Gribov-80 Memorial Workshop on Quantum Chromodynamics and

Beyond'

26-28 May 2010

The QCD rotator in the chiral limit

Peter Hasenfratz
University of Bern
Switzerland

The QCD Rotator in the Chiral Limit

Peter Hasenfratz
Institute of Theoretical Physics, University of Bern, Switzerland

Gribov-80 Memorial Workshop on QCD and Beyond, 2010

Introduction and summary

analytic results on the low lying spectrum of QCD next-to-next-to-leading (NNL) chiral perturbation theory (ChPT) special environment: delta-regime created by the 'would be Goldstone bosons' in a box of size $L_{s} \times L_{s} \times L_{s} \times\left(L_{t} \rightarrow \infty\right), \quad L_{s} \gtrsim 2.5 \mathrm{fm}$

The low lying spectrum is a quantum mechanical rotator whose inertia recieves small, calculable corrections. leading order(L):
Fisher, Privman, 1983; Brezen, Zinn-Justin 1983;
Leutwyler, 1987
next-to-leading(NL)
P.H., Niedermayer, 1993
next-to-next-to-leading(NNL)
P.H., 2009

Up to NNL order the low lying spectrum is expressed in terms of only 3 constants of ChPT in the chiral limit.

The same low lying spectrum can be studied in numerical experiments (lattice QCD)
\rightarrow precise constraints on the low energy constants.
Note: the low lying stable energy spectrum is the simplest and cleanest numerical problem on the lattice;

The condition $L_{s} \gtrsim 2.5 \mathrm{fm}$ is not trivial. The lattice community is close to that today and will be there tomorrow.

2-flavor QCD in the chiral limit; $S U(2) \times S U(2) \sim O(4)$ dimensional regularization (DR) is used in this work the low lying spectrum up to NNL order in ChPT reads:

$$
E_{j}=\frac{1}{2 \Theta} j(j+2), j=0,1,2, \ldots,
$$

where the inertia Θ depends on the low energy constants $F, \Lambda_{1}, \Lambda_{2}$:

$$
\begin{aligned}
\Theta=F^{2} L_{s}^{3}\{ & \left\{1-\frac{2}{F^{2} L_{s}^{2}} G^{*}\right. \\
& +\frac{1}{\left(F^{2} L_{s}^{2}\right)^{2}}[0.088431628 \\
& \left.\left.+\partial_{0} \partial_{0} G^{*} \frac{1}{3 \pi^{2}}\left(\frac{1}{4} \ln \left(\Lambda_{1} L_{s}\right)^{2}+\ln \left(\Lambda_{2} L_{s}\right)^{2}\right)\right]\right\}
\end{aligned}
$$

$$
G^{*}=-0.2257849591 ; \quad \partial_{0} \partial_{0} G^{*}=-0.8375369106
$$

The result is simple, the underlying ChPT is, however, not. Is the result correct?
F. Niedermayer and Ch. Weyermann (PhD): result with a different technique using lattice regularization; the connection between DR vs. lattice regularization is missing; effective field theory, untouched problem interested?

The chiral action

Use 'magnetic language': we have a field with 4 components in the internal space. The field is described in terms of microscopic magnets. The lagrangean up to NNL order reads:

$$
L=L_{\mathrm{eff}}^{2}+L_{\mathrm{eff}}^{4}
$$

where

$$
\begin{aligned}
& L_{\text {eff }}^{2}=\frac{F^{2}}{2} \partial_{\mu} \mathbf{S} \partial_{\mu} \mathbf{S} \\
& L_{\text {eff }}^{4}=-I_{1}\left(\partial_{\mu} \mathbf{S} \partial_{\mu} \mathbf{S}\right)\left(\partial_{\nu} \mathbf{S} \partial_{\nu} \mathbf{S}\right)-I_{2}\left(\partial_{\mu} \mathbf{S} \partial_{\nu} \mathbf{S}\right)\left(\partial_{\mu} \mathbf{S} \partial_{\nu} \mathbf{S}\right)
\end{aligned}
$$

Here F, l_{1}, l_{2} are the bare low energy constants. Further,

$$
\mathbf{S}(x)=\left(S_{0}(x), S_{1}(x), S_{2}(x), S_{3}(x)\right), \quad \mathbf{S}^{2}(x)=1
$$

and x lives in $d=4=(d-1)+1$ (space and euclidean time)

The leading (L) rotator

The microscopic magnets are closely parallel in the $L_{s} \times L_{s} \times L_{s}$ box. In leading order we ignore the small fluctuations.

