

2146-30

Gribov-80 Memorial Workshop on Quantum Chromodynamics and Beyond'

26 - 28 May 2010

Discovery of the Perfect Fluidity of Quark-Gluon Plasma at RHIC and hydrodynamical analysis of recent RHIC data

> Mate Csanad Eotvos University Hungary

Exploring the Quark Gluon Plasma at the Relativistic Heavy Ion Collider

Máté Csanád

Eötvös University Department of Atomic Physics

- Milestones at RHIC
- Hydrodynamics
- Direct photon results

Milestones of RHIC results

- Jet suppression in A+A: <u>new phenomenon</u>
 - Phys. Rev. Lett. 88, 022301 (2002)
- No jet suppression in d+A: <u>new form of matter</u>
 - Phys. Rev. Lett. 91, 072303 (2003)
- Summary of the results: <u>matter is a liquid</u>
 - Nucl. Phys. A 757, 184-283 (2005)
- Elliptic flow scaling: <u>quark degrees of freedom</u>
 Phys. Rev. Lett. 98, 162301 (2007)
- Heavy quark flow: viscosity near lower limit
 Phys. Rev. Lett. 98, 172301 (2007)
- Initial temperature, state of matter: no final answer yet

Hydrodynamic scaling predictions

- Hydro predicts scaling (also viscous)
- What does a scaling mean?
 - For example Reynolds number $\rho vr/\eta$
 - Only a combination of parameters matters
- Collective, thermal behavior \rightarrow Loss of information m_t
- Spectra slopes: $N_1 \sim e^{\overline{T_{\text{eff}}}}$; $T_{\text{eff}} = T_0 + mu_t$

m_t (GeV)

M.

Csanád, Gribov 80

- Elliptic flow: $v_2 = \frac{I_1(w)}{I_0(w)}; w \sim KE_T$
- HBT radii: $R_{\text{side}}^2 \approx R_{\text{long}}^2 \approx R_{\text{out}}^2 \sim \frac{1}{m_t}$

May 27, 2010

Quark degrees of freedom

- Elliptic flow (v₂) is a central observable
 - measure of momentum space asymmetry
 - sign of collective behavior
- Measured for several types of particles
- Scaling variable suggested by hydro: KE_t
- Both v₂ and KE_t scale by the number of quarks

- Explanation by quark flow
- Indirect sign of quark degrees of freedom

Mary 27, 2010

Superfluidity

- Kinematic viscosity η/s lower than that of superfluid helium
- Conjectured limit: $1/4\pi$ (via AdS/CFT)

Perfect hydro solutions

Solution	Basic prop's	EoS	Observables
Csörgő, Nagy, Csanád Phys.Lett.B 663:306-311, 2008 Phys.Rev.C77:024908,2008	Ellipsoidal, 1D accelerating	$\varepsilon - B = \\ \kappa (p + B)$	dn/dy,ε
Landau Izv. Acad. Nauk SSSR 81 (1953) 51	Cylindr., 1D, accelerating	$\varepsilon = \kappa n T$	None
Hwa-Björken R.C. Hwa, PRD10, 2260,1974 J.D. Bjorken, PRD27, 40(1983)	Cylindr., 1D, non-accelerating	$\varepsilon = \kappa n T$	dn/dy,ε
Bialas et al. A. Bialas, R. A. Janik, and R. B. Peschanski, Phys. Rev. C76, 054901 (2007).	1D, betweend Landau and Hwa-Björken	$\varepsilon = \kappa n T$	dn/dy
Csörgő, Csernai, Hama, Kodama Heavy Ion Phys. A 21, 73 (2004))	Ellipsoidal, 3D, non-accelerating	$\varepsilon = \kappa n T$	This work does the calculation
???	Ell, 3D, accel.	realistic	???

