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Perturbative calculations

II. HADRONIC CORRECTIONS TO QUARK TRIANGLES

We follow Ref. [1] in notations and definitions. Let us start with a definition of vector,
jµ , and axial, j5

ν, currents,

jµ = q̄ V γµq, j5
ν = q̄ Aγνγ5q , (1)

where the quark field qi
f has color (i) and flavor (f ) indices and the matrices V and A are

diagonal matrices of vector and axial couplings acting on flavor indexes. To avoid dealing
with the U(1) anomaly in respect to gluon interactions we assume that Tr A = 0 . In the
case of electroweak corrections one can view the vector current as an electromagnetic one
with V being the matrix of electric charges and j5

ν as the axial part of the Z boson current
with matrix A given by the weak isospin projection.

The amplitude for the triangle diagram in Fig. 1 involving the axial current j5
ν and two
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FIG. 1: Quark triangle, diagram (a), and a gluon correction to it, diagram (b) .

vector currents jµ and j̃γ = q̄ Ṽ γµq (for generality we use a different matrix Ṽ for the soft
momentum current) can be written as

Tµγν = −
∫

d4xd4y eiqx−iky 〈0| T{jµ(x) j̃γ(y) j5
ν(0)}|0〉 . (2)

We can view the current j̃γ as a source of a soft photon with the momentum k . Introducing
a polarization vector of a soft photon eγ(k) we come to the amplitude Tµν

Tµν = Tµγνeγ(k) = i
∫

d4x eiqx 〈0| T{jµ(x) j5
ν(0)}| γ(k)〉 , (3)

which can be viewed as a mixing between the axial and vector currents in the external
electromagnetic field.

It is clear that the expansion of Tµν in the small momentum k starts with linear terms
and we neglect quadratic and higher powers of k. There are only two Lorentz structures for
Tµν which are linear in k and consistent with the conservation of electromagnetic current,

Tµν = −
i

4π2

[
wT(q2)

(
−q2f̃µν + qµqσf̃σν − qνqσf̃σµ

)
+ wL(q2) qνqσf̃σµ

]
, (4)

f̃µν =
1

2
εµνγδf

γδ , fµν = kµeν − kνeµ .
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momentum current) can be written as

Tµγν = −
∫

d4xd4y eiqx−iky 〈0| T{jµ(x) j̃γ(y) j5
ν(0)}|0〉 . (2)

We can view the current j̃γ as a source of a soft photon with the momentum k . Introducing
a polarization vector of a soft photon eγ(k) we come to the amplitude Tµν

Tµν = Tµγνeγ(k) = i
∫

d4x eiqx 〈0| T{jµ(x) j5
ν(0)}| γ(k)〉 , (3)

which can be viewed as a mixing between the axial and vector currents in the external
electromagnetic field.

It is clear that the expansion of Tµν in the small momentum k starts with linear terms
and we neglect quadratic and higher powers of k. There are only two Lorentz structures for
Tµν which are linear in k and consistent with the conservation of electromagnetic current,

Tµν = −
i

4π2

[
wT(q2)

(
−q2f̃µν + qµqσf̃σν − qνqσf̃σµ

)
+ wL(q2) qνqσf̃σµ

]
, (4)

f̃µν =
1

2
εµνγδf

γδ , fµν = kµeν − kνeµ .

2

Both structures are transversal with respect to vector current, qµTµν = 0. As for the axial
current, the first structure is transversal with respect to qν while the second is longitudinal.

The one-loop result for the invariant functions wT and wL can be taken from the classic
papers by Bell and Jackiw [6], Adler [7] and Rosenberg [8] (it simplifies considerably in the
limit of the small photon momentum [9]),

w1−loop
L = 2 w1−loop

T = 2Nc Tr A V Ṽ
∫ 1

0

dα α(1 − α)

α(1 − α)Q2 + m2
, (5)

where Q2 = q2 , the factor Nc accounts for the color of quarks and m is the diagonal
quark mass matrix, m = diag{mq1

, mq2
, . . .}. In the chiral limit, m = 0, the invariant

functions wT,L are

w1−loop
L [m = 0] = 2 w1−loop

T [m = 0] =
2Nc Tr (A V Ṽ )

Q2
. (6)

Nonvanishing in the chiral limit, m = 0 , the longitudinal part qνTµν represents the axial
anomaly [6, 7],

qνTµν =
i

4π2
Q2wL qσf̃σµ =

i

2π2
Nc Tr (A V Ṽ ) qσf̃σµ , (7)

and its nonrenormalization implies that the one-loop result (6) for wL stays intact when
interaction with gluons is switched on.

