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Introduction

According to Felix Klein’s Erlanger program (1872), geometry is the
study of properties of a space X invariant under a group G of trans-
formations of X. For example Euclidean geometry is the geometry of
n-dimensional Euclidean space Rn invariant under its group of rigid
motions. This is the group of transformations which tranforms an ob-
ject ξ into an object congruent to ξ. In Euclidean geometry can speak
of points, lines, parallelism of lines, angles between lines, distance be-
tween points, area, volume, and many other geometric concepts. All
these concepts can be derived from the notion of distance, that is,
from the metric structure of Euclidean geometry. Thus any distance-
preserving transformation or isometry preserves all of these geometric
entities.

Other “weaker” geometries are obtained by removing some of these
concepts. Similarity geometry is the geometry of Euclidean spacew
where the equivalence relation of congruence is replaced by the broader
equivalence relation of similarity. It is the geometry invariant under
similarity transformations. In similarity geometry does not involve
distance, but rather involves angles, lines and parallelism. Affine ge-
ometry arises when one speaks only of points, lines and the relation of
parallelism. And when one removes the notion of parallelism and only
studies lines, points and the relation of incidence between them (for
example, three points being collinear or three lines being concurrent)
one arrives at projective geometry. However in projective geometry,
one must enlarge the space to projective space, which is the space upon
while all the projective transformations are defined.



PROJECTIVE GEOMETRY ON MANIFOLDS 3

Here is a basic example illustrating the differences among the various
geometries. Consider a particle moving along a smooth path; it has
a well-defined velocity vector field (this uses only the differentiable
structure of Rn). In Euclidean geometry, it makes sense to discuss its
“speed,” so “motion at unit speed” (that is, “arc-length-parametrized
geodesic”) is a meaningful concept there. But in affine geometry, the
concept of “speed” or “arc-length” must be abandoned: yet “motion
at constant speed” remains meaningful since the property of moving
at constant speed can be characterized as parallelism of the velocity
vector field (zero acceleration). In projective geometry this notion of
“constant speed” (or “parallel velocity”) must be further weakened to
the concept of “projective parameter” introduced by JḢĊẆhitehead.

The development of synthetic projective geometry was begun by the
French architect Desargues in 1636–1639 out of attempts to understand
the geometry of perspective. Two hundred years later non-Euclidean
(hyperbolic) geometry was developed independently and practically si-
multaneously by Bolyai in 1833 and Lobachevsky in 1826–1829. These
geometries were unified in 1871 by Klein who noticed that Euclidean,
affine, hyperbolic and elliptic geometry were all “present” in projective
geometry.

The first section introduces affine geometry as the geometry of par-
allelism. The second section introduces projective space as a natural
compactification of affine space; coordinates are introduced as well as
the “dictionary” between geometric objects in projective space and
algebraic objects in a vector space. The collineation group is compact-
ified as a projective space of “projective endomorphisms;” this will be
useful for studying limits of sequences of projective transformations.
The third section discusses, first from the point of view of polarities,
the Cayley-Beltrami-Klein model for hyperbolic geometry. The Hilbert
metric on a properly convex domain in projective space is introduced
and is shown to be equivalent to the categorically defined Kobayashi
metric.

The fourth section discusses of the theory of geometric structures on
manifolds. To every transformation group is associated a category of
geometric structures on manifolds locally modelled on the geometry in-
variant under the transformation group. Although the main interest in
these notes are structures modelled on affine and projective geometry
there are many interesting structures and we give a general discussion.
This theory has its origins in the theory of conformal mapping and uni-
formization (Schwarz, Poincaré, Klein), the theory of crystallographic
groups (Bieberbach) and was inaugurated in its general form as a part
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of the Cartan-Ehresmann theory of connections. The “development
theorem” which enables one to pass from a local description of a geo-
metric structure in terms of coordinate charts to a global description
in terms of the universal covering space and a representation of the
fundamental group is discussed in §4.6. The notion of completeness is
discussed in §4.11 and examples of complete affine structures on the
two-torus are given in §4.14. Incomplete structures are given in §4.15.

1. Affine geometry

This section introduces the geometry of affine spaces. After a rigor-
ous definition of affine spaces and affine maps, we discuss how linear
algebraic constructions define geometric structures on affine spaces.
Affine geometry is then transplanted to manifolds. The section con-
cludes with a discussion of affine subspaces, affine volume and the no-
tion of center of gravity.

1.1. Affine spaces. We wish to capture that part of the geometry
of Euclidean n-space Rn in which “parallelism” plays the central role.
If X, X ′ ⊂ Rn, one might say that they are “parallel” if one can be
obtained from the other by (parallel) translation, that is, if there is a
vector v such that X ′ = X +v. This motivates the following definition.

An affine space is a set E provided with a simply transitive action
of a vector group τE (the group underlying a vector space). Recall that
an action of a group G on a space X is simply transitive if and only if
it is transitive and free. Equivalently G acts simply transitively on X
if for some (and then necessarily every) x ∈ X, the evaluation map

G −→ X

g %−→ g · x
is bijective: that is, for all x, y ∈ X, a unique g ∈ G takes x to y.
We call τE the vector space of translations of E, or the vector space
underlying E

Of course every vector space has the underlying structure of an affine
space. An affine space with a distinguished point (“an origin”) has the
natural structure of a vector space. If x, y ∈ E, we denote by τx,y ∈ τE

the unique translation taking x to y. If E is a vector space then τx,y is
more familiarly denoted by y − x and the effect of translating x ∈ E
by t ∈ τE is denoted by x + t.

Of course this is a rather fancy way of stating some fairly well-known
facts. An affine space is just a vector space “with the origin forgotten.”
There is no distinguished point — like 0 in a vector space — in affine
space since the translations act transitively. “Choosing an origin” in an
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affine space E (which of course can be an arbitrary point in E) turns
E into a vector space.

Affine maps are maps between affine spaces which are compatible
with these simply transitive actions of vector spaces. Suppose E, E′

are affine spaces. Then a map

f : E −→ E ′

is affine if for each v ∈ τE , there exists a translation v′ ∈ τE′ such that
the diagram

E
f−−−→ E ′

v

" v′

"

E
f−−−→ E ′

commutes. Necessarily v′ is unique and it is easy to see that the cor-
respondence

L(f) : v %→ v′

defines a homomorphism
τE −→ τE′ ,

that is, a linear map between the vector spaces τE and τE′, called the
linear part L(f) of f . Denoting the space of all affine maps E −→ E ′ by
aff(E, E′) and the space of all linear maps τE −→ τE′ by Hom(τE , τE′),
linear part defines a map

aff(E, E′)
L−→ Hom(τE , τE′)

The set of affine endomorphisms of an affine space E will be denoted
by aff(E) and the group of affine automorphisms of E will be denoted
Aff(E).

Exercise 1.1. Show that aff(E, E′) has the natural structure of an
affine space and that its underlying vector space identifies with

Hom(τE , τE′) ⊕ τE′ .