Where we are

- Revival of interest, new solutions
 - Sinyukov, Karpenko, nucl-th/0505041
 - Pratt, nucl-th/0612010
 - Bialas et al.: Phys.Rev.C76:054901,2007
 - Borsch, Zhdanov: SIGMA 3:116,2007
 - Nagy et al.: J.Phys.G35:104128,2008 and arXiv/0909.4285
 - Liao et al.: arXiv/09092284 and Phys.Rev.C80:034904,2009
 - Mizoguchi et al.: Eur.Phys.J.A40:99-108,2009
 - Beuf et al.: Phys. Rev. C78:064909,2008 (dS/dy as well!)
- Need for solutions that are:
 - accelerating + relativistic+ 3 dimensional
 - explicit + simple + compatible with the data

A 3D relativistic solution

- The hydro fields are these:
 - v(s) arbitrary, but realistic to choose Gaussian $v(s) = e^{-bs/2}$ b<0 is realistic
- Ellipsoidal symmetry

$$s = \frac{x^2}{X(t)^2} + \frac{y^2}{Y(t)^2} + \frac{z^2}{Z(t)^2}$$

$$n = n_0 \left(\frac{\tau_0}{\tau}\right)^3 \nu(s)$$
$$T = T_0 \left(\frac{\tau_0}{\tau}\right)^{(3/\kappa)} \frac{1}{\nu(s)}$$
$$p = p_0 \left(\frac{\tau_0}{\tau}\right)^{\left(3+\frac{3}{\kappa}\right)}$$

$$u^{\mu} = \gamma \left(1, \frac{\dot{X}(t)}{X(t)} x, \frac{\dot{Y}(t)}{Y(t)} y, \frac{\dot{Z}(t)}{Z(t)} z \right)$$

- (thermodynamic quantities const. on the s=const. ellipsoid)
- Directional Hubble-flow (no acceleration)
 - v=Hr or H=v/r, the Hubble-constants: $\frac{\dot{X}(t)}{X(t)}, \frac{\dot{Y}(t)}{Y(t)}, \frac{\dot{Z}(t)}{Z(t)}, \frac{\dot{Z}($

(T. Csörgő, L. P. Csernai, Y. Hama és T. Kodama, Heavy Ion Phys. A 21, 73 (2004))

Temperature profile

Transverse temperature profile as a function of time with an example parameter set:

Mary 27, 2010

Single pion spectum with HBT radii

0-30% centrality, Au+Au, PHENIX igodol

- T_0
- 3
- u_t^2/b igodol

 γ^2

 τ_0

 $199 \pm 3 \text{ MeV}$ 0.80 ± 0.02 -0.84± 0.1 (b<0) 7.7 ± 0.1

central freeze-out temp. momentum space ecc. transv. flow/temp. grad freeze-out proper time 171 (24 with theory error)

Elliptic flow

• 0-92% centrality, Au+Au, PHENIX (R.P. method technique)

May 27, 2010

ightarrow

Insensitivity on the EoS

- Hadronic data corresponds to the initial state
- Not directly sensitive to
 - Equation of state
 - Initial condition

- Look for other data...
- Photon-emission rather continuous

```
May 27, 2010
```

Summary of the fit results

- Freeze-out central temperature ~ 200 MeV
- Hadronic fits don't depend on:
 - EoS (κ or sound velocity)
 - initial temperature
- Other data needed to determine IC and EoS
- After thermalization:
 - thermal/direct emission will play a significant role
 - direct photons 'feel' the evolution of the fireball
- Can we measure direct photons?
- Yes we can!

How to measure direct photons?

- PHENIX measurement done: PRL 104, 132301 (2010)
- Problem: huge background from $h \rightarrow \gamma \gamma$
- Idea: thermal + virtual photon production parralel

-
$$X \rightarrow e^+e^-$$
, $X \rightarrow \gamma$ and $X \rightarrow \gamma^* \rightarrow e^+e^-$
from the same process

• Dielectron and real photon production related as:

 $\frac{d^2 n_{ee}}{dm_{ee} dp_t} = \frac{2\alpha}{3\pi} \frac{1}{m_{ee}} L(m_{ee}) S(m_{ee}) \frac{dn_{\gamma}}{dp_t}, \ L(m_{ee}) = \sqrt{1 - \frac{4m_e^2}{m_{ee}^2}} \left(1 + \frac{2m_e^2}{m_{ee}^2}\right)$

- *S* process dependent, dn_{γ}/dn_{γ} , for π_0 and η e.g.: $S(m_{ee}) = \left| F(m_{ee}^2) \right|^2 \left(1 - m_{ee}^2 / M_h^2 \right)^3, S(m_{ee}) = 0 \text{ for } m_{ee} > M_h$
- For $p_t \gg m_{ee} \gg m_e$: L, S $\rightarrow 1$

May 27, 2010

Dielectron spectrum measurement

- Measured electron pairs with p_t of 1-5 GeV
- Easy via electron ID capabilities
- Compare to dielectrons from hadronic cocktail