A. Nonrenormalization theorem for the transversal part of the triangle

We claim that the relation

wL[m = 0] = 2 wT [m = 0] (8)

which holds at the one-loop level, see Eq. (6), gets no perturbative corrections from gluon
exchanges. This follows from the following line of argumentation.

In the chosen kinematics the fermion triangle with m = 0 possesses a special feature:
namely, a symmetry under permutation of indexes of axial and vector currents, µ ↔ ν .
Indeed, in the triangle diagrams (a) and (b) in Fig. 1 one can move γ5 from the axial vertex
γνγ5 to the vector vertex γµ . In the chiral limit it moves via even number of gamma
matrices in any order of perturbation theory. Together with the change of the momentum
q → −q (which does not affect Tµν) it shows the symmetry of the amplitude Tµν .

At first glance the symmetry under the µ ↔ ν permutation seems to be in contradiction
with the general decomposition (4): the transversal part of Tµν is antisymmetric, the longi-
tudinal part has no symmetry, and there is no way to choose wT and wL which makes the
Tµν symmetric. Note, however, that the term q2f̃µν in the transversal structure in Eq. (4)
actually produces a term in Tµν which does not depend on q. It is because wT ∝ 1/q2.
The µ ↔ ν symmetry holds for a singular in q part of Tµν when the condition (8) relating
wT to wL is fulfilled. The constant in q part is then fixed by the conservation of the vector
current, qµTµν = 0 . An independence on q for the antisymmetric part provides, in fact,
an alternative proof of the Adler-Bardeen theorem. Indeed, gluon corrections would lead to
logarithmic dependence on q instead of the constant.

3
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In the chiral limit     
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Nonvanishing in the chiral limit, m = 0 , the longitudinal part qνTµν represents the axial
anomaly [6, 7],

qνTµν =
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4π2
Q2wL qσf̃σµ =
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2π2
Nc Tr (A V Ṽ ) qσf̃σµ , (7)

and its nonrenormalization implies that the one-loop result (6) for wL stays intact when
interaction with gluons is switched on.
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We claim that the relation

wL[m = 0] = 2 wT [m = 0] (8)

which holds at the one-loop level, see Eq. (6), gets no perturbative corrections from gluon
exchanges. This follows from the following line of argumentation.

In the chosen kinematics the fermion triangle with m = 0 possesses a special feature:
namely, a symmetry under permutation of indexes of axial and vector currents, µ ↔ ν .
Indeed, in the triangle diagrams (a) and (b) in Fig. 1 one can move γ5 from the axial vertex
γνγ5 to the vector vertex γµ . In the chiral limit it moves via even number of gamma
matrices in any order of perturbation theory. Together with the change of the momentum
q → −q (which does not affect Tµν) it shows the symmetry of the amplitude Tµν .

At first glance the symmetry under the µ ↔ ν permutation seems to be in contradiction
with the general decomposition (4): the transversal part of Tµν is antisymmetric, the longi-
tudinal part has no symmetry, and there is no way to choose wT and wL which makes the
Tµν symmetric. Note, however, that the term q2f̃µν in the transversal structure in Eq. (4)
actually produces a term in Tµν which does not depend on q. It is because wT ∝ 1/q2.
The µ ↔ ν symmetry holds for a singular in q part of Tµν when the condition (8) relating
wT to wL is fulfilled. The constant in q part is then fixed by the conservation of the vector
current, qµTµν = 0 . An independence on q for the antisymmetric part provides, in fact,
an alternative proof of the Adler-Bardeen theorem. Indeed, gluon corrections would lead to
logarithmic dependence on q instead of the constant.
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Another way to be automatically consistent with the vector current conservation is to
use the Pauli-Vilars regulators. Technically it reduces to subtraction from the triangles
with massless quarks similar triangles with the heavy regulator fermions propagating on the
loops. The regulator triangles produce terms which are polynomial in momenta, in our case
terms linear in k and independent on q . Moreover, it is simple to see that these terms
are antisymmetric under the µ ↔ ν permutation. Indeed, in the propagator of the heavy
regulator the leading term contains no gamma-matrix that leads to the sign change when
γ5 from the axial vertex γνγ5 is moved to the vector vertex γµ .
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The singular part is symmetric and the constant term is 
fixed by the conservation of the vector current. 
(Independence on    is an alternative derivation of the AB 
theorem).

