

2146-6

Gribov-80 Memorial Workshop on Quantum Chromodynamics and Beyond'

26 - 28 May 2010

Integrability in Planar N=4 Gauge Theory

Niklas Beisert Max Planck Institut Fur Gravitationsphysik Germany

Integrability in Planar $\mathcal{N} = 4$ Gauge Theory

Niklas Beisert

MPI für Gravitationsphysik Albert-Einstein-Institut, Potsdam

Gribov-80 Memorial Workshop on Quantum Chromodynamics and Beyond

> ICTP Trieste 26 May 2010

Deep Inelastic Scattering

Correlator of currents. OPE:

 $J_{\mu}(x)J_{\nu}(y) \sim |y-x|^{T_{\mathcal{O}}-6} \left[(y-x)^{S_{\mathcal{O}}} \cdot \mathcal{O}(x) \right].$

- Operators of lowest twist $T_{\mathcal{O}} = D_{\mathcal{O}} S_{\mathcal{O}}$ are dominant.
- Scaling violations: anomalous dimensions $\delta D_{\mathcal{O}}$ of twist-two operators.
- Classical application for DGLAP evolution equation.

This talk: Anomalous dimensions (twist-two/any local operator)

- in conformal $\mathcal{N} = 4$ supersymmetric gauge theory (instead of QCD),
- of single-trace ops in the 't Hooft limit $N_{
 m c}=\infty$,
- at arbitrary 't Hooft coupling $\lambda = g_{
 m YM}^2 N_{
 m c}$,
- how they can be obtained from an integrable spin chain,
- how this is related to scattering amplitudes.

I. Maximally Supersymmetric Yang–Mills Theory

$\mathcal{N} = 4$ Super Yang–Mills Theory

We all know and like gauge field theories.

• QCD/Standard Model: 4D Yang–Mills theory coupled to matter.

 $D = 4 \mathcal{N} = 4$ super Yang-Mills ($\mathcal{N} = 4$ SYM) very similar. Take:

- 4D Yang–Mills theory with $U(N_c)$ gauge group: gauge field \mathcal{A}_{μ} ,
- more matter fields: 4 fermions Ψ_{α}^{a} , 6 scalars Φ_{m} ,
- all fields massless and adjoint: $N_{
 m c} imes ar{N}_{
 m c}$ matrices,
- various interactions: more Feynman diagrams,
- single coupling constant $\lambda = g_{\rm YM}^2 N_{\rm c}$ (plus top. θ -angle). Unique fine-tuned action due to supersymmetry:

$$S_{\mathcal{N}=4} = \frac{16\pi^2 N_{\rm c}}{\lambda} \int \frac{d^4 x}{4\pi^2} \, \mathrm{Tr}\Big(\frac{1}{4}(\mathcal{F}_{\mu\nu})^2 + \frac{1}{2}(\mathcal{D}_{\mu}\Phi_m)^2 - \frac{1}{4}[\Phi_m, \Phi_n]^2 + \dots\Big).$$

Extra fields and interactions in $\mathcal{N} = 4$ SYM conspire to yield:

- drastical cancellations in calculations,
- remarkably simple final results.

Remarkable $\mathcal{N} = 4$ SYM

 $\mathcal{N} = 4$ SYM has some remarkable properties:

- "Finite" theory: beta-function exactly zero, no running coupling.
- Unbroken conformal symmetry: superconformal symmetry PSU(2,2|4).
- AdS/CFT conjecture: exact duality to a string theory.
- And some more mysterious ones...

IIB Superstrings on the curved $AdS_5 \times S^5$ superspace:

Coset space sigma model with worldsheet and string couplings: λ , $g_{\rm s}$.

$\mathcal{N}=4$ SYM and AdS/CFT:

• Towards a better understanding of gauge theory!

Maldacena hep-th/9711200

Planar Limit

Large- N_c Expansion: Formal insight into string/gauge similarity. String Theory:

- No string coupling $g_s = 0$, no string splitting or joining.
- Strictly cylindrical worldsheet.
- Sigma model coupling λ remains.