• Excess seen above pion mass due to virtual γ

May 27, 2010

Direct photons versus decay photons

- Excess: virtual direct photons (decaying into e⁺e⁻ pairs)
- Inclusive e⁺e⁻: hadronic + dir. virtual photon components
 - Hadronic electron pairs (f_c), calculated from cocktail: π , η , ω , η' , ϕ
 - Electron pairs from direct virtual photons (f_{dir}) calculated from f_c via previous formula
- Determine ratio *r* by fit for separate p_t bins
- Use *r* to scale inclusive photon spectra

Direct photon spectra measured

- Inclusive photons: from the m_{ee}<0.03 GeV/c² inclusive e⁺e⁻ yield (S=1 here)
- Direct photon spect.: $N_{dir}(p_t) = r \times N_{incl}(p_t)$
- Thermal below roughly 3 GeV
- What temperature does this correspond to?

Initial temperature

- Direct photon spectra can be fitted with a single average temperature
- $233 \pm 14 \pm 19$ MeV for minimum bias
- Initial temperature definitely higher
- More sophisticated method: using hydro
- Photon yield would then be:

$$\int \frac{p_{\mu}d^{3}\Sigma_{\mu}}{e^{\frac{p_{\mu}u^{\mu}}{T}}-1}dt$$

• Integration over the whole time evolution

Mary 27, 2010

Transition temperature

- Budapest-Wuppertal group (arXiv:0908.3341) :
 - Chiral susceptibility: 151(3)(3) MeV
 - Strange quark number susceptibility: 175(2)(4) MeV
 - Polyakov loops: 176(3)(4) MeV

- MILC group, PRD71, 034504 (2005):
 - chiral susceptibility: 169(12)(4) MeV
- RBC-Bielefeld, PRD74 , 054507 (2006):
 - chiral susceptibility and Polyakov loops: 192(7)(4) MeV
- Some disagreement, but well below 200 MeV
- Experimental data: T_i at least 2-3 σ above T_c

- Hydro working at RHIC
- Indirect signs of quark DoF seen
- T_c calculated via lattice QCD
- Hadronic data at RHIC + hydro: $T_{final} \cong T_{c}$
- Photon data at RHIC + hydro: T_{initial} » T_c

Thank you for your attention

Why we use hydrodynamics?

- Hadron & parton cascade models
 - Noneqilibrium models
 - Don't describe most of particle creation at low p_t
- Flow + hadronic cascade and resonance corrections
 - Small correction at RHIC energies (arXiv:0903.1863)
- Most of particle creation according to hydro
 - Pion and kaon HBT radii m_t scaling (Acta Phys.Polon.Supp.1:521-524,2008)
- After ~10 fm/c noneqilibrium expanding hadron gas
 - Anomal diffusion, no correction for spectra or flow (Braz.J.Phys.37:1002-1013,2007)
- American Institute of Physics: success of hydro is the physics story 2005

Little vocabulary of hydrodynamics

- Exact/parametric solution
 - Solution of hydro equations analytically, without approximation
 - Usually has free parameters
- Hydro inspired parameterization
 - Distribution determined at freeze-out only, their time dependence is not considered
- Numerical solution
 - Solution of hydro equations numerically
 - Start from arbitrary initial state

Nonrelativistic solutions

Solution	Symmetry	Density prof.	EoS	Observables
Csizmadia et al. Phys. Lett. B443:21- 25, 1998	Sphere	Gaussian	$\varepsilon = \frac{3}{2}nT$	Calculated
Csörgő Central Eur.J.Phys.2: 556- 565,2004	Sphere	Arbitrary	$\varepsilon = \frac{3}{2}nT$	Not calculated
Akkelin et al. Phys.Rev. C67,2003	Ellipsoid	Gaussian (T=T(t))	$\varepsilon = \kappa(T)nT$	Calculated
Csörgő Acta Phys.Polon. B37:483-494,2006	Ellipsoid	Arbitrary (T=T(r,t))	$\varepsilon = \kappa n T$	Not calculated
Csörgő, Zimányi Heavy Ion Phys.17:281- 293,2003	Ellipsoid	Gaussian	$\varepsilon = \kappa_e nT - B$	Calculated