II. HADRONIC CORRECTIONS TO QUARK TRIANGLES

We follow Ref. [1] in notations and definitions. Let us start with a definition of vector,
jµ , and axial, j5

ν, currents,

jµ = q̄ V γµq, j5
ν = q̄ Aγνγ5q , (1)

where the quark field qi
f has color (i) and flavor (f) indices and the matrices V and A are

diagonal matrices of vector and axial couplings acting on flavor indexes. To avoid dealing
with the U(1) anomaly in respect to gluon interactions we assume that Tr A = 0 . In the
case of electroweak corrections one can view the vector current as an electromagnetic one
with V being the matrix of electric charges and j5

ν as the axial part of the Z boson current
with matrix A given by the weak isospin projection.

The amplitude for the triangle diagram in Fig. 1 involving the axial current j5
ν and two

figure=triangle.eps,width=37mm figure=triangle1.eps,width=37mm
(a) (b)

FIG. 1: Quark triangle, diagram (a), and a gluon correction to it, diagram (b) .

vector currents jµ and j̃γ = q̄ �V γµq (for generality we use a different matrix �V for the soft
momentum current) can be written as

Tµγν = −
�

d4xd4y eiqx−iky �0| T{jµ(x) j̃γ(y) j5
ν(0)}|0� . (2)

We can view the current j̃γ as a source of a soft photon with the momentum k . Introducing
a polarization vector of a soft photon eγ(k) we come to the amplitude Tµν

Tµν = Tµγνeγ(k) = i
�

d4x eiqx �0| T{jµ(x) j5
ν(0)}| γ(k)� , (3)

which can be viewed as a mixing between the axial and vector currents in the external
electromagnetic field.

It is clear that the expansion of Tµν in the small momentum k starts with linear terms
and we neglect quadratic and higher powers of k. There are only two Lorentz structures for
Tµν which are linear in k and consistent with the conservation of electromagnetic current,

Tµν = −
i

4π2

�
wT(q2)

�
−q2f̃µν + qµqσf̃σν − qνqσf̃σµ

�
+ wL(q2) qνqσf̃σµ

�
, (4)

f̃µν =
1

2
�µνγδf

γδ , fµν = kµeν − kνeµ .

Both structures are transversal with respect to vector current, qµTµν = 0. As for the axial
current, the first structure is transversal with respect to qν while the second is longitudinal.

The one-loop result for the invariant functions wT and wL can be taken from the classic
papers by Bell and Jackiw [6], Adler [7] and Rosenberg [8] (it simplifies considerably in the
limit of the small photon momentum [9]),

w1−loop
L = 2 w1−loop

T = 2Nc Tr A V �V
� 1

0

dα α(1 − α)

α(1 − α)Q2 + m2
, (5)

2

where Q2 = −q2 , the factor Nc accounts for the color of quarks and m is the diagonal
quark mass matrix, m = diag{mq1, mq2, . . .}. In the chiral limit, m = 0, the invariant
functions wT,L are
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Nonvanishing in the chiral limit, m = 0 , the longitudinal part qνTµν represents the axial
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If Pauli-Vilars regularization is used to provide the vector 
current conservation then the antisymmetric part comes 
just from regulators.

Thus, the crossing symmetry relates the transversal and 
longitudinal parts and the AB theorem on the absence of 
perturbative corrections works for both.

