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Introduction and summary

analytic results on the low lying spectrum of QCD
next-to-next-to-leading (NNL) chiral perturbation theory (ChPT)
special environment: delta-regime

created by the 'would be Goldstone bosons'’

in a box of size Lg X Ly X Ls X (Lt — o0), Ls = 2.5fm

The low lying spectrum is a quantum mechanical rotator
whose inertia recieves small, calculable corrections.
leading order(L):

Fisher, Privman, 1983; Brezen, Zinn-Justin 1983;
Leutwyler, 1987

next-to-leading(NL)
P.H., Niedermayer, 1993

next-to-next-to-leading(NNL)
P.H., 2009



Up to NNL order the low lying spectrum is expressed
in terms of only 3 constants of ChPT in the chiral limit.

The same low lying spectrum can be studied in
numerical experiments (lattice QCD)

— precise constraints on the low energy constants.

Note: the low lying stable energy spectrum is the simplest and
cleanest numerical problem on the lattice;

The condition Lg 2 2.5fm is not trivial. The lattice community is
close to that today and will be there tomorrow.



2-flavor QCD in the chiral limit; SU(2) x SU(2) ~ O(4)
dimensional regularization (DR) is used in this work
the low lying spectrum up to NNL order in ChPT reads:
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The result is simple, the underlying ChPT is, however, not.

Is the result correct?

F. Niedermayer and Ch. Weyermann (PhD):

result with a different technique using lattice regularization;
the connection between DR vs. lattice regularization is missing;
effective field theory, untouched problem

interested?



The chiral action

Use 'magnetic language’: we have a field with 4 components in the
internal space. The field is described in terms of microscopic
magnets. The lagrangean up to NNL order reads:

L= L3+ Leg,
where
2
Lgﬁc = %@LS oS,
Lgﬁ =—h(0,50,5)(0,59,S) — L (0,5 9,5)(9,59.S).
Here F, 1, l, are the bare low energy constants. Further,
S(x) = (So(x), S1(x), S2(x), S3(x)), S*(x) =1,

and x lives in d =4 = (d — 1) + 1 (space and euclidean time)



The leading (L) rotator

Ls j
The microscopic magnets are closely parallel

in the Lg X Ls X Ls box. In leading order we ¢

ignore the small fluctuations. Ls o /




In leading order, on each time slice, the
length of the magnetisation is constant,
but the direction is changing slowly. Let
e(t) the direction of the total magneti-
zation at t. The leading action reads

F2
Ale = > dx0,S(x) 0,S(x) —

2
F2V5 /dté(t)é(t), e(t)’ =1

This is a quantum mechanical rotator
with inertia © = F2V..
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Separating the slow and fast modes

The diraction of the magnetization e(t) moves much slower than
the single microscopic magnets. We integrate out these fast modes
and obtain a generalized rotator in terms of the slow modes e(t).
Then remains a simple problem in quantum mechanics.

We start with the path integral

7 = H/dS(x)(S(S2(x) — 1) exp (—Ae(S)) ,

where Acg is built from the lagrangean Lgﬂf + Lgﬁ.
Insert '1" in the path integral

| = H/dm(t)a(m(t) _ % SUS(t,x) . m(t) = m(r)e(r).

The vector e(t) is the direction of the 'magnetisation’ on the time
slice t. These are the slow modes.



The remaining modes are the fast modes

R(x) = (1 - N%(x))

NI

N(x)
which can be treated in perturbation theory. In the pairing
< N(x);, N(0); > = 81425 D" ()

the k = (ko, k = 0) part is subtracted, since those are the slow
modes. The constrained Green’s function D* is related to G* and

Jo0p G* which enter the NNL result for ©:
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The inertia © up to NNL order

The standard O(4) rotator is obtained, where only the inertia is
modified

o= F2V,{1 - 852D7(0) + %2 (D*(0)D*(0)

+2 . 0000D*(X)D*(x)D*(X)) + A (8h + 16/2)8080D*(0)}

The only unknown part is the integral above. This integral is
singular and needs some work. The result reads

[ dx 9000 D*(x) D" (x) D*(x) =
_%{dOdog* 15 [d34 + |n(Lis)} +0.029492025146.}

8n2 3

The singularities in the low energy constants /1, /b cancel the
singularities above. We obtain the result on page 4.
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Corrections to the first excitation

The total corrections to © are 50, 30 and 20 percent for

Ls = 2.0,2.5 and 3.0 fermi, respectively.

The NNL corrections are ten times smaller than that of the NL
corrections.