Show that Aff(E) is a Lie group and its Lie algebra identifies with
aff(E). Show that Aff(E) is isomorphic to the semidirect product Aut(τE)·
τE where τE is the normal subgroup consisting of translations and

Aut(τE) = GL(E)

is the group of linear automorphisms of the vector space τE.

The kernel of L : aff(E, E′) −→ Hom(τE , τE′) (that is, the inverse
image of 0) is the vector space τE′ of translations of E ′. Choosing an
origin x ∈ E, we write, for f ∈ aff(E, E′),

f(y) = f(x + (y − x)) = Lf(y − x) + t
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Since every affine map f ∈ aff(E, E′) may be written as

f(x) = L(f)(x) + f(0),

where f(0) ∈ E ′ is the translational part of f . (Strictly speaking one
should say the translational part of f with respect to 0, that is, the
translation taking 0 to f(0).)

Affine geometry is the study of affine spaces and affine maps between
them. If U ⊂ E is an open subset, then a map f : U −→ E ′ is locally
affine if for each connected component Ui of U , there exists an affine
map fi ∈ aff(E, E′) such that the restrictions of f and fi to Ui are
identical. Note that two affine maps which agree on a nonempty open
set are identical.

Exercise 1.2. If E is an affine space show that there is a flat torsion-
free connection ∇ on E such that if U, V ⊂ E are open, and f : U −→
V is a diffeomorphism, then f preserves ∇ ⇐⇒ f is locally affine.
Show that a map γ : (−ε, ε) −→ E is a geodesic ⇐⇒ it is locally affine.

1.2. The hierarchy of structures. We now describe various struc-
tures on affine spaces are preserved by notable subgroups of the affine
group. Let B be an inner product on E and O(E; B) ⊂ GL(E) the cor-
responding orthogonal group. Then B defines a flat Riemannian metric
on E and the inverse image

L−1(O(E; B)) ∼= O(E; B) · τE

is the full group of isometries, that is, the Euclidean group. If B is a non-
degenerate indefinite form, then there is a corresponding flat pseudo-
Riemannian metric on E and the inverse image L−1(O(E; B)) is the full
group of isometries of this pseudo-Riemannian metric.

Exercise 1.3. Show that an affine automorphism g of Euclidean n-
space Rn is conformal (that is, preserves angles) ⇐⇒ its linear part is
the composition of an orthogonal transformation and multiplication by
a scalar (that is, a homothety).

Such a transformation will be called a similarity transformation and
the group of similarity transformations will be denoted Sim(Rn).

1.3. Affine vector fields. A vector field X on E is said to be affine if
it generates a one-parameter group of affine transformations. A vector
field X on E (or more generally on an affine manifold M) is said to
be parallel if it generates a flow of translations. A vector field X is
said to be radiant if for each Y ∈ X(M) we have ∇Y X = Y . We
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obtain equivalent criteria for these conditions in terms of the covariant
differential operation

T p(M ; TM)
∇−→ T p+1(M ; TM)

where T p(M ; TM) denotes the space of TM-valued covariant p-tensor
fields on M ,that is, the tensor fields of type (1, p). Thus T 0(M ; TM) =
X(M), the space of vector fields on M .

Exercise 1.4. Let E be an affine space and let X be a vector field on
E.

(1) X is parallel ⇐⇒ ∇Y X = 0 for all Y ∈ X(E) ⇐⇒ ∇X = 0
⇐⇒ X has constant coefficients (that is, is a “constant vector
field”). One may identify τE with the parallel vector fields on E.
The parallel vector fields form an abelian Lie algebra of vector
fields on E.

(2) X is affine ⇐⇒ for all Y, Z ∈ X(E), ∇Y ∇ZX = ∇∇Y ZX ⇐⇒
∇∇X = 0 ⇐⇒ the coefficients of X are affine functions,

X =
n∑

i,j=1

(ai
jx

j + bi)
∂

∂xi

for constants ai
j , b

i ∈ R. We may write

L(X) =
n∑

i,j=1

ai
jx

j ∂

∂xi

for the linear part (which corresponds to the matrix (ai
j) ∈

gl(Rn)) and

X(0) =
n∑

i=1

bi ∂

∂xi

for the translational part (the translational part of an affine
vector field is a parallel vector field). The Lie bracket of two
affine vector fields is given by:

• L([X, Y ]) = [L(X), L(Y )] = L(X)L(Y )−L(X)L(Y ) (matrix
multiplication)

• [X, Y ](0) = L(X)Y (0) − L(Y )X(0).

In this way the space aff(E) = aff(E, E) of affine endomor-
phisms E −→ E is a Lie algebra.
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(3) X is radiant ⇐⇒ ∇X = IE (where IE ∈ T 1(E; TE) is the
identity map TE −→ TE, regarded as a tangent bundle-valued
1-form on E) ⇐⇒ there exists bi ∈ R for i = 1, . . . , n such that

X =
n∑

i=1

(xi − bi)
∂

∂xi

Note that the point b = (b1, . . . , bn) is the unique zero of X and
that X generates the one-parameter group of homotheties fixing
b. (Thus a radiant vector field is a special kind of affine vector
field.) Furthermore X generates the center of the isotropy group
of Aff(E) at b, which is conjugate (by translation by b) to GL(E).
Show that the radiant vector fields on E form an affine space
isomorphic to E.

1.4. Affine subspaces. Suppose that ι : E1 ↪→ E is an injective affine
map; then we say that ι(E1) (or with slight abuse, ι itself) is an affine
subspace. If E1 is an affine subspace then for each x ∈ E1 there exists
a linear subspace V1 ⊂ τE such that E1 is the orbit of x under V1 (that
is, “an affine subspace in a vector space is just a coset (or translate) of
a linear subspace E1 = x + V1.”) An affine subspace of dimension 0 is
thus a point and an affine subspace of dimension 1 is a line.

Exercise 1.5. Show that if l, l′ are (affine) lines and x, y ∈ l and
x′, y′ ∈ l′ are pairs of distinct points, then there is a unique affine map
f : l −→ l′ such that f(x) = x′ and f(y) = y′. If x, y, z ∈ l (with
x += y), then define [x, y, z] to be the image of z under the unique affine
map f : l −→ R with f(x) = 0 and f(y) = 1. Show that if l = R, then
[x, y, z] is given by the formula

[x, y, z] =
z − x

y − x
.

1.5. Volume in affine geometry. Although an affine automorphism
of an affine space E need not preserve a natural measure on E, Eu-
clidean volume nonetheless does behave rather well with respect to
affine maps. The Euclidean volume form ω can almost be character-
ized affinely by its parallelism: it is invariant under all translations.
Moreover two τE-invariant volume forms differ by a scalar multiple but
there is no natural way to normalize. Such a volume form will be called
a parallel volume form. If g ∈ Aff(E), then the distortion of volume is
given by

g∗ω = det L(g) · ω.