For a general kinematics the relation was found in 
‘2004 Knecht, Peris, Perrottet and E. de Rafael and checked in
‘2006 Jegerlehner and Tarasov .

What about nonperturbative corrections?
None in the longitudinal part (‘t Hooft consistency 
condition) should present in the transversal part --
there is no massless spin one states.



Nonperturbative effects and OPE 

Thus, we see that the crossing symmetry of the singular part in the triangle amplitude

Tµν leads to the relation (8) in perturbation theory. Nonrenormalization of wL implies the

same for wT .

B. Nonperturbative effects and OPE

To study a nonperturbative effect in the triangle amplitude Tµν one can use the OPE

methods. This section is a brief review of the OPE analysis made in Ref. [1]. The analysis

shows a nonpertubative difference between the longitudinal and transversal parts, we will

use the results in the next section.

The OPE for the T-product of electromagnetic and axial currents at large Euclidean q2

has the form

T̂µν ≡ i
�

d4x eiqx T{jµ(x) j5
ν(0)} =

�

i

ci
µνγ1...γi

(q) O
γ1...γi
i , (9)

where the local operators O
γ1...γi
i are constructed from the light fields and supplied by a

normalization point µ separating short distances (accounted in the coefficients ci) and large

distances (in matrix elements of Oi). The field can be viewed as light if its mass is less than

µ. In the problem under consideration besides quark and gluon fields this includes also the

soft electromagnetic field Aµ . The field Aµ could enter local operators in a form of the

gauge invariant field strength Fµν = ∂µAν − ∂νAµ.

The amplitude Tµν is given by the matrix element of the operator T̂µν between the

photon and vacuum states,

Tµν = �0| T̂µν |γ(k)� =
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µνα1...αi

(q) �0| O
α1...αi
i |γ(k)� . (10)

In our approximation, when the matrix elements are linear in fαβ =kαeβ−kβeα , they are

nonvanishing only for operators with a pair of antisymmetric indexes,

�0| O
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i |γ(k)� = −
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4π2
κi f̃αβ , (11)

where constants κi depend on the normalization point µ . With only contributing operators

the OPE takes the form

T̂µν =
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�
ci
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−q2

O
i
µν+qµqσ

O
i
σν−qνqσ

O
i
σµ

�
+ci

L(q2) qνqσ
O

i
σµ

�
, (12)

and the invariant functions wT,L can be presented as

wT,L(q2) =
�

ci
T,L(q2) κi . (13)

The leading (by a minimal dimension) is the d = 2 operator

O
αβ
F =

1

4π2
F̃ αβ =

1

4π2
�αβρδ∂ρAδ , (14)
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where F̃
αβ is the dual of the electromagnetic field strength. The numerical factor in (14) is

such that κF = 1 . The OPE coefficients for O
αβ
F follow from one-loop expressions (5) for

wL,T ,

c
F
L[1-loop] = 2c

F
T [1-loop] =

2 Nc

Q2
Tr A V �V

�

1 + O

�
m

2

Q2

��

, (15)

where we imply that m � µ � Q , see [1] for a more detailed discussion.
The next, by dimension, are d = 3 operators

O
αβ
f = −i q̄f σαβγ5 q

f ≡
1

2
�αβγδ

q̄f σγδ q
f

, (16)

where the index denotes the quark flavor. The OPE coefficients follow from tree diagrams
of the Compton scattering type,

c
f
L = 2c

f
T =

4 AfVf mf

Q4
. (17)

Proportionality to mf is in correspondence with chirality arguments. Taking matrix element
of O

αβ
f between the soft photon and vacuum states we produce the following terms in the

invariant functions wT,L(q2):

∆(d=3)
wL = 2 ∆(d=3)

wT =
4

Q4

�

f

AfVfmfκf . (18)

In perturbation theory the matrix element κf of the chirality-flip operator Of is pro-
portional to mf . Nonperturbatively, however, κf does not vanish at mf = 0 . Due to
spontaneous breaking of the chiral symmetry in QCD the matrix elements of quark oper-
ators (16) are instead proportional to the quark condensate �q̄q�0 = −(240 MeV)3 . It
leads to the representation of κf in the form

κf = −4π2�Vf �q̄q�0 χ . (19)