In leading order, on each time slice, the length of the magnetisation is constant, but the direction is changing slowly. Let $\mathbf{e}(t)$ the direction of the total magnetization at t . The leading action reads

$$
\begin{gathered}
A_{\mathrm{eff}}^{2}=\frac{F^{2}}{2} \int d x \partial_{\mu} \mathbf{S}(x) \partial_{\mu} \mathbf{S}(x) \rightarrow \\
A_{\mathrm{rot}}=\frac{F^{2} V_{s}}{2} \int d t \dot{\mathbf{e}}(t) \dot{\mathbf{e}}(t), \quad \mathbf{e}(t)^{2}=1
\end{gathered}
$$

This is a quantum mechanical rotator with inertia $\Theta=F^{2} V_{s}$.

Separating the slow and fast modes

The diraction of the magnetization $\mathbf{e}(t)$ moves much slower than the single microscopic magnets. We integrate out these fast modes and obtain a generalized rotator in terms of the slow modes $\mathbf{e}(t)$. Then remains a simple problem in quantum mechanics. We start with the path integral

$$
Z=\prod_{x} \int d \mathbf{S}(x) \delta\left(\mathbf{S}^{2}(x)-1\right) \exp \left(-A_{\mathrm{eff}}(\mathbf{S})\right)
$$

where $A_{\text {eff }}$ is built from the lagrangean $L_{\text {eff }}^{2}+L_{\text {eff }}^{4}$. Insert ' 1 ' in the path integral

$$
1=\prod_{t} \int d \mathbf{m}(t) \delta\left(\mathbf{m}(t)-\frac{1}{V_{s}} \sum_{\mathbf{x}} \mathbf{S}(t, \mathbf{x})\right), \quad \mathbf{m}(t)=m(t) \mathbf{e}(t)
$$

The vector $\mathbf{e}(t)$ is the direction of the 'magnetisation' on the time slice t. These are the slow modes.

The remaining modes are the fast modes

$$
\mathbf{R}(x)=\left(\left(1-\boldsymbol{\Pi}^{2}(x)\right)^{\frac{1}{2}}, \boldsymbol{\Pi}(x)\right)
$$

which can be treated in perturbation theory. In the pairing

$$
<\Pi(x)_{i}, \Pi(0)_{j}>=\delta_{i, j} \frac{1}{F^{2}} D^{*}(x)
$$

the $k=\left(k_{0}, \mathbf{k}=\mathbf{0}\right)$ part is subtracted, since those are the slow modes. The constrained Green's function D^{*} is related to G^{*} and $\partial_{0} \partial_{0} G^{*}$ which enter the NNL result for Θ :

$$
D^{*}(0)=\frac{1}{L_{s}^{2}} G^{*}, \quad \partial_{0} \partial_{0} D^{*}(0)=\frac{1}{L_{s}^{4}} \partial_{0} \partial_{0} G^{*}
$$

The inertia Θ up to NNL order

The standard $O(4)$ rotator is obtained, where only the inertia is modified

$$
\begin{array}{rc}
\Theta= & F^{2} V_{s}\left\{1-\frac{N-2}{F^{2}} D^{*}(0)+\frac{N-2}{F^{4}}\left(D^{*}(0) D^{*}(0)\right.\right. \\
\left.\left.+2 \int_{x} \partial_{0} \partial_{0} D^{*}(x) D^{*}(x) D^{*}(x)\right)+\frac{1}{F^{4}}\left(8 / 1+16 /_{2}\right) \partial_{0} \partial_{0} D^{*}(0)\right\}
\end{array}
$$

The only unknown part is the integral above. This integral is singular and needs some work. The result reads

$$
\begin{gathered}
\int d x \partial_{0} \partial_{0} D^{*}(x) D^{*}(x) D^{*}(x)= \\
-\frac{1}{L_{s}^{4}}\left\{d 0 d 0 G^{*} \frac{1}{8 \pi^{2}} \frac{5}{3}\left[\frac{1}{d-4}+\ln \left(\frac{1}{L_{s}}\right)\right]+0.029492025146 .\right\}
\end{gathered}
$$

The singularities in the low energy constants l_{1}, l_{2} cancel the singularities above. We obtain the result on page 4.

$$
\begin{gathered}
E_{j}=\frac{1}{2 \Theta} j(j+2), j=0,1,2, \ldots, \\
\Theta=F^{2} L_{s}^{3}\left\{1-\frac{2}{F^{2} L_{s}^{2}} G^{*}\right. \\
+\frac{1}{\left(F^{2} L_{s}^{2}\right)^{2}}[0.088431628 \\
\left.\left.+\partial_{0} \partial_{0} G^{*} \frac{1}{3 \pi^{2}}\left(\frac{1}{4} \ln \left(\Lambda_{1} L_{s}\right)^{2}+\ln \left(\Lambda_{2} L_{s}\right)^{2}\right)\right]\right\}
\end{gathered}
$$

Corrections to the first excitation

The total corrections to Θ are 50, 30 and 20 percent for $L_{s}=2.0,2.5$ and 3.0 fermi, respectively.
The NNL corrections are ten times smaller than that of the NL corrections.

