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Motivation

• Aim: understand the dynamics of the quark-gluon plasma (QGP)

• Data hint at strongly coupled QGP

• Method needed for strongly coupled gauge theory,

especially for dynamical quantities

• Promising candidate: AdS/CFT correspondence Maldacena



AdS / CFT

• Duality between supergravity on AdS5 × S5

and

N = 4 supersymmetric SU(Nc) Yang-Mills theory in 3 + 1 dimensions for Nc → ∞



• Metric of AdS5 × S5 is

ds2 =
r2

R2

(
−dt2 +

3∑
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dx2
i

)
+

R2

r2
dr2 + R2 dΩ5

=
1
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with AdS curvature radius R = 4πg2
YM l4sNc and

z =
R

r

• Classical gravity requires large ’t Hooft coupling λ = g2
YMNc.



N = 4 SYM is not QCD, but closer to it at high T

• N = 4 SYM very different from QCD:

� maximally supersymmetric

� conformal theory, coupling is constant

� no confinement, no chiral symmetry breaking

� no particles in fundamental representation

� Nc → ∞ for duality

• At finite T , differences are smaller:

� Above ∼ 2 Tc QCD thermodynamics looks almost conformal (on the lattice).

� no confinement in QCD above Tc

� Finite T breaks supersymmetry.

� Strongly coupled plasma is maybe not too sensitive to microscopic d.o.f.



How to extract information (possibly) applicable to QCD

• Gravity dual of QCD is not known (... if there is one).

• Attempt to come closer to QCD: Break conformal invariance!

• How do observables depend on non-conformality? Look for:

� Robustness: relatively small change

� Universality: no change at all, or systematically in one direction

• N = 4 SYM can give good approximation or a bound on observable

(at least in some class of non-conformal theories)

• Famous example: η/s = 1
4π

in a large class of theories,

possibly a lower bound for all possible theories Kovtun, Son, Starinets

Other example: c2
s ≤ 1

3 in a wide class of theories

Cherman, Cohen, Nellore; Hohler, Stephanov



Finite T : AdS5 black hole

• At finite T N = 4 SYM corresponds to AdS5 black hole background:

ds2 = − fdt2 +
r2

R2
(dx2

1 + dx2
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3) +
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f
dr2 + R2 dΩ5

= Gμνdxμdxν + R2 dΩ5
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0
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)

• T of gauge theory is Hawking temperature of BH, with horizon position r0

T = TH =
r0

πR2

• S5 part not relevant for our considerations



Non-conformal deformations of AdS5 black hole

• KTY model (again T = r0
πR2) Kajantie, Tahkokallio, Yee
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• Relevant parameter of KTY model is c
T 2, reasonable range is 0 ≤ c

T 2 ≤ 4.

• ‘Realistic’ thermodynamics is obtained for c = 0.127 GeV2.

• KTY is not a solution to supergravity equations of motion.

−→ Consistency questionable. Thermodynamics?!



• Potential V in supergravity action

S =
1

16πG5

∫
d5x

√
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2
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can be chosen such that one obtains a 2-parameter model DeWolfe & Rosen
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4π



• Defining A and B as
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one can calculate h from supergravity equations of motion. Gubser et al

• Exponential factor of KTY metric is obtained for αKTY = 20
49.

• Two (different) versions of this model by treating φ as dilaton or not: ‘string frame’

and ‘Einstein frame’ metric.

• 2-parameter model solves supergravity equations of motion

−→ consistent thermodynamics



Static potential in hot moving plasma

• Static potential of heavy quark-antiquark pair is obtained via temporal Wegner-Wilson

loop:

W (C) = TrP exp

⎡
⎣i

∮
C

dxμ Aμ(x)

⎤
⎦

• Potential E(L) is

〈W (C)〉 = exp [−iT E(L)]

• On gravity side

〈W (C)〉 ∝ e−i(S−S0)

with Nambu-Goto action S for string hanging down in radial direction of AdS5.

S0 is twice action for open string hanging down from single quark.



• For plasma moving in x3-direction:

• We calculate the potential for N = 4 and the KTY and 2-parameter models, for all

plasma velocities and all orientation angles w.r.t. plasma wind.

