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Textbook formula for screening:

U(r) =
Q

4πr
→ Q exp(−mDr)

4πr
,

because the time-time component of
the photon propagator acquires “mass”
term:

k2→ k2 +Π00(k) = k2 +m2
D ,

where e.g. for relativistic fermions

m2
D = e2

(
T 2/3 + μ2/π2

)
.
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Strangely untill recently effects on
screening from condensate of a charged
Bose field were not considered.
Consider electrically neutral plasma

with large electric charge density of
fermions compensated by charged bosons
Bosons condense when their chemical
potential reaches maximum value:

μB = mB .
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Equilibrium distribution of condensed
bosons:

fB = Cδ(3)(q) +
1

exp [(E −mB)/T ]± 1

annihilates collision integral for an
arbitrary constant C.
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Calculations:

∂νF
μν(x) = J μ(x) ,

where

J μ(x) = −i e[(φ†(x)∂μφ(x))−
(∂μφ†(x))φ(x)] + 2e2Aμ(x)|φ(x)|2
Express φ through Aμ:

φ(x) = φ0(x) +

∫∫∫
d4yGB(x− y)J φ(y) ,

where

J φ(x) = −i e[∂μA
μ + 2Aμ∂

μ]φ

+e2AμAμφ .
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∂νF
μν(x) = −ieφ

†
0(x)×

∂μ
[∫∫∫

d4yGB(x− y)J φ(y)

]
+ ...

where

J φ(x) = +i e[∂μA
μ(x) + 2Aμ(x)∂

μ]φ0(x).

Averaging Maxwell equation over medium:

〈a†(q)a(q′)〉 = fB(Eq)δ
(3)(q− q′),

〈a(q)a†(q′)〉 = [1 + fB(Ep)]δ
(3)(q− q′) .
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Π00(0, k) =
e2

2π2

∫∫∫ ∞
0

dq q2

EB
[fB(EB,μB)

+f̄B(EB, μ̄B)][1 +
E2
B

kq
ln |2q + k

2q − k
|] .

Without condensate one obtaines the
usual k-independent Debye screening:

Π00(0, k) = m2
D .
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Corrections to Π00 at low k are in-
frared singular:

ΔΠ00

e2
=

m2
BT

2k
+

C

mB(2π)3

(
1 +

4m2
B

k2

)

Both terms in r.h.s. appear only if
μ = mB.
Instead of exponential the screening
becomes power law and oscillating, de-
pending upon parameters, mj:

Π00 = m2
0 +m3

1/k+m4
2/k

2.

May this have something to do with
confinement? Recent paper: P. Gaete,
E. Spalucci, 0902.00905 – confinement
in Higgs phase.
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Contribution from poles (in some limit):

U(r)pole =
Q

4πr
exp (−

√
e/2m2r)×

cos (
√

e/2m2r).

Osicllating screening is known for
fermions, Friedel oscillations. Observed
in experiment.

10



Contribution from the integral along
imaginary axis.
If m2 �= 0, the dominant term is

U(r) = − 12Qm3
1

π2e2r6m8
2

.

If T �= 0, μ = mB, but the condensate
is not yet formed, the asymptotic de-
crease of the potential becomes:

U(r) = − Q

π2e2r4m3
1

= − 2Q

π2e2r4m2
BT

.
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Contribution from logarithmic cuts (anal-
ogous to Friedel oscillations for fermions).

If the first “pinch” dominates:

U1(r) = −
32πQ

e2mBr2
e−z

ln2(2
√
2z)

sin z ,

where z = 2r
√
2πTmB.

NB: U1(r) is inversely proportional to
e2 and formally vanishes at T → 0,
but remains finite if

√
TmBr �= 0 .
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All pinches are comparable:

U(r) ≈ − 3Q

2e2T 2m3
Br6 ln3(

√
8mBTr)

.

U ∼ T−2 valid if r � 1/
√
16πTmB,

i.e. if T = 0.1K and mB = 1GeV
the distance should be bounded from
above as r� 3 · 10−8 cm.
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Condensation of vector bosons.
W± would condense in the early uni-
verse if lepton asymmetry was suffi-
ciently high. Plasma neutrality was
maintained by quarks and leptons.
Depending on the sign of the pairwise
spin-spin coulingsW ’s would condense
either in S = 0 (scalar) state or in
S = 2 (ferromagnetic) state.
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Magnetic spin-spin interaction through
one photon exchange (similar to Breit
equation):

U
spin
em (r) =

e2ρ2

4πm2
W

[
(S1 · S2)

r3
−

3
(S1 · r)(S2 · r)

r5
− 8π

3
(S1 · S2)δ

(3)(r)

]
.

Here ρ is the ratio of magnetic mo-
ment of W to the standard one.
For S-wave the energy is shifted by
the last term only.
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Local quartic self-coupling of W :

U
(spin)
4W =

e2

8m2
W sin2 θW

(S1S2)δ
(3)(r).

The net result Uem + U4W is nega-
tive, so S = 2 state is energetically
favorable and spontaneous magneti-
zation in the early universe is possible
– seeds for large scale magnetic fields.
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