Gauge Theory:

- Large- $N_{\rm c}$ limit: $N_{\rm c} = \infty$, $g_{\rm YM} = 0$, 't Hooft coupling $\lambda = g_{\rm YM}^2 N_{\rm c}$ remains.
- Only planar Feynman graphs, no crossing propagators.
- Drastic combinatorial simplification.

Planar Limit: $g_{\rm s}=0$, $N_{\rm c}=\infty$.

- Surprises $\begin{bmatrix} Lipatov \\ hep-th/9311037 \end{bmatrix} \begin{bmatrix} Lipatov \\ hep-th/9812336 \end{bmatrix} \begin{bmatrix} Minahan \\ Zarembo \end{bmatrix} \begin{bmatrix} NB \\ Kristjansen \\ Staudacher \end{bmatrix} \begin{bmatrix} Anastasiou, Bern \\ Dixon, Kosower \end{bmatrix} \begin{bmatrix} Drummond, Henn \\ Smirnov, Sokatchev \end{bmatrix} \cdot \cdot \cdot$
- AdS/CFT Integrability! Efficient methods for calculation.

Charted Territory

II. Local Operators and Scaling Dimensions

Local Operators

 $\mathcal{N} = 4$ SYM is a 4D conformal field theory. Principal objects of a CFT: Local Composite Operators (position space picture) Local, gauge-invariant combinations of the fields, e.g.

 $\mathcal{O}' = \operatorname{Tr} \Phi_1 \Phi_2(\mathcal{D}_1 \mathcal{D}_2 \Phi_2) \mathcal{F}_{23}(\mathcal{D}_1 \mathcal{F}_{24}) + \dots \quad \mathcal{O}: \mathcal{O}: \mathcal{O}': \mathcal{O}$

Observable: scaling dimension $D_{\mathcal{O}}$, e.g. two-point function

$$\left\langle \mathcal{O}(x) \, \mathcal{O}(y) \right\rangle = \frac{C}{|x-y|^{2D_{\mathcal{O}}}} \, .$$

String Theory:

States: Solutions X of classical equations of motion plus quantum corrections.

Energy: Charge E_X for translation along AdS-time.

AdS/CFT: String energies and gauge dimensions match, $E(\lambda) = D(\lambda)$?!

From Gauge Theory to Spin Chains

Planar limit: Use spin chain terminology to describe local operators/states. Only single-trace operators relevant (fields W are $N_c \times \bar{N}_c$ matrices)

 $\mathcal{O} = \operatorname{Tr} \mathcal{W}_1 \mathcal{W}_2 \mathcal{W}_3 \dots \mathcal{W}_L, \qquad \mathcal{W}_k \in \{\mathcal{D}^n \Phi, \mathcal{D}^n \Psi, \mathcal{D}^n \mathcal{F}\}.$

Translate single-trace operators to spin chain states:

Consider, e.g. (adjoint) spin- $\frac{1}{2}$ fermions ψ_{α}

$$\begin{split} \mathcal{O} &= \operatorname{Tr} \psi_{\downarrow} \psi_{\downarrow} \psi_{\downarrow} \psi_{\downarrow} \psi_{\downarrow} \psi_{\downarrow} \psi_{\uparrow} \psi_{\uparrow} \psi_{\uparrow} \cdot \\ \\ \text{Identify } \psi_{\uparrow} \to |\uparrow\rangle \text{ and } \psi_{\downarrow} \to |\downarrow\rangle : \\ &|\mathcal{O}\rangle = |\downarrow\downarrow\uparrow\uparrow\downarrow\downarrow\uparrow\uparrow\rangle. \end{split}$$

Generalised spin chain with many spin orientations: $\{\mathcal{D}^n \Phi, \mathcal{D}^n \Psi, \mathcal{D}^n \mathcal{F}\}$. Spectrum of scaling dimensions: Eigenvalues of spin chain Hamiltonian \mathcal{H} .

Integrable Spin Chain

Tree-level Hamiltonian \mathcal{H}_0 trivial, disregard.

One-loop Hamiltonian:

- \mathcal{H}_2 contains integrable Heisenberg XXX Hamiltonians. $\begin{bmatrix} Lipatov \\ hep-ph/9812336 \end{bmatrix} \begin{bmatrix} Minahan \\ Zarembo \end{bmatrix}$
- Complete one-loop Hamiltonian \mathcal{H}_2 integrable!
- Bethe ansatz determines spectrum of integrable spin chains.