Thus although there is no canonically normalized volume or measure
there is a natural affinely invariant line of measures on an affine space.
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The subgroup øSAff(E) of Aff(E) consisting of volume-preserving
affine transformations is the inverse image L−1(SL(E)), sometimes called
the special affine group of E. Here SL(E) denotes, as usual, the special
linear group

Ker
(
det : GL(E) −→ R∗

)

= {g ∈ GL(E) | det(g) = 1}.

1.6. Centers of gravity. Given a finite subset F ⊂ E of an affine
space, its center of gravity or centroid F̄ ∈ E is an affinely invariant
notion. that is, given an affine map φ : E −→ E ′ we have

¯(φ(F )) = φ(F̄ ).

This operation can be generalized as follows.

Exercise 1.6. Let µ be a probability measure on an affine space E.
Then there exists a unique point x̄ ∈ E (the centroid of µ) such that
for all affine maps f : E −→ R,

f(x) =

∫

E

f dµ

Proof. Let (x1, . . . , xn) be an affine coordinate system on E. Let x̄ ∈ E
be the points with coordinates (x̄1, . . . , x̄n) given by

x̄i =

∫

E

xidµ.

This uniquely determines x̄ ∈ E; we must show that () is satisfied for

all affine functions. Suppose E
f−→ R is an affine function. Then there

exist a1, . . . , an, b such that

f = a1x
1 + · · ·+ anxn + b

and thus

f(x̄) = a1

∫

E

x̄1 dµ + · · · + an

∫

E

x̄n dµ + b

∫

E

dµ =

∫

E

f dµ

as claimed. !

We call x̄ the center of mass of µ and denote it by x̄ = øcom(µ).
Now let C ⊂ E be a convex body, that is, a convex open subset

having compact closure. Then Ω determines a probability measure µC

on E by

µC(X) =

∫
X∩C ω∫

C ω

where ω is any parallel volume form on E. The center of mass of µC is
by definition the centroid C̄ of C.
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Proposition 1.7. Let C ⊂ E be a convex body. Then the centroid of
C lies in C.

Proof. By [] every convex body C is the intersection of half-spaces, that
is,

C = {x ∈ E | f(x) < 0 for all affine maps f : E −→ R such thatf |C > 0}
Thus if f is such an affine map, then clearly f(C̄) > 0 and thus C̄ ∈
C. !

We have been working entirely over R, but it is clear one may study
affine geometry over any field. If k ⊃ R is a field extension, then
every k-vector space is a vector space over R and thus every k-affine
space is an R-affine space. In this way we obtain more refined geometric
structures on affine spaces by considering affine maps whose linear parts
are linear over k.

Exercise 1.8. Show that 1-dimensional complex affine geometry is the
same as (orientation-preserving) 2-dimensional similarity geometry.

1.7. Affine manifolds. We shall be interested in putting affine geom-
etry on a manifold, that is, finding a coordinate atlas on a manifold
M such that the coordinate changes are locally affine. Such a struc-
ture will be called an affine structure on M . We say that the manifold
is modelled on an affine space E if its coordinate charts map into E.
Clearly an affine structure determines a differential structure on M . A
manifold with an affine structure will be called an affinely flat manifold ,
or just an affine manifold. If M, M ′ are affine manifolds (of possibly
different dimensions) and f : M −→ M ′ is a map, then f is affine if in
local affine coordinates, f is locally affine. If G ⊂ Aff(E) then we re-
cover more refined structures by requiring that the coordinate changes
are locally restrictions of affine transformations from G. For example
if G is the group of Euclidean isometries, we obtain the notion of a
Euclidean structure on M .

Exercise 1.9. Let M be a smooth manifold. Show that there is a nat-
ural correspondence between affine structures on M and flat torsionfree
affine connections on M . In a similar vein, show that there is a natural
correspondence between Euclidean structures on M and flat Riemann-
ian metrics on M .

If M is a manifold, we denote the Lie algebra of vector fields on M
by X(M). A vector field ξ on an affine manifold is affine if in local
coordinates ξ appears as a vector field in aff(E). We denote the space
of affine vector fields on an affine manifold M by aff(M).
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Exercise 1.10. Let M be an affine manifold.

(1) Show that aff(M) is a subalgebra of the Lie algebra X(M).
(2) Show that the identity component of the affine automorphism

group Aut(M) has Lie algebra aff(M).
(3) If ∇ is the flat affine connection corresponding to the affine

structure on M , show that a vector field ξ ∈ X(M) is affine if
and only if

∇ξυ = [ξ, υ]

∀υ ∈ X(M).

2. Projective geometry

Projective geometry may be construed as a way of “closing off” (that
is, compactifying) affine geometry. To develop an intuitive feel for
projective geometry, consider how points in Rn may “degenerate,” that
is, “go to infinity.” Naturally it takes the least work to move to infinity
along straight lines moving at constant speed (zero acceleration) and
two such geodesic paths go to the “same point at infinity” if they are
parallel. Imagine two railroad tracks running parallel to each other;
they meet at “infinity.” We will thus force parallel lines to intersect by
attaching to affine space a space of “points at infinity,” where parallel
lines intersect.

2.1. Ideal points. Let E be an affine space; then the relation of two
lines in E being parallel is an equivalence relation. We define an ideal
point of E to be a parallelism class of lines in E. The ideal set of an
affine space E is the space P∞(E) of ideal points, with the quotient
topology. If l, l′ ⊂ E are parallel lines, then the point in P∞ corre-
sponding to their parallelism class is defined to be their intersection.
So two lines are parallel ⇐⇒ they intersect at infinity.

Projective space is defined to be the union P(E) = E ∪ P∞(E).
The natural structure on P(E) is perhaps most easily seen in terms
of an alternate, maybe more familiar description. We may embed E
as an affine hyperplane in a vector space V = V (E) as follows. Let
V = τE ⊕R and choose an origin x0 ∈ E; then the map E −→ V which
assigns to x ∈ E the pair (x− x0, 1) embeds E as an affine hyperplane
in V which misses 0. Let P(V ) denote the space of all lines through
0 ∈ V with the quotient topology; the composition

ι : E −→ V − {0} −→ P(V )

is an embedding of E as an open dense subset of P(V ). Now the
complement P(V ) − ι(E) consists of all lines through the origin in
τE ⊕ {0} and is in natural bijective correspondence with P∞(E): given
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a line l in E, the 2-plane span(l) it spans meets τE ⊕ {0} in a line
corresponding to a point in P∞(E); conversely lines l1, l2 in E are
parallel if

span(l1) ∩ (τE ⊕ {0}) = span(l2) ∩ (τE ⊕ {0}).

In this way we topologize projective space P(E) = E ∪ P∞(E) in a
natural way.

Projective geometry arose historically out of the efforts of artisans
during the Renaissance to understand perspective. Imagine a one-
eyed painter looking at a 2-dimensional canvas (the affine plane E),
his eye being the origin in the 3-dimensional vector space V . As he
moves around or tilts the canvas, the metric geometry of the canvas
as he sees it changes. As the canvas is tilted, parallel lines no longer
appear parallel (like railroad tracks viewed from above ground) and
distance and angle are distorted. But lines stay lines and the basic
relations of collinearity and concurrence are unchanged. The change
in perspective given by “tilting” the canvas or the painter changing
position is determined by a linear transformation of V , since a point
on E is determined completely by the 1-dimensional linear subspace of
V containing it. (One must solve systems of linear equations to write
down the effect of such transformation.) Projective geometry is the
study of points, lines and the incidence relations between them.