This representation was introduced by Ioffe and Smilga [5] in their analysis of nucleon
magnetic moments and ∆ → Nγ radiative transitions with QCD sum rules. From a sum
rule fit they determined the value of the parameter χ dubbed as the quark condensate
magnetic susceptibility,

χ = −
1

(350 ± 50 MeV)2
. (20)

We will consider an analytical calculation and comparison with other approaches for the
susceptibility χ in the next section. Here we notice that the effect of d = 3 operators Of

vanishes in the chiral limit, although as the first rather than second power of m . What
we are looking for, first of all, are terms in the OPE which differentiate longitudinal and
transversal parts in this limit.

Vanishing at the chiral limit persists also for the d = 4 and d = 5 operators. All
operators of dimension 4 are reducible to the d = 3 operators due to the following relation,

q̄f (Dµγν − Dνγµ)γ5 q
f = −mf q̄fσµνγ5 q

f
. (21)
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In the chiral limit the difference between longitudinal 
and transversal parts shows up at the level of d=6 four-
fermion operators.
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current and the axial current; since the large momentum still has to flow
from one vertex to the other, this requires an exchange of at least one hard
gluon [121]. The leading contribution comes from diagrams with a single hard
gluon exchange; they are shown in Fig.5.4. These diagrams lead to a non-
perturbative contribution given by dimension six four-fermion operators.
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Fig. 5.4. Sample diagrams for the leading non-perturbative contribution to Tµν .

Consider first the non-perturbative contribution generated by a quark q.
The part of T̂µν due to diagrams shown in Fig.5.4 reads

∆T q
µν = −

8παsQq

k6
q̄ ta

(

γαk̂γµ−γµk̂γα

)

q ⊗ q̄ ta
(

γν k̂γα−γαk̂γν

)

γ5q ,

(5.27)
where ta are the generators of the SU(3) color group. Note that ∆T q

µν is
transverse with respect to Lorentz indices of both vector and axial currents;
this immediately implies that only the transversal function wT receives the
corresponding non-perturbative contribution. This is an illustration of a gen-
eral situation with non-perturbative corrections to the longitudinal structure
function wL mentioned earlier – similar to perturbative corrections, the non-
perturbative corrections to wL are absent in the chiral limit,1in accord with
the ’t Hooft consistency condition for the axial anomaly [129].

1 Note, that the flavor singlet longitudinal function wu
L +wd

L +ws
L does receive the

non-perturbative contribution. It comes at the level where the anomalous triangle
with axial current and two gluons enters the OPE coefficient.
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Here the momentum q is substituted by k .
The model
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valid for arbitrary K2. This model smoothly interpolates between perturba-
tive and non-perturbative regimes since it satisfies the constraints from the
operator product expansion and is consistent with the expectation that at
K ∼ ΛQCD the major consequence of the explicit chiral symmetry breaking
is a shift of the pion mass to a non-zero value.

In a similar way we construct a non-perturbative model for the func-
tion wT[u, d]. In this case, we know the large-K2 expansion through terms
O(K−6) and, therefore, can fix three parameters. We write

wT =
∞
∑

i

gi,T

K2 + m2
i,T

. (5.47)

Expanding wT(K2) at large K2, and comparing the subsequent terms in the
expansion with the asymptotics Eq.(5.39), we derive

∑

i

gi,T = 1,
∑

i

gi,Tm2
i,T = (180 MeV)2,

∑

i

gi,Tm4
i,T = −(710 MeV)4.

(5.48)
Note that we have set αs(K) = 1 in Eq.(5.39).