Higher-loop corrections $\mathcal{H}_{3,4,...}$ describe **long-range** interactions of spins:

- Corrections apparently preserve integrability. $\begin{bmatrix} NB \\ Kristjansen \\ Staudacher \end{bmatrix} \begin{bmatrix} NB \\ hep-th/0310252 \end{bmatrix} \begin{bmatrix} NB, Dippel \\ Staudacher \end{bmatrix}$
- No established algebraic framework for higher-loop corrections.

Exact integrability in AdS/CFT is useful working hypothesis. Assumption!

NB, Staudacher

hep-th/0307042 Bethe, Z. Phys.

A71, 205 (1931)

Integrability: Yangian Symmetry

Many ways to define integrability. E.g. hidden symmetry: **Yangian**! Here: Yangian based on $\mathfrak{psu}(2,2|4)$ superconformal algebra. Interacting superconformal representation \mathcal{J}^A on local operators $\begin{bmatrix} NB\\ hep-th/0310252 \end{bmatrix}$

$$\mathcal{J}^A = + \ldots + \lambda^{n/2} \sum_k \underbrace{\mathcal{J}^A_n}_{k} + \ldots$$

Interacting bi-local Yangian generators $\hat{\mathcal{J}}^{A} \begin{bmatrix} Dolan \\ Nappi \\ Witten \end{bmatrix} \begin{bmatrix} Serban \\ Staudacher \end{bmatrix} \begin{bmatrix} Agarwal \\ Ferretti \end{bmatrix} \begin{bmatrix} Zwiebel \\ hep-th/0610283 \end{bmatrix} \begin{bmatrix} NB, Erkal \\ 0711.4813 \end{bmatrix}$

$$\widehat{\mathcal{J}}^A = \dots + \lambda^{(m+n)/2} F^A_{BC} \sum_{k < \ell} \underbrace{ \begin{array}{c} & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ &$$

- Hamiltonian part of superconformal algebra: almost commutes.
- Hamiltonian commutes with Yangian up to boundary terms.
- Local operators form superconformal (not Yangian) multiplets.

Spectrum from Integrability

III. Cusp Dimension and Interpolation

Cusp Dimension from Bethe Equations

Use Bethe equations to compute some anomalous dimension. Useful object: Twist-two operators with spin S (spin-S excited $q\bar{q}$ meson).

A lot is known about their anomalous dimensions δD_S :

- QCD: δD_S responsible for scale violations in DIS.
- DGLAP evolution equations.
- BFKL evolution equations.
- Maximum transcendentality principle for $\mathcal{N} = 4$ SYM.
- Large-S behaviour: cusp anomalous dimension D_{cusp}

 $\delta D_S = D_{\text{cusp}} \log S + \dots$

Cusp Dimension

Cusp dimension determined by AdS/CFT planar integrable system! Compute cusp dimension using Bethe equations. Integral eq.:

$$\psi(x) = K(x,0) - \int_0^\infty K(x,y) \frac{dy y}{e^{2\pi y/\sqrt{\lambda}} - 1} \psi(y).$$

Kernel $K = K_0 + K_1 + K_d$ with

$$\begin{split} K_0(x,y) &= \frac{x \operatorname{J}_1(x) \operatorname{J}_0(y) - y \operatorname{J}_0(x) \operatorname{J}_1(y)}{x^2 - y^2} ,\\ K_1(x,y) &= \frac{y \operatorname{J}_1(x) \operatorname{J}_0(y) - x \operatorname{J}_0(x) \operatorname{J}_1(y)}{x^2 - y^2} ,\\ K_d(x,y) &= 2 \int_0^\infty K_1(x,z) \frac{dz \, z}{e^{2\pi z/\sqrt{\lambda}} - 1} \, K_0(z,y). \end{split}$$

Cusp anomalous dimension: $D_{\text{cusp}} = (\lambda/\pi^2)\psi(0)$.