Equations of relativistic hydro

- Assuming local thermal equilibrium
- For a perfect fluid: $T^{\mu\nu} = wu^{\mu}u^{\nu} pg^{\mu\nu}$, $w = \varepsilon + p \implies \partial_{\nu}T^{\mu\nu} = 0$
- Equations in four-vector form and nonrelativistic notation
 - Euler equation: $wu^{\nu}\partial_{\nu}u^{\mu} = (g^{\mu\eta} - u^{\mu}u^{\eta})\partial_{\eta}p \quad \frac{w}{1 - v^{2}}\frac{d\mathbf{v}}{dt} = -\left(\nabla p + \mathbf{v}\frac{\partial p}{\partial t}\right)$
 - Energy conservation:

$$w\partial_{v}u^{v}+u^{v}\partial_{v}\varepsilon=0$$

- Charge conservation:

$$\partial_{\mu}(nu^{\mu})=0$$

$$\frac{d}{dt}\ln\frac{n}{\sqrt{1-v^2}} = -\nabla \mathbf{v}$$

 $\frac{1}{w}\frac{d\varepsilon}{dt} = -\nabla \mathbf{v} - \frac{1}{1 - v^2}\frac{d}{dt}\frac{v^2}{2}$

$$u^{\mu}\partial_{\mu} = \frac{d}{d\tau}$$

comoving propertime derivative

$$\frac{d}{dt} = \frac{\partial}{\partial t} + \mathbf{v}\nabla$$

comoving derivative

How analytic hydro works

- Take hydro equations and EoS
- Find a solution
 - Will contain parameters (like Friedmann, Schwarzschild etc.)
 - Will use a possible set of initial conditions
- Use a freeze-out condition
 - Eg fixed proper time or fixed temperature
 - Generally a hyper-surface
- Calculate the hadron source function
- Calculate observables
 - E.g. spectra, flow, correlations
 - Straightforward calculation
- Hydrodynamics: Initial conditions
 ^H
 dynamical equations
 freeze-out conditions

May 27, 2010

The source function

- Source function: probability of a particle created at x with p
- Maxwell-Boltzmann distribution + extra terms

$$S(x,p)d^{4}x = \mathcal{N}n(x)\exp\left|-\frac{p_{\mu}u^{\mu}(x)}{T(x)}\right|\frac{p_{\mu}u^{\mu}}{u^{0}}H(\tau)d\tau$$

normalization

- $-\mathcal{N}$
- $-H(\tau)d\tau$

 $-\frac{p_{\mu}u^{\mu}}{u^0}d^3x$

freeze-out distribution if sudden: $H(\tau) = \delta(\tau - \tau_0)$ Cooper-Fry prefactor (flux term) - Validity: $\tau_0 > R_{HBT}$, $m_t > T_0$

 ${}^{4}X$

Single particle spectrum

- Source function: spatial origin and momentum
- Momentum distribution
 - integrate on spatial coordinates:

 $N_1(p) = \int_{R^4} S(x, p) d^4 x$

- Second order Gaussian approximation around emission maximum
- After integration:

$$(p) = \overline{N} \cdot \overline{E} \cdot \overline{V} \cdot \exp\left[\frac{p^2}{2ET_0} - \frac{E}{T_0} - \frac{p_x^2}{2ET_x} - \frac{p_y^2}{2ET_y} - \frac{p_z^2}{2ET_z}\right]$$

• Directional slope parameter:

$$T_{x} = T_{0} + \frac{ET_{0}\dot{X}_{0}^{2}}{b(T_{0} - E)}$$

 N_1

Transverse momentum spectrum

- Go to mid-rapidity (y=0)
- Integrate on transverse angle ϕ $N_1(p_t) = \overline{N} \overline{V} \left(m_t - \frac{p_t^2 (T_{\text{eff}} - T_0)}{m_t T_{\text{eff}}} \right) \exp \left[-\frac{p_t^2}{2m_t T_{\text{eff}}} + \frac{p_t^2}{2m_t T_0} - \frac{m_t}{T_0} \right]$

– The effective temperature is from the slopes:

$$\begin{split} T_x &= T_0 + m_t \dot{X}^2 \, \frac{T_0}{b(T_0 - E)}, \ T_y = T_0 + m_t \dot{Y}^2 \, \frac{T_0}{b(T_0 - E)}, \\ \frac{1}{T_{\text{eff}}} &= \frac{1}{2} \left(\frac{1}{T_x} + \frac{1}{T_y} \right) \end{split}$$