Instead of solving the three equations in Eq.(5.48), we approximate the
transversal structure function by a linear combination of the propagators that
describe exchanges by the ρ and ω vector mesons (neglecting their mass dif-
ference) and the a1(1260) axial vector meson. Note that the isospin quantum
numbers of those mesons are identical to the isospin quantum numbers of the
electromagnetic and axial currents. We make an Anzats

wT[u, d] =
1

m2
a1

− m2
ρ

(

m2
a1

− m2
π

K2 + m2
ρ

−
m2

ρ − m2
π

K2 + m2
a1

)

. (5.49)

The transversal function wT Eq.(5.49) satisfies two first sum rules in Eq.(5.48)
by construction. Since Eq.(5.49) fully determines the model expression for the
transversal structure function wT, the 1/K6 term in the large-K2 expansion
of wT becomes the prediction of the model that can be compared with the
estimate provided by the OPE. Upon expanding Eq.(5.49) in 1/K2, we find
−(0.96 GeV)4 as the coefficient of the 1/K6 term; this should be compared
with the OPE estimate −(0.71 GeV)4, Eq.(5.39). Although the agreement
is not perfect, we find it reasonable given rather crude estimate of the matrix
element of the operator O6

αβ , Eq.(5.33).
Next, we turn to the second generation where the s quark is the only quark

which can be considered light. We should be careful with the isospin or, more
generally, SU(3) quantum numbers. For the first generation, the weak axial
current is ūγνγ5u − d̄γνγ5d, so that its quantum numbers coincide with
that of the pion. On the contrary, the axial current for the second generation
−s̄γ5γνs is a mixture of the SU(3) octet and singlet,
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V. SUMMARY

Having addressed a variety of computational issues,

• Small, previously neglected, 2-loop contributions suppressed by factors of (1 − 4s2
W )

that come from γ-Z mixing and the renormalization of θW ,

• Strong interaction modifications of quark loop diagrams, and

• Leading log 3-loop effects,

we are now in a position to update the Standard Model prediction for aEW
µ and assess its

degree of uncertainty.
Small effects due to γ-Z mixing and our choice of θW renormalization have now been

included in Eqs. (7) and (8). Because of the (1−4s2
W ) suppression factor, their total impact

is rather small, shifting the value of aEW
µ down by about 0.4 × 10−11.

More important are strong interaction effects on the quark triangle diagrams in Fig. 3,
particularly in the case of light quarks. It was shown that short distance contributions are
unmodified (thereby, hopefully, eliminating controversy in the literature). However, QCD
can affect their long-distance properties. In the case of the first generation of fermions a
detailed operator product expansion analysis and effective field theory calculation led to a
shift relative to the free quark calculation (with constituent quark mass) by

∆aEW
µ [e, u, d]QCD − ∆aEW

µ [e, u, d]free quarks = +1.7 × 10−11. (117)

For the second generation, comparison of the free quark calculation with the more precise
evaluation in Eq. (65) shows no significant numerical difference. However, the more refined
analysis now indicates very little theoretical uncertainty. So, the total hadronic uncertainties
in aEW

µ would seem to be well covered by an uncertainty of ±1 × 10−11 or even less.
Finally, after a detailed renormalization group analysis, the leading log three-loop contri-

butions turned out to be extremely small. In fact, they are consistent with zero, to our level
of accuracy ∼ 0.1× 10−11, due to a remarkable cancellation between anomalous dimensions
and running coupling effects. Uncalculated three-loop NLL contributions are expected to
be of order

Gµm2
µ

8
√

2π2

(
α

π

)2

ln
m2

Z

m2
µ

% 8 × 10−14, (118)

which is negligible unless enhanced by an enormous factor. Nevertheless, we assign an overall
uncertainty of ±0.2 × 10−11 to aEW

µ for uncalculated three-loop NLL contributions.
So, in total we find a small shift in aEW

µ (for mH % 150 GeV) from the previously quoted
value of 152(4)× 10−11 to a slightly larger (but consistent) value

aEW
µ = 154(1)(2)× 10−11 (119)

where the first error corresponds to hadronic loop uncertainties and the second to an allowed
Higgs mass range of 114 GeV <∼ mH

<∼ 250 GeV, the current top mass uncertainty and
unknown three-loop effects.
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where f = u, d and �Vf is the electric charge of the f quark. This looks analogous to the

Gell-Mann-Oakes-Renner (GMOR) relation for the pion mass [11],

(mu + md)�q̄q�0 = −F 2
π m2

π . (27)

The GMOR relation allows us to rewrite (26) as a relation for the magnetic susceptibility χ
defined in Eq. (19),

χ = −
Nc

4π2 F 2
π

= −
1

(335 MeV)2
. (28)

The Nc dependence of the result for χ is consistent with large Nc analysis. The numerical

value of χ is in very good agreement with the QCD sum rule fit [5] given in Eq. (20). What

remains questionable is the pion dominance, which we will discuss in a little bit more detail.

