
k1〈σk1−1σk2

...σksσ0σ0〉0+
+ k1

∑
S=X∪Y

〈σk1−1
∏

i∈X

σki
σ0〉0〈σ0

∏
j∈Y

σkj
〉1,

It follows from basis recursion relation

〈σk1
σk2

σk3
〉0 = k1〈σk1−1σ0〉0〈σ0σk2

σk3
〉0,

〈σk〉1 =
1

12
k〈σk−1σ0σ0〉0 + k〈σk−1σ0〉0〈σ0〉1

and

∂

∂ak
〈N〉 = 〈σkN〉,



In One-Matrix Model

σk ↔ Op−k−1, ak ↔ tp−k−1

We need to check

〈Op−k1−1Op−k2−1Op−k3−1〉0 = k1〈Op−k1
Op−1〉0〈Op−1Op−k2−1Op−k3−1〉0,

〈Op−k−1〉1 =
1

12
k〈Op−kOp−1Op−1〉0 + k〈Op−kOp−1〉0〈Op−1〉1

At arbitrary {tk} one can get

〈Ok1
Ok2

〉0 =
∂2Z0

∂tk1
∂tk2

=
(u∗)2p−k1−k2−1

2p− k1 − k2 − 1
,

〈Ok1
Ok2

Ok3
〉0 =

∂3Z0

∂tk1
∂tk2

∂tk3

= −(u∗)3p−k1−k2−k3−3

P′(u∗) .

〈Ok〉1 =
∂Z1

∂tk
= −p− k − 1

12P′(u∗)(u
∗)p−k−2 +

P′′(u∗)
12(P′(u∗))2(u

∗)p−k−1

Use this expressions, we see that recursion relation are fulfilled.



Evaluation of correlation numbers in CFT frame

KdV frame −→ CFT frame

� �

{tk} −→ ”resonanse” transformation tk = tk({λk}) −→ {λk}
As a result

P(u, {tk}) = up+1 + t0up−1 +
p−1∑
k=1

tkup−k−1

↓

Q(x, {λk}) =
∞∑

n=0

p−1∑
k1...kn=1

λk1
...λkn

n!

dn−1

dxn−1
Lp−∑ ki−n(x),

where

x = u/uc, uc = u∗({λk} = 0)

Ln(x)− Legendre polynomials.



Formula for correlation numbers is

〈Ok1
...Okn〉1 =

∂nZ1

∂λk1
...∂λkn

∣∣∣∣∣
λ1=...=λp−1=0

First two correlation numbers in CFT frame

〈Ok〉1 =
(2p− k)(k + 1)

24
,

〈Ok1
Ok2

〉1 = −
(1 + k1)(1 + k2)

(
(k1 + k2 − 2p + 2)(k1 + k2)− k1k2 − 4p

)
24

.



Conclusion

• We have derived the torus partition function Z1 in p-critical

One-Matrix Model. Using the explicit expression for the partition

function in genus-one we compute the correlation numbers in KdV,

as well as in CFT frames.

• The results in CFT frame should be compared against the

correlation numbers in the Minimal Liouville gravity, which have

not been computed yet. We expect the coincidence in genus-one

similarly one observed in genus-zero.

• The results in KdV frame have been compared with Witten’s

results for the correlation numbers of the 2d topological gravity

and found to coincide.


