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Introduction and summary

analytic results on the low lying spectrum of QCD
next-to-next-to-leading (NNL) chiral perturbation theory (ChPT)
special environment: delta-regime
created by the ’would be Goldstone bosons’
in a box of size Ls × Ls × Ls × (Lt →∞), Ls � 2.5fm

The low lying spectrum is a quantum mechanical rotator
whose inertia recieves small, calculable corrections.
leading order(L):
Fisher, Privman, 1983; Brezen, Zinn-Justin 1983;
Leutwyler, 1987

next-to-leading(NL)
P.H., Niedermayer, 1993

next-to-next-to-leading(NNL)
P.H., 2009



Up to NNL order the low lying spectrum is expressed
in terms of only 3 constants of ChPT in the chiral limit.

The same low lying spectrum can be studied in
numerical experiments (lattice QCD)

→ precise constraints on the low energy constants.

Note: the low lying stable energy spectrum is the simplest and
cleanest numerical problem on the lattice;

The condition Ls � 2.5fm is not trivial. The lattice community is
close to that today and will be there tomorrow.



2-flavor QCD in the chiral limit; SU(2)× SU(2) ∼ O(4)
dimensional regularization (DR) is used in this work
the low lying spectrum up to NNL order in ChPT reads:

Ej =
1

2Θ
j(j + 2) , j = 0, 1, 2, . . . ,

where the inertia Θ depends on the low energy constants F , Λ1, Λ2:

Θ = F 2L3
s

{
1−

2

F 2L2
s

G ∗

+
1

(F 2L2
s )

2

[
0.088431628

+ ∂0∂0G
∗

1

3π2

(
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4
ln(Λ1Ls)

2 + ln(Λ2Ls)
2

)]}

G ∗ = −0.2257849591 ; ∂0∂0G
∗ = −0.8375369106 .



The result is simple, the underlying ChPT is, however, not.
Is the result correct?
F. Niedermayer and Ch. Weyermann (PhD):
result with a different technique using lattice regularization;
the connection between DR vs. lattice regularization is missing;
effective field theory, untouched problem
interested?



The chiral action

Use ’magnetic language’: we have a field with 4 components in the
internal space. The field is described in terms of microscopic
magnets. The lagrangean up to NNL order reads:

L = L2
eff + L4

eff ,

where

L2
eff =

F 2

2
∂μS ∂μS ,

L4
eff = −l1 (∂μS ∂μS)(∂νS ∂νS)− l2 (∂μS ∂νS)(∂μS ∂νS) .

Here F , l1, l2 are the bare low energy constants. Further,

S(x) = (S0(x), S1(x), S2(x), S3(x)), S
2(x) = 1 ,

and x lives in d = 4 = (d − 1) + 1 (space and euclidean time)



The leading (L) rotator

The microscopic magnets are closely parallel
in the Ls × Ls × Ls box. In leading order we
ignore the small fluctuations. Ls

Ls

Ls



In leading order, on each time slice, the
length of the magnetisation is constant,
but the direction is changing slowly. Let
e(t) the direction of the total magneti-
zation at t. The leading action reads

A2
eff =

F 2

2

∫
dx∂μS(x) ∂μS(x) →

Arot =
F 2Vs

2

∫
dt ė(t)ė(t) , e(t)2 = 1

This is a quantum mechanical rotator
with inertia Θ = F 2Vs . Ls × Ls × Ls

Lt

ti
m

e

space



Separating the slow and fast modes

The diraction of the magnetization e(t) moves much slower than
the single microscopic magnets. We integrate out these fast modes
and obtain a generalized rotator in terms of the slow modes e(t).
Then remains a simple problem in quantum mechanics.
We start with the path integral

Z =
∏
x

∫
dS(x)δ(S2(x)− 1) exp (−Aeff(S)) ,

where Aeff is built from the lagrangean L2
eff

+ L4
eff

.
Insert ’1’ in the path integral

1 =
∏
t

∫
dm(t)δ(m(t)−

1

Vs

∑
x

S(t, x)) , m(t) = m(t) e(t) .

The vector e(t) is the direction of the ’magnetisation’ on the time
slice t. These are the slow modes.



The remaining modes are the fast modes

R(x) =
(
(1−Π

2(x))
1
2 ,Π(x)

)

which can be treated in perturbation theory. In the pairing

< Π(x)i , Π(0)j > = δi ,j

1

F 2
D∗(x)

the k = (k0, k = 0) part is subtracted, since those are the slow
modes. The constrained Green’s function D∗ is related to G ∗ and
∂0∂0G

∗ which enter the NNL result for Θ:

D∗(0) =
1

L2
s

G ∗ , ∂0∂0D
∗(0) =

1

L4
s

∂0∂0G
∗ .



The inertia Θ up to NNL order

The standard O(4) rotator is obtained, where only the inertia is
modified

Θ = F 2Vs

{
1− N−2

F 2 D∗(0) + N−2
F 4

(
D∗(0)D∗(0)

+2
∫
x
∂0∂0D

∗(x)D∗(x)D∗(x)
)

+ 1
F 4 (8l1 + 16l2)∂0∂0D

∗(0)
}

The only unknown part is the integral above. This integral is
singular and needs some work. The result reads

∫
dx ∂0∂0D

∗(x)D∗(x)D∗(x) =

−
1
L4

s

{
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8π2
5
3

[
1

d−4
+ ln( 1
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)
]

+ 0.029492025146 .
}

The singularities in the low energy constants l1, l2 cancel the
singularities above. We obtain the result on page 4.
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Corrections to the first excitation

The total corrections to Θ are 50, 30 and 20 percent for
Ls = 2.0, 2.5 and 3.0 fermi, respectively.
The NNL corrections are ten times smaller than that of the NL
corrections.