To this end it is instructive to compare the construction above with the OPE derivation

of the GMOR relation (27) made in Ref. [12]. The object of consideration in this case was

the polarization operator Πµν of the axial current j5
µ. In its longitudinal part the d = 3

operators give

∆Π(d=3)
µν = 2(mu + md)�q̄q�0

qµqν

q4
+ transversal terms . (29)

Comparing this with the m2
π/q4 term coming from the expansion in the pion pole one gets

the GMOR relation (27). It is crucial that only the pion state contributes to the linear in

mu,d (or in m2
π) terms in the longitudinal part of Πµν, all the higher states give quadratic

in quark masses contributions. Indeed, the coupling of those states to the axial current is

linear in quark masses and it is the square of this coupling which enters Πµν . In the case

of the longitudinal part of Tµν the coupling of higher states to the axial current enters only

once, so the higher states do contribute in the linear in quark masses order. Thus, the pion

dominance is not parametrical for qνTµν .

A clear signal of presence of higher states follows from a nonvanishing anomalous dimen-

sion of the operator (16). It means that the operator (16) (in contrast with the operator

(mu + md) q̄q entering the GMOR relation (27)) depends on the normalization point µ,

and its OPE coefficient cf
L(Q) besides power dependence on Q contains also the factor

[α(Q)/α(µ)]16/9, i.e. power of log(Q/ΛQCD) . This logarithmic dependence is apparently

related to the higher states contribution. To justify the pion dominance we have to assume

matching of the 1/Q4 terms from the OPE and the pion pole below the higher states. It

implies a low normalization point, probably µ ∼ 0.5 GeV.

The result (28) can be compared with a different approach to calculation of χ based on

matching of the vector meson dominance with the OPE for the product of the electromag-

netic current j̃γ and operator (16). This approach was suggested first in Ref. [13] and in its

simplest form gives χ = −2/m2
ρ = −1/(544 MeV)2 what is about 2.6 times smaller by

magnitude than (28). The consideration was then improved in [14, 15] by use of the QCD

sum rules, see also [16] for a recent review and update. The largest by magnitude value

χ[µ = 0.5 GeV] = −1/(420 MeV)2 obtained in [14] is still 1.5 times smaller than (28).

A phenomenology of processes sensitive to the susceptibility χ , see [16], will possibly help

to fix its value.
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means that the bulk of the contribution does not come from small virtual momenta ki and, therefore,
chiral perturbation theory should not be applied. In other words, the term c3 in Eq. (8) with no chiral
enhancement is comparable with c2(m2

ρ/m2
π). It means that loops with heavier mesons should also

be included.
Breaking of the chiral perturbation theory looks surprising at first sight. Indeed, the inverse chiral

parameter m2
ρ/m2

π ≈ 30 is much larger than Nc = 3. What happens is that the leading terms in the

chiral expansion are numerically suppressed, which makes chiral corrections governed not by m2
π/m2

ρ

but rather by ≈ 40 m2
π/m2

ρ . This can be checked analytically in the case of the HVP contribution

to the muon anomaly. The charged pion loop is also enhanced in this case by a factor m2
ρ/m2

π but

the relative chiral correction due to the pion electromagnetic radius (evaluated with a cutoff at m2
ρ in

the ππ spectral function) is ∼ 40 m2
π/m2

ρ ln(mρ/2mπ). Of course, if the pion mass (together with
the muon mass) would be, say, 5 times smaller than in our real world, the charged pion–loop would
dominate both in the HVP and the HLbL contributions to the muon anomalous magnetic moment.

In concluding this Section, we see that the 1/Nc expansion works reasonably well, so one can use
one–particle exchanges for the HLbL amplitude. On the other hand, chiral enhancement factors are
unreliable, so we cannot limit ourselves to the lightest Goldstone–like states, and this is the case both
for the leading and next–to–leading order in the 1/Nc expansion.