2.2. Homogeneous coordinates. A point of Pn then corresponds to
a nonzero vector in Rn+1, uniquely defined up to a nonzero scalar multi-
ple. If a1, . . . , an+1 ∈ R and not all of the ai are zero, then we denote the
point in Pn corresponding to the nonzero vector (a1, . . . , an+1) ∈ Rn+1

by [a1, . . . , an+1]; the ai are called the homogeneous coordinates of the
corresponding point in Pn. The original affine space Rn is the subset
comprising points with homogeneous coordinates [a1, . . . , an, 1] where
(a1, . . . , an) are the corresponding (affine) coordinates.

Exercise 2.1. Let E = Rn and let P = Pn be the projective space
obtained from E as above. Exhibit Pn as a quotient of the unit sphere
Sn ⊂ Rn+1 by the antipodal map. Thus Pn is compact and for n > 1
has fundamental group of order two. Show that Pn is orientable ⇐⇒ n
is odd.

Thus to every projective space P there exists a vector space V =
V (P) such that the points of P correspond to the lines through 0 in
V . We denote the quotient map by Π : V − {0} −→ P. If P, P′ are
projective spaces and U ⊂ P is an open set then a map f : U −→ P′

is locally projective if for each component Ui ⊂ U there exists a linear
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map f̃i : V (P) −→ V (P′) such that the restrictions of f ◦ Π and Π ◦ f̃i

to Π−1Ui are identical. A projective automorphism or collineation of P
is an invertible locally projective map P −→ P. We denote the space
of locally projective maps U → P′ by Proj(U, P′).

Locally projective maps (and hence also locally affine maps) satisfy
the Unique Extension Property: if U ⊂ U ′ ⊂ P are open subsets of
a projective space with U nonempty and U ′ connected, then any two
locally projective maps f1, f2 : U ′ −→ P′ which agree on U must be
identical.

Exercise 2.2. Show that the projective automorphisms of P form a
group and that this group (which we denote Aut(P)) has the following
description. If f : P −→ P is a projective automorphism, then there
exists a linear isomorphism f̃ : V −→ V inducing f . Indeed there is a
short exact sequence

1 −→ R∗ −→ GL(V ) −→ Aut(P) −→ 1

where R∗ −→ GL(V ) is the inclusion of the group of multiplications
by nonzero scalars. (Sometimes this quotient GL(V )/R∗ ∼= Aut(Pn)
(the projective general linear group) is denoted by PGL(V ) or PGL(n+
1, R).) Show that if n is even, then Aut(Pn) ∼= SL(n + 1; R) and if n
is odd, then Aut(Pn) has two connected components, and its identity
component is doubly covered by SL(n + 1; R).

If V, V ′ are vector spaces with associated projective spaces P, P′ then
a linear map f̃ : V −→ V ′ always maps lines through 0 to lines
through 0. But f̃ only induces a map f : P −→ P′ if it is injec-
tive, since f(x) can only be defined if f̃(x̃) += 0 (where x̃ is a point
of Π−1(x) ⊂ V − {0}). Suppose that f̃ is a (not necessarily injective)
linear map and let N(f) = Π(Ker(f̃)). The resulting projective endo-
morphism of P is defined on the complement P − N(f); if N(f) += ∅,
then the corresponding projective endomorphism is by definition a sin-
gular projective transformation of P.

A projective map ι : P1 −→ P corresponds to a linear map ι̃ : V1 −→
V between the corresponding vector spaces (well-defined up to scalar
multiplication). Since ι is defined on all of P1, ι̃ is an injective linear
map and hence corresponds to an embedding. Such an embedding (or
its image) will be called a projective subspace. Projective subspaces of
dimension k correspond to linear subspaces of dimension k + 1. (By
convention the empty set is a projective space of dimension -1.) Note
that the “bad set” N(f) of a singular projective transformation is a
projective subspace. Two projective subspaces of dimensions k, l where
k+l ≥ n intersect in a projective subspace of dimension at least k+l−n.
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The rank of a projective endomorphism is defined to be the dimension
of its image.

Exercise 2.3. Let P be a projective space of dimension n. Show that
the (possibly singular) projective transformations of P form themselves
a projective space of dimension (n + 1)2 − 1. We denote this projective
space by End(P). Show that if f ∈ End(P), then

dim N(f) + rank(f) = n − 1.

Show that f ∈ End(P) is nonsingular (in other words, a collineation)
⇐⇒ rank(f) = n ⇐⇒ N(f) = ∅.

An important kind of projective endomorphism is a projection, also
called a perspectivity. Let Ak, Bl ⊂ Pn be disjoint projective subspaces
whose dimensions satisfy k + l = n − 1. We define the projection onto
Ak from Bl

ΠAk,Bl : Pn − Bl −→ Ak

as follows. For every x ∈ Pn −Ak there is a unique projective subspace
span({x}∪Bl) of dimension l + 1 containing {x}∪Bl which intersects
Ak in a unique point. Let ΠAk,Bl(x) be this point. (Clearly such a
perspectivity is the projectivization of a linear projection V −→ V .)
It can be shown that every projective map defined on a projective
subspace can be obtained as the composition of projections.

Exercise 2.4. Suppose that n is even. Show that a collineation of Pn

which has order two fixes a unique pair of disjoint projective subspaces
Ak, Bl ⊂ Pn where k + l = n− 1. Conversely suppose that Ak, Bl ⊂ Pn

where k + l = n − 1 are disjoint projective subspaces; then there is a
unique collineation of order two whose set of fixed points is Ak ∪Bl. If
n is odd find a collineation of order two which has no fixed points.

Such a collineation will be called a projective reflection. Consider
the case P = P2. Let R be a projective reflection with fixed line l and
isolated fixed point p. Choosing homogeneous coordinates [u0, u1, u2]
so that l = {[0, u1, u2] | (u1, u2) += (0, 0)} and p = [1, 0, 0], we see that
R is represented by the diagonal matrix




1 0 0
0 −1 0
0 0 −1





in SL(3; R). Note that near l the reflection looks like a Euclidean re-
flection in l and reverses orientation. (Indeed R is given by R(y1, y2) =
(−y1, y2) in affine coordinates y1 = u0/u2, y2 = u1/u2.) On the other
hand, near p, the reflection looks like reflection in p (that is, a rotation
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of order two about p) and preserves orientation. (In affine coordinates
x1 = u1/u0, x2 = u2/u0 we have R(x1, y2) = (−x1,−x2).) Of course
there is no global orientation on P2 and the fact that a single reflection
can appear simultaneously as a point-symmetry and reflection in a line
is an indication of the topological complexity of P2.