N = 4: Liu, Rajagopal, Wiedemann

KTY: Liu, Rajagopal, Shi



Calculation in N = 4

• Calculation in the other models similar but more complicated.

• Boost metric for moving plasma with velocity v = tanh η.

Parametrize string world sheet and extremize Nambu-Goto action

S =
T

2πα′

L
2∫

−L
2

dσ
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(
(∂σr)2

f
+

r2
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)
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1 − r4

0 cosh2 η

r4

]

• Obtain conserved Hamiltonian (−→ constant of motion q) and solve for coordinate

functions (r = r0y),

H ≡ L− y′∂L
∂y′ =

y4 − cosh2 η

L = q

y′ =
1

q

√
(y4 − 1)(y4 − y4

c) with y4
c ≡ cosh2 η + q2



• Obtain quark-antiquark distance (using boundary conditions) as function of q

LπT

2
=

LπT
2∫

0

dσ = q

Λ∫
yc

dy
1√

(y4 − 1)(y4 − y4
c)

• Perform similar calculation in KTY and 2-parameter models.



• In KTY model (c/T 2 = 0 gives N = 4):
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• Two solutions for each distance L up to a maximal Lmax.

We call Lmax the screening length.



Action for single string

• Needed for finding the static potential.

• In N = 4, for example, single string action 1
2S0 is

1

2
S0 =

1

2

√
λT T

∞∫
1

dy

• Single string action gives drag force, see later.



Static potential in plasma wind

• Potential for η = 1 and different orientation angles
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String configurations

• Two string configurations for each L < Lmax.

The one coming closer to the horizon is unstable.
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Screening length in all four models

• Velocity dependence of screening length LmaxπT for θ = 0, c/T 2 = 1, α = αKTY
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• Lmax is minimal in N = 4. Holds for all choices of parameters in the other models.



• Screening length scaled with dominant velocity dependence ∼ 1√
cosh η
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• Screening length depends only weakly on orientation angle θ.
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• Angular dependence similar to abelian plasma.

Chu, Matsui



Drag force on single quark moving in plasma

• Consider single quark being pulled through medium with velocity v.

Drag force: force required to keep quark moving at constant velocity.

• In N = 4 we have
dp

dt
= − π

√
λT 2

2

v√
1 − v2



• In KTY one finds

dp

dt
= − π

√
λT 2

2

v√
1 − v2

exp

(
29c

20πT 2

√
1 − v2

)

bigger than in N = 4 ?! (Contradicting expectations...)

• In thermodynamically consistent 2-parameter model, we find drag force smaller than

in N = 4 for all choices of the two parameters.
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Heavy baryon screening

• Consider baryon configuration with Nc quarks arranged on a circle

• Very simple model for baryon.

• Technically convenient: introduce density of quarks along circle.



• D5 brane extended in S5 directions only. Its action is (for all models)

SD5 =

√−g00 T V5

(2π)5α′3

• Action for each of the strings:

Sstr =
T

2πα′

∞∫
re

drLstr

• Total action:

S =

Nc∑
a=1

Sa
str + SD5 − Smass

• Condition: forces on D5 brane have to cancel for stable configuration.



• Baryon screening length in the different models for perpendicular wind

N = 4: Athanasiou, Liu, Rajagopal
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• Again, Lmax is minimal in N = 4. Holds for all choices of parameters in the other

models.



• Shape of baryon in plasma wind in scaled fifth dimension, r
re

(here for the example of N = 4)

�0.0005
0.0000

0.0005
x3

�0.0005

0.0000

0.0005

x1

2

4

6

8

10

for η = 2, ρ = r0
re

= 0.455.



• As in meson case, there are two configurations.

The one closer to the horizon is unstable.
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Summary

• We have calculated heavy meson and baryon screening in the wind of hot strongly

coupled plasmas, in particular the dependence on velocity and orientation angle.

• The screening length is a robust quantity.

• The screening length in N = 4 SYM is minimal for all kinematic parameters in a

large class of theories.

• We conjecture that it is a universal lower bound for an even wider range of theories.

N = 4 SYM might be the most strongly coupled gauge theory.

• Outlook: analytic study of screening length for general deformation of metric.