The elliptic flow

• The elliptic flow can be calculated as:

$$v_{2} = \frac{\int_{0}^{2\pi} d\phi N_{1}(p_{t},\phi) \cos(2\phi)}{\int_{0}^{2\pi} d\phi N_{1}(p_{t},\phi)}$$

• Result (similar to other models):

$$v_2 = \frac{I_1(w)}{I_0(w)}$$

• $I_n(w)$: modified Bessel functions

$$I_{n}(w) = \frac{1}{2\pi} \int_{0}^{2\pi} e^{w\cos(2\phi)} \cos(2n\phi) d\phi$$

• Where *w* is:

$$w = \frac{p_t^2}{4m_t} \left(\frac{1}{T_y} - \frac{1}{T_x} \right) \sim E_K \frac{\varepsilon}{T_{eff}}$$

Two-particle correlation radii

- Definition: $C_2(p_1, p_2) = \frac{N_2(p_1, p_2)}{N_1(p_1)N_1(p_1)}$
- From the source function: $C_2(q, K) = 1 + \lambda \left| \frac{\tilde{S}(q, K)}{\tilde{S}(0, K)} \right|^2$
- Changing coordinates $q = p_1 - p_2, K = 0.5(p_1 + p_2) \Rightarrow C_2(q, K) = 1 + \lambda \exp\left(-R_x^2 q_x^2 - R_y^2 q_y^2 - R_z^2 q_z^2\right)$ • Result: $R_i = \frac{T_0 \tau_0 (T_i - T_0)}{m_i T_i}$
- The usual scaling (same for kaons!): $R_i^2 \sim \frac{1}{m_i}$
- Bertsch-Pratt coordinates: $R_{out} = R_{side} = 0.5(R_x^2 + R_y^2)$
- Freeze-out: $\tau = \text{const.} \leftrightarrow \Delta \tau = 0 \rightarrow R_{out} = R_{side}$

Famous solutions

- Landau's solution (1D, developed for p+p):
 - Accelerating, implicit, complicated, 1D
 - L.D. Landau, Izv. Acad. Nauk SSSR 81 (1953) 51
 - I.M. Khalatnikov, Zhur. Eksp.Teor.Fiz. 27 (1954) 529
 - L.D.Landau and S.Z.Belenkij, Usp. Fiz. Nauk 56 (1955) 309
- Hwa-Bjorken solution:
 - Non-accelerating, explicit, simple, 1D, boost-invariant
 - R.C. Hwa, Phys. Rev. D10, 2260 (1974)
 - J.D. Bjorken, Phys. Rev. D27, 40(1983)
- Others
 - Chiu, Sudarshan and Wang
 - Baym, Friman, Blaizot, Soyeur and Czyz
 - Srivastava, Alam, Chakrabarty, Raha and Sinha

Virtual to real photon ratio

The yields of virtual photons $dN_{\gamma*}$ and electron pairs dN_{ee} are related:

$$\frac{d^2 N_{ee}}{dM^2} = \frac{\alpha}{3\pi} \frac{L(M)}{M^2} dN_{\gamma \star}, \quad (B1)$$

$$L(M) = \sqrt{1 - \frac{4m_e^2}{M^2}} \left(1 + \frac{2m_e^2}{M^2}\right),$$
 (B2)

$$\frac{d^2 N_{ee}}{dM^2} = \frac{\alpha}{3\pi} \frac{L(M)}{M^2} S(M, q) dN_{\gamma}. \quad (B3)$$

Here we have introduced $S(M,q) = dN_{\gamma^*}(M)/dN_{\gamma}$ to factor out the difference between real photon emission and virtual photon emission. The factor S(M,q) is pro-

tors, phase space, and spectral functions. S(M,q) approaches 1 for small $M,\,S(M,q) \rightarrow 1$ for $M \rightarrow 0$. Additionally, since $L(M) \simeq 1 - 6m_e^4/M^4$ for $m_e \ll M,\,L(M) = 1$ is a very good approximation. Thus the relationship between the electron pair yield and the direct photon yield simplifies to

$$\frac{d^2 N_{ee}}{dM^2} \simeq \frac{\alpha}{3\pi} \frac{1}{M^2} dN_{\gamma},$$
 (B4)

$$\frac{d^2 N_{ee}}{dM} \simeq \frac{2\alpha}{3\pi} \frac{1}{M} dN_{\gamma}.$$
 (B5)