2.3. The basic dictionary. We can consider the passage between the
geometry of P and the algebra of V as a kind of “dictionary” be-
tween linear algebra and projective geometry. Linear maps and linear
subspaces correspond geometrically to projective maps and projective
subspaces; inclusions, intersections and linear spans correspond to in-
cidence relations in projective geometry. In this way we can either use
projective geometry to geometrically picture linear algebra or linear
algebra to prove theorems in geometry.

We shall be interested in the singular projective transformations
since they occur as limits of nonsingular projective transformations.
The collineation group Aut(P) of P = Pn is a large noncompact group
which is naturally embedded in the projective space End(P) as an open
dense subset. Thus it will be crucial to understand precisely what it
means for a sequence of collineations to converge to a (possibly singu-
lar) projective transformation.

Proposition 2.5. Let gm ∈ Aut(P) be a sequence of collineations of P
and let g∞ ∈ End(P). Then the sequence gm converges to g∞ in End(P)
⇐⇒ the restrictions gm|K converge uniformly to g∞|K for all compact
sets K ⊂ P − N(g∞).

Proof. Convergence in End(P) may be described as follows. Let P =
P(V ) where V ∼= Rn+1 is a vector space. Then End(P) is the projective
space associated to the vector space End(V ) of (n+1)-square matrices.
If a = (ai

j) ∈ End(V ) is such a matrix, let

‖a‖ =

√√√√
n+1∑

i,j=1

|ai
j|2

denote its Euclidean norm; projective endomorphisms then correspond
to matrices a with ‖a‖ = 1, uniquely determined up to the antipodal
map a %→ −a. The following lemma will be useful in the proof of 26̇:

Lemma 2.6. Let V, V ′ be vector spaces and let f̃n : V −→ V ′ be a
sequence of linear maps converging to f̃∞ : V −→ V ′. Let K̃ ⊂ V be a
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compact subset of V − Ker(f̃∞) and let fi be the map defined by

fi(x) =
f̃i(x)

|f̃i(x)|
.

Then fn converges uniformly to f∞ on K̃ as n −→ ∞.

Proof. Choose C > 0 such that C ≤ |f̃∞(x)| ≤ C−1 for x ∈ K̃. Let
ε > 0. There exists N such that if n > N , then

|f̃∞(x) − f̃n(x)| <
Cε

2
,(1)

|1 − f̃n(x)

f̃∞(x)
| <

ε

2
(2)

for x ∈ K̃. It follows that

‖fn(x) − f∞(x)‖ = ‖ f̃n(x)

‖f̃n(x)‖
− f̃∞(x)

‖f̃∞(x)‖
‖

=
1

‖f̃∞(x)‖
‖‖f̃∞(x)‖
‖f̃n(x)‖

f̃n(x) − f̃∞(x)‖

≤ 1

‖f̃∞(x)‖
(‖‖f̃∞(x)‖

‖f̃n(x)‖
f̃n(x) − f̃n(x)‖

+ ‖f̃n(x) − f̃∞(x)‖)

= |1 − ‖f̃n(x)‖
‖f̃∞(x)‖

|

+
1

‖f̃∞(x)‖
‖f̃n(x) − f̃∞(x)‖

<
ε

2
+ C−1(

Cε

2
) = ε

for all x ∈ K̃ as desired. !

The proof of Proposition 26̇ proceeds as follows. If gm is a sequence
of locally projective maps defined on a connected domain Ω ⊂ P con-
verging uniformly on all compact subsets of Ω to a map g∞ : Ω −→ P′,
then there exists a lift g̃∞ which is a linear transformation of norm
1 and lifts g̃m, also linear transformations of norm 1, converging to
g̃∞. It follows that gm −→ g∞ in End(P). Conversely if gm −→ g∞
in End(P) and K ⊂ P − N(g∞), we may choose lifts as above and a
compact set K̃ ⊂ V such that Π(K̃) = K. By Lemma 27̇, the normal-
ized linear maps g̃m

|g̃m| converge uniformly to g∞
|g∞| on K̃ and hence gm
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converges uniformly to g∞ on K. The proof of Proposition 26̇ is now
complete. !

Let us consider a few examples of this convergence. Consider the case
first when n = 1. Let λm ∈ R be a sequence converging to +∞ and
consider the projective transformations given by the diagonal matrices

gm =

[
λm 0
0 (λm)−1

]

Then gm −→ g∞ where g∞ is the singular projective transformation
corresponding to the matrix

g∞ =

[
1 0
0 0

]

— this singular projective transformation is undefined at N(g∞) =
{[0, 1]}; every point other than [0, 1] is sent to [1, 0]. It is easy to see
that a singular projective transformation of P1 is determined by the
ordered pair of points N(f), Image(f) (which may be coincident).

More interesting phenomena arise when n = 2. Let gm ∈ Aut(P2) be
a sequence of diagonal matrices




λm 0 0
0 µm 0
0 0 νm





where 0 < λm < µm < νm and λmµmνm = 1. Corresponding to the
three eigenvectors (the coordinate axes in R3) are three fixed points
p1 = [1, 0, 0], p2 = [0, 1, 0], p3 = [0, 0, 1] They span three invariant lines
l1 = ←→p2p3, l2 = ←→p3p1 and l3 = ←→p3p1. Since 0 < λm < µm < νm, the
collineation has an repelling fixed point at p1, a saddle point at p2 and
an attracting fixed point at p3. Points on l2 near p1 are repelled from
p1 faster than points on l3 and points on l2 near p3 are attracted to p3

more strongly than points on l1. Suppose that gm does not converge
to a nonsingular matrix; it follows that νm −→ +∞ and λm −→ 0
as m −→ ∞. Suppose that µm/νm −→ ρ; then gm converges to the
singular projective transformation g∞ determined by the matrix




0 0 0
0 ρ 0
0 0 1





which, if ρ > 0, has undefined set N(g∞) = p1 and image l1; otherwise
N(g∞) = l2 and Image(g∞) = p2.
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Exercise 2.7. Let U ⊂ P be a connected open subset of a projective
space of dimension greater than 1. Let f : U −→ P be a local diffeo-
morphism. Then f is locally projective ⇐⇒ for each line l ⊂ P, the
image f(l ∩ U) is a line.

2.4. Affine patches. Let H ⊂ P be a projective hyperplane (projec-
tive subspace of codimension one). Then the complement P − H has
a natural affine geometry, that is, is an affine space in a natural way.
Indeed the group of projective automorphisms P → P leaving fixed
each x ∈ H and whose differential TxP → TxP is a volume-preserving
linear automorphism is a vector group acting simply transitively on
P − H . Moreover the group of projective transformations of P leaving
H invariant is the full group of automorphisms of this affine space. In
this way affine geometry is “embedded” in projective geometry.

In terms of matrices this appears as follows. Let E = Rn; then the
affine subspace of

V = τE ⊕ R = Rn+1

corresponding to E is Rn × {1} ⊂ Rn+1, the point of E with affine or
inhomogeneous coordinates (x1, . . . , xn) has homogeneous coordinates
[x1, . . . , xn, 1]. Let f ∈ Aff(E) be the affine transformation with linear
part A ∈ GL(n; R) and translational part b ∈ Rn, that is, f(x) = Ax+b,
is then represented by the (n + 1)-square matrix

[
A b
0 1

]

where b is a column vector and 0 denotes the 1 × n zero row vector.