Gribov 2010, Niklas Beisert

Eden Staudacher

Weak/Strong Expansion

Weak-coupling solution of integral equation[NB, Eden
Staudacher]
$$D_{cusp}(\lambda) = \frac{1}{2} \frac{\lambda}{\pi^2} - \frac{1}{96} \frac{\lambda^2}{\pi^2} + \frac{11}{23040} \frac{\lambda^3}{\pi^2} - \left(\frac{73}{2580480} + \frac{\zeta(3)^2}{1024\pi^6}\right) \frac{\lambda^4}{\pi^2} \pm \dots$$
Confirmed by gluon scattering amplitudes $\begin{bmatrix} Bern \\ Dison \\ Sminov \end{bmatrix}$ $A(p, \lambda) \simeq A^{(0)}(p) \exp\left(2D_{cusp}(\lambda)M^{(1)}(p)\right)$ $\int \begin{bmatrix} Castell \\ Kristjansen \end{bmatrix} \begin{bmatrix} Ren, Czakon, Dixon \\ Rosower, Sminov \end{bmatrix}$ Connection between integrability & scattering amplitudes? later...Strong-coupling asymptotic solution of integral equation $\begin{bmatrix} Castell \\ Kristjansen \end{bmatrix} \begin{bmatrix} Raso \\ Kristjansen \end{bmatrix} \begin{bmatrix}$

Agreement with semiclassical energy of spinning string. $\begin{bmatrix} Gubser \\ Klebanov \\ Polyakov \end{bmatrix} \begin{bmatrix} Frolov \\ Tseytlin \end{bmatrix} \begin{bmatrix} Roiban \\ Tirziu \\ Tseytlin \end{bmatrix}$

Gribov 2010, Niklas Beisert

Finite-Coupling Interpolation

Smooth interpolation between perturbative gauge and string theory

- in the Bethe equations (left),
- in the cusp dimension (right).

IV. Scattering Amplitudes

Local Operators vs. Scattering Amplitudes

Cusp dimension D_{cusp} well known from:

- IR behaviour of scattering amplitudes,
- UV behaviour of Wilson loop cusp.

MHV amplitude vs. light-like polygonal Wilson loop:

 Δx_5

- light-like momenta $p_k^2=0$
- momentum conservation $\sum_k p_k = 0$ closure $\sum_k \Delta x_k = 0$

Set $p_k = \Delta x_k$ and match Wilson loop expectation value with amplitude.

Single-trace local operator vs. colour-ordered scattering amplitude:

Alday Maldacena

 Δx_1

Drummond Korchemsky

 Δx_2

Integrability for Scattering Amplitudes

Superconformal rep. \mathcal{J}^{A} on amplitudes $\begin{bmatrix} Witten \\ hep-th/0312171 \end{bmatrix} \begin{bmatrix} Bargheer, NB, Galleas \end{bmatrix} \begin{bmatrix} NB, Henn \\ McLoughlin, Plefka \end{bmatrix}$

$$\mathcal{J}^A = \ldots + \lambda^{n/2} \sum_{k} \underbrace{\mathcal{J}^A_n}_{k} + \ldots$$

Yangian representation $\hat{\mathcal{J}}^{A}$ (dual conformal) $\begin{bmatrix} Drummond, Henn \\ Korchemsky \\ Sokatchev \end{bmatrix} \begin{bmatrix} Drummond \\ Henn \\ Plefka \end{bmatrix} \begin{bmatrix} NB, Henn \\ McLoughlin, Plefka \end{bmatrix}$

$$\widehat{\mathcal{J}}^A = \ldots + \lambda^{(m+n)/2} F^A_{BC} \sum_{k < \ell} \underbrace{ \begin{array}{c} & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\$$

- Amplitude invariant under superconformal algebra.
- Amplitude invariant under Yangian.

Algebraic determination of S-matrix?! Graßmannian? Y-system? [Cachazo]

V. Conclusions

Conclusions

Integrability in Planar $\mathcal{N} = 4$ SYM:

- Hidden (algebraic) property.
- Methods for efficient determination of observables.

Integrability observed for and applied to:

- local operators & scaling dimensions,
- scattering amplitudes,
- Wilson loops.

Outlook: genus expansion?