3. Short–Distance QCD Constraints.

The most recent calculations of aHLbL in the literature [1, 6, 8, 9] are all compatible with the QCD
chiral constraints and large–Nc limit discussed above. They all incorporate the π0–exchange contri-
bution modulated by π0γ∗γ∗ form factors F(k2

i , k2
j ), correctly normalized to the π0 → γγ decay

width. They differ, however, in the shape of the form factors, originating in different assumptions:
vector meson dominance (VMD) in a specific form of Hidden Gauge Symmetry (HGS) in Refs. [4, 5, 6];
a different form of VMD in the extended Nambu–Jona-Lasinio model (ENJL) in Ref. [7, 8]; large–Nc

models in Refs. [1, 9]; and on whether or not they satisfy the particular operator product expansion
(OPE) constraint discussed in Ref. [9], upon which we next comment.

Let us consider a specific kinematic configuration of the virtual photon momenta k1, k2, k3 in
the Euclidean domain. In the limit q = 0 these momenta form a triangle, k1 + k2 + k3 = 0,
and we consider the configuration where one side of the triangle is much shorter than the others,
k2
1 ≈ k2

2 $ k2
3 . When k2

1 ≈ k2
2 $ m2

ρ we can apply the known operator product expansion for the
product of two electromagnetic currents carrying hard moments k1 and k2,

∫

d4x1

∫

d4x2 e−ik1·x1−ik2·x2 jν(x1) jρ(x2) =
2

k̂2
ενρδγ k̂δ

∫

d4z e−ik3·z jγ
5 (z) + O

(
1

k̂3

)

. (10)

Here jγ
5 =

∑

q Q2
q q̄γγγ5q is the axial current where different flavors are weighted by squares of their

electric charges and k̂ = (k1 − k2)/2 ≈ k1 ≈ −k2 . As illustrated in Fig. 3 this OPE reduces the
HLbL amplitude, in the special kinematics under consideration, to the AVV triangle amplitude.

k

k k

q 01

2 3

q 0

k3

γ γγ 5H

Figure 3: OPE relation between the HLbL scattering and the AVV triangle amplitude.

There are a few things we can learn from the OPE relation in Eq. (10). The first one is that the
pseudoscalar and pseudovector meson exchanges are dominant at large k1,2. Indeed, only 0− and

5

Ref. [7, 8] with, however, a larger error which covers the effect of other unaccounted meson exchanges,

aHLbL(scalars) = −(0.7 ± 0.7) × 10−10 . (14)

Contribution to aHLbL from a dressed pion loop

Because of the instability of the results for the charged pion loop and unaccounted loops of other
mesons, we suggest using the central value of the ENJL result but wit a larger error:

aHLbL(π−dressed loop) = −(1.9 ± 1.9) × 10−10 . (15)

From these considerations, adding the errors in quadrature, as well as the small charm contribution
in Eq. (6), we get

aHLbL = (105 ± 26) × 10−11 , (16)

as our final estimate.
We wish to emphasize, however, that this is only what we consider to be our best estimate at

present. In view of the proposed new gµ−2 experiment, it would be nice to have more independent
calculations in order to make this estimate more robust. More experimental information on the decays
π0 → γγ∗, π0 → γ∗γ∗ and π0 → e+e− (with radiative corrections included) could also help to
confirm the result of the main contribution in Eq. (12).

More theoretical work is certainly needed for a better understanding of the other contributions
which, although smaller than the one from pseudoscalar exchanges, have nevertheless large uncertain-
ties. This refers, in particular, to pseudovector exchanges in Eq. (13) but other C-even exchanges are
also important. Experimental data on radiative decays and two-photon production of C-even reso-
nances could be helpful. An evaluation of 1/Nc–suppresed loop contributions present even a more
difficult task. New approaches to the dressed pion loop contribution, in parallel with experimental in-
formation on the vertex π+π−γ∗γ∗, would be very welcome. Again, measurement of the two-photon
processes like e+e− → e+e−π+π− could give some information on that vertex and help to reduce
the model dependence and therefore the present uncertainty in Eq. (15).
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