Exercise 2.8. Let O ∈ Pn be a point, say [0, . . . , 0, 1]. Show that the
group G−1 = G−1(O) of projective transformations fixing O and acting
trivially on the tangent space TOPn is given by matrices of the form

[
In 0
ξ 1

]

where In is the n × n identity matrix and ξ = (ξ1, . . . , ξn) ∈ (Rn)∗ is a
row vector; in affine coordinates such a transformation is given by

(x1, . . . , xn) %→ (
x1

1 +
∑n

i=1 ξixi
, . . . ,

xn

1 +
∑n

i=1 ξixi
).

Show that this group is isomorphic to a n-dimensional vector group and
that its Lie algebra consists of vector fields of the form

(
n∑

i=1

ξix
i)ρ
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where

ρ =
n∑

i=1

xi ∂

∂xi

is the radiant vector field radiating from the origin and ξ ∈ (Rn)∗. Note
that such vector fields comprise an n-dimensional abelian Lie algebra
of polynomial vector fields of degree 2 in affine coordinates.

Let H be a hyperplane not containing O, for example,

H = {[x1, . . . , xn, 0] | (x1, . . . , xn) ∈ Rn}.

Let G1 = G1(H) denote the group of translations of the affine space P−
H and let G0 = G0(O, H) ∼= GL(n, R) denote the group of collineations
of P fixing O and leaving invariant H. (Alternatively G0(O, H) is the
group of collineations centralizing the radiant vector field ρ = ρ(O, H)
above.) Let g denote the Lie algebra of Aut(P) and let g−1, g0, g1 be
the Lie algebras of G−1, G0, G1 respectively. Show that there is a vector
space decomposition

g = g−1 ⊕ g0 ⊕ g1

where [gi, gj ] ⊂ gi+j for i, j = ±1, 0 (where gi = 0 for |i| > 1). Fur-
thermore show that the stabilizer of O has Lie algebra g−1 ⊕ g0 and the
stabilizer of H has Lie algebra g0 ⊕ g1.

2.5. Projective reflections. Let l be a projective line x, z ∈ l be
distinct points. Then there exists a unique reflection (a harmonic ho-
mology in classical terminology) ρx,z : l −→ l whose fixed-point set is
{x, z}. We say that a pair of points y, w are harmonic with respect to
x, z if ρx,z interchanges them. In that case one can show that x, z are
harmonic with respect to y, w. Furthermore this relation is equivalent
to the existence of lines p, q through x and lines r, s through z such
that

y =
←−−−−−−−→
(p ∩ r)(q ∩ s) ∩ l(3)

z =
←−−−−−−−→
(p ∩ s)(q ∩ r) ∩ l.(4)

This leads to a projective-geometry construction of reflection, as fol-
lows. Let x, y, z ∈ l be fixed; we seek the harmonic conjugate of y
with respect to x, z, that is, the image Rx,z(y). Erect arbitrary lines
(in general position) p, q through x and a line r through z. Through y
draw the line through r ∩ q; join its intersection with p with z to form
line s,

s =
←−−−−−−−−−→
z (p ∩←−−→

y r ∩ q).

Then Rx,z(y) will be the intersection of s with l.
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Exercise 2.9. Consider the projective line P1 = R ∪ {∞}. Show that
for every rational number x ∈ Q there exists a sequence

x0, x1, x2, x3, . . . , xn ∈ P1

such that {x0, x1, x2} = {0, 1,∞} and for each i ≥ 3, there is a har-
monic quadruple (xi, yi, zi, wi) with

yi, zi, wi ∈ {x0, x1, . . . , xi−1}.
If x is written in reduced form p/q then what is the smallest n for which
x can be reached in this way?

Exercise 2.10 ((Synthetic arithmetic)). Using the above synthetic ge-
ometry construction of harmonic quadruples, show how to add, sub-
tract, multiply, and divide real numbers by a straightedge-and-pencil
construction. In other words, draw a line l on a piece of paper and
choose three points to have coordinates 0, 1,∞ on it. (∞ can be “at
infinity” if you like.) Choose arbitrary points corresponding to real
numbers x, y. Using only a straightedge (not a ruler!) construct the
points corresponding to x + y, x− y, xy, and x/y if y += 0.

2.6. Fundamental theorem of projective geometry. If l ⊂ P and
l′ ⊂ P′ are projective lines, the Fundamental Theorem of Projective
Geometry asserts that for given triples x, y, z ∈ l and x′, y′, z′ ∈ l′ of
distinct points there exists a unique projective map f : l −→ l′ with
f(x) = x′, f(y) = y′, and f(z) = z′. If w ∈ l then the cross-ratio
[x, y, w, z] is defined to be the image of w under the unique collineation
f : l −→ P1 with f(x) = 0, f(y) = 1, and f(z) = ∞. If l = P1, then
the cross-ratio is given by the formula

[x, y, w, z] =
w − x

w − z
/
y − x

y − z
.

The cross-ratio can be extended to quadruples of four points, of which
at least three are distinct. A pair y, w is harmonic with respect to x, z
(in which case we say that (x, y, w, z) is a harmonic quadruple) ⇐⇒
the cross-ratio [x, y, w, z] = −1.

Exercise 2.11. Let σ be a permutation on four symbols. Show that
there exists a linear fractional transformation Φσ such that

[xσ(1), xσ(2), xσ(3), xσ(4)] = Φσ([x1, x2, x3, x4].

In particular determine which permutations leave the cross-ratio invari-
ant.

Show that a homeomorphism f : P1 −→ P1 is projective ⇐⇒ f
preserves harmonic quadruples ⇐⇒ f preserves cross-ratios, that is,
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for all quadruples (x, y, w, z), the cross-ratios satisfy

[f(x), f(y), f(w), f(z)] = [x, y, w, z].

Exercise 2.12. Let p, p′ ∈ P be distinct points in P = P2 and l, l′ ∈ P∗

be distinct lines such that p /∈ l and p′ /∈ l′. Let R and R′ be the
projective reflections of P (collineations of order two) having fixed-point
set l ∪ p and l′ ∪ p′ respectively. Let O = l ∩ l′. Let PO denote the
projective line whose points are the lines incident to O. Let ρ denote
the cross-ratio of the four lines

l,
←→
Op,

←→
Op′, l′

as elements of PO. Then RR′ fixes O and represents a rotation of angle
θ in the tangent space TO(P) ⇐⇒

ρ =
1

2
(1 + cos θ)

for 0 < θ < π and is a rotation of angle θ ⇐⇒ p ∈ l′ and p′ ∈ l.

3. Duality, non-Euclidean geometry and projective
metrics

3.1. Duality. In an axiomatic development of projective geometry,
there is a basic symmetry: A pair of distinct points lie on a unique
line and a pair of distinct lines meet in a unique point (in dimension
two). As a consequence any statement about the geometry of P2 can be
“dualized” by replacing “point” by “line,” “line”by “point,” “collinear”
with “concurrent,” etc˙in a completely consistent fashion.

Perhaps the oldest nontrivial theorem of projective geometry is Pap-
pus’ theorem (300 AḊ)̇, which asserts that if l, l′ ⊂ P2 are distinct lines
and A, B, C ∈ l and A′, B′, C ′ ∈ l′ are triples of distinct points, then
the three points

←→
AB′ ∩

←→
A′B,

←−→
BC ′ ∩

←−→
B′C,

←→
CA′ ∩

←→
C ′A

are collinear. The dual of Pappus’ theorem is therefore: if p, p′ ∈ P2 are
distinct points and a, b, c are distinct lines all passing through p and
a′, b′, c′ are distinct lines all passing through p′, then the three lines

←−−−−−−−−−−→
(a ∩ b′) (a′ ∩ b),

←−−−−−−−−−−→
(b ∩ c′) (b′ ∩ c),

←−−−−−−−−−−→
(c ∩ a′) (c′ ∩ a)

are concurrent. (According to Coxeter [C1]), Hilbert observed that
Pappus’ theorem is equivalent to the commutative law of multiplica-
tion.)

In terms of our projective geometry/linear algebra dictionary, pro-
jective duality translates into duality between vector spaces as follows.
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Let P be a projective space and let V be the associated vector space. A
nonzero linear functional ψ : V −→ R defines a projective hyperplane
Hψ in P; two such functionals define the same hyperplane ⇐⇒ they
differ by a nonzero scalar multiple,that is, they determine the same line
in the vector space V ∗ dual to V . (Alternately ψ defines the constant
projective map P − Hψ −→ P0 which is completely specified by its
undefined set Hψ.) We thus define the projective space dual to P as
follows. The dual projective space P∗ of lines in the dual vector space
V ∗ correspond to hyperplanes in P. The line joining two points in P∗

corresponds to the intersection of the corresponding hyperplanes in P,
and a hyperplane in P∗ corresponds to a point in P. In general if P is
an n-dimensional projective space there is a natural correspondence

{k−dimensional subspaces of P} ←→ {l−dimensional subspaces of P∗}

where k + l = n − 1. In particular we have an isomorphism of P with
the dual of P∗.

Let f : P −→ P′ be a projective map between projective spaces.
Then for each hyperplane H ′ ⊂ P′ the inverse image f−1(H ′) is a
hyperplane in P. There results a map f † : (P′)∗ −→ P∗, the transpose
of the projective map f . (Evidently f † is the projectivization of the
transpose of the linear map f̃ : V −→ V ′.)

3.2. Correlations and polarities. Let P be an n-dimensional pro-
jective space and P∗ its dual. A correlation of P is a projective iso-
morphism θ : P −→ P∗. That is, θ associates to each point in P a
hyperplane in P in such a way that if x1, x2, x3 ∈ P are collinear, then
the hyperplanes θ(x1), θ(x2), θ(x3) ⊂ P are incident, that is, the inter-
section θ(x1) ∩ θ(x2) ∩ θ(x3) is a projective subspace of codimension
two (rather than three, as would be the case if they were in general
position). The transpose correlation θ† is also a projective isomorphism
P −→ P∗ (using the reflexivity P∗∗ ∼= P). A correlation is a polarity if
it is equal to its transpose.

Using the dictionary between projective geometry and linear algebra,
one sees that if V is the vector space corresponding to P = P(V ), then
P∗ = P(V ∗) and a correlation θ is realized as a linear isomorphism
θ̃ : V −→ V ∗, which is uniquely determined up to homotheties. Linear
maps θ̃ : V −→ V ∗ correspond to bilinear forms

Bθ̃ : V × V −→ R

under the correspondence

θ̃(v)(w) = Bθ̃(v, w)
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and θ̃ is an isomorphism if and only if Bθ̃ is nondegenerate. Thus
correlations can be interpreted analytically as projective equivalence
classes of nondegenerate bilinear forms. Furthermore a correlation θ is
self-inverse (that is, a polarity) ⇐⇒ a corresponding bilinear form Bθ
is symmetric.

Let θ be a polarity on P. A point p ∈ P is conjugate if it is incident
to its polar hyperplane, that is, if p ∈ θ(p). By our dictionary we see
that the conjugate points of a polarity correspond to null vectors of the
associated quadratic form, that is, to nonzero vectors v ∈ V such that
Bθ(v, v) = 0. A polarity is said to be elliptic if it admits no conjugate
points; elliptic polarities correspond to symmetric bilinear forms which
are definite. For example here is an elliptic polarity of P = P2: a
point p in P2 corresponds to a line Π−1(p) in Euclidean 3-space and its
orthogonal complement Π−1(p)⊥ is a 2-plane corresponding to a line
θ(p) ∈ P∗. It is easy to check that θ defines an elliptic polarity of P.

In general the set of conjugate points of a polarity is a quadric, which
up to a collineation is given in homogeneous coordinates as

Q = Qp,q =
{

[x1, . . . , xn+1]

∣∣∣∣− (x1)2 − · · ·− (xp)2 + (xp+1)2 + · · ·+ (xp+q)2 = 0

}

where p+q = n+1 (since the corresponding symmetric bilinear form is
given by the diagonal matrix −Ip ⊕ Iq). We call (p, q) the signature of
the polarity. The quadric Q determines the polarity θ as follows. For
brevity we consider only the case p = 1, in which case the complement
P − Q has two components, a convex component

Ω = {[x0, x1, . . . , xn] | −(x0)2 + (x1)2 + · · ·+ (xn)2 < 0}
and a nonconvex component

Ω† = {[x0, x1, . . . , xn] | −(x0)2 + (x1)2 + · · · + (xn)2 > 0}
diffeomorphic to the total space of the tautological line bundle over
Pn−1 (for n = 2 this is a Möbius band). If x ∈ Q, let θ(x) denote
the hyperplane tangent to Q at x. If x ∈ Ω† the points of Q lying on
tangent lines to Q containing x all lie on a hyperplane which is θ(x).
If H ∈ P∗ is a hyperplane which intersects Q, then either H is tangent
to Q (in which case θ(H) is the point of tangency) or there exists a
cone tangent to Q meeting Q in Q ∩ H — the vertex of this cone will
be θ(H). If x ∈ Ω, then there will be no tangents to Q containing x,
but by representing x as an intersection H1 ∩ . . . Hn, we obtain θ(x) as
the hyperplane containing θ(H1), . . . , θ(Hn).

Exercise 3.1. Show that θ : P −→ P∗ is indeed a projective map.
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Observe that a polarity on P of signature (p, q) determines, for each
non-conjugate point x ∈ P a unique reflection Rx which preserves the
polarity. The group of collineations preserving such a polarity is the
projective orthogonal group PO(p, q), that is, the image of the orthogo-
nal group Ø(p, q) ⊂ GL(n + 1, R) under the projectivization homomor-
phism GL(n+1, R) −→ PGL(n+1, R) having kernel the scalar matrices
R∗ ⊂ GL(n + 1, R). Let

Ω = {Π(v) ∈ P | B(v, v) < 0};
then by projection from the origin Ω can be identified with the hyper-
quadric {v ∈ Rp,q | B(v, v) = −1} whose induced pseudo-Riemannian
metric has signature (q, p−1) and constant nonzero curvature. In par-
ticular if (p, q) = (1, n) then Ω is a model for hyperbolic n-space Hn

in the sense that the group of isometries of Hn are represented pre-
cisely as the group of collineations of Pn preserving Ωn. In this model,
geodesics are the intersections of projective lines in P with Ω; more
generally intersections of projective subspaces with Ω define totally ge-
odesic subspaces. Consider the case that P = P2. Points “outside” Ω
correspond to geodesics in H2. If p1, p2 ∈ Ω†, then ←→p1p2 meets Ω ⇐⇒
the geodesics θ(p1), θ(p2) are ultra-parallel in H2; in this case θ(←→p1p2) is
the geodesic orthogonal to both θ(p1), θ(p2). (Geodesics θ(p) and l are
orthogonal ⇐⇒ p ∈ l.) Furthermore ←→p1p2 is tangent to Q ⇐⇒ θ(p1)
and θ(p2) are parallel. For more information on this model for hyper-
bolic geometry, see Coxeter [C1] or Thurston [T,§2]. This model for
non-Euclidean geometry seems to have first been discovered by Cayley
in 1858.

3.3. Intrinsic metrics. We shall discuss the metric on hyperbolic
space, however, in the more general setting of the Hilbert-Carathéodory-
Kobayashi metric on a convex domain P = Pn. Let V = Rn+1 be the
corresponding vector space. A subset Ω ⊂ V is a cone ⇐⇒ it is in-
variant under positive homotheties (R+(Ω) = Ω), that is, if x ∈ Ω and
r > 0 then rx ∈ Ω. A subset Ω ⊂ V is convex if whenever x, y ∈ Ω,
then the line segment xy ⊂ Ω. A convex domain Ω ⊂ V is sharp ⇐⇒
there is no entire affine line contained in Ω. For example, V itself and
the upper half-space

Rn × R+ = {(x0, . . . , xn) ∈ V | x0 > 0

are both convex cones, neither of which are sharp. The positive orthant

(R+)n+1 = {(x0, . . . , xn) ∈ V | xi > 0 for i = 0, 1, . . . , n}
and the positive light-cone

Cn+1 = {(x0, . . . , xn) ∈ V | x0 > 0 and − (x0)2 +(x1)2 + . . . (xn)2 < 0}
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x

y

x 0

y 0

Figure 1. The inside of a properly convex domain ad-
mits a projectively invariant distance, defined in terms of
cross-ratio. When the domain is the interior of a conic,
then this distance is a Riemannian metric of constant
negative curvature. This is the Klein-Beltrami projec-
tive model of the hyperbolic plane.

are both sharp convex cones. Note that the planar region {(x, y) ∈
R2 | y > x2} is a convex domain which is sharp but is not affinely
equivalent to a cone.

Exercise 3.2. Show that the set Pn(R) of all positive definite sym-
metric n × n real matrices is a sharp convex cone in the n(n + 1)/2-
dimensional vector space V of n × n symmetric matrices. Are there
any affine transformations of V preserving Pn(R)? What is its group
of affine automorphisms?

We shall say that a subset Ω ⊂ P is convex if there is a convex set
Ω′ ⊂ V such that Ω = Π(Ω′). Since Ω′ ⊂ V − {0} is convex, Ω must
be disjoint from at least one hyperplane H in P. (In particular we do
not allow P to itself be convex.) Equivalently Ω ⊂ P is convex if there
is a hyperplane H ⊂ P such that Ω is a convex set in the affine space
complementary to H . A domain Ω ⊂ P is properly convex ⇐⇒ there
exists a sharp convex cone Ω′ ⊂ V such that Ω = Π(Ω′). Equivalently
Ω is properly convex ⇐⇒ there is a hyperplane H ⊂ P such that Ω̄
is a convex subset of the affine space P − H . If Ω is properly convex,
then the intersection of Ω with a projective subspace P′ ⊂ P is either
empty or a properly convex subset Ω′ ⊂ P′. In particular every line
intersecting Ω meets ∂Ω in exactly two points.
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In 1894 Hilbert introduced a projectively invariant metric d = dΩ on
any properly convex domain Ω ⊂ P as follows. Let x, y ∈ Ω be a pair
of distinct points; then the line ←→xy meets ∂Ω in two points which we
denote by x∞, y∞ (the point closest to x will be x∞, etc)̇. The Hilbert
distance

d = dHilb

Ω

between x and y in Ω will be defined as the logarithm of the cross-ratio
of this quadruple:

d(x, y) = log[x∞, x, y, y∞]

It is clear that d(x, y) ≥ 0, that d(x, y) = d(y, x) and since Ω contains
no complete affine line, x∞ += y∞ so that d(x, y) > 0 if x += y. The
same argument shows that this function d : Ω × Ω −→ R is finitely
compact, that is, for each x ∈ Ω and r > 0, the “r-neighborhood”

Br(x) = {y ∈ Ω | d(x, y) ≤ r}
is compact. Once the triangle inequality is established, it will follow
that (Ω, d) is a complete metric space. The triangle inequality results
from the convexity of Ω, although we shall deduce it by showing that
the Hilbert metric agrees with the general intrinsic metric introduced
by Kobayashi [Ko], where the triangle inequality is enforced as part of
its construction.

To motivate Kobayashi’s construction, consider the basic case of in-
tervals in P1. There are several natural choices to take, for exam-
ple, the interval of positive real numbers R+ = (0,∞) or the unit
ball I = [−1, 1]. They are related by the projective transformation
τ : I −→ R+

x = τ(u) =
1 + u

1 − u
mapping −1 < u < 1 to 0 < x < ∞ with τ(0) = 1. The corresponding
Hilbert metrics are given by

dR+(x1, x2) = log |x1

x2
|(5)

dI(u1, u2) = 2| tanh−1(u1) − tanh−1(u2)|(6)

which follows from the fact that τ pulls back the parametrization cor-
responding to Haar measure

|dx|
x

= |d log x|

on R+ to the “Poincaré metric”

2|du|
1 − u2

= 2|d tanh−1 u|
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on I.
In terms of the Poincaré metric on I the Hilbert distance d(x, y) can

be characterized as an infimum over all projective maps I −→ Ω:

d(x, y) = inf{dI(a, b) | there exists a projective map f : I −→ Ω(7)

with f(a) = x, f(b) = y}(8)

We now define the Kobayashi pseudo-metric for any domain Ω or
more generally any manifold with a projective structure. This pro-
ceeds by a general universal construction whereby two properties are
“forced:” the triangle inequality and the fact that projective maps are
distance-nonincreasing (the projective “Schwarz lemma”). What we
must sacrifice in general is positivity of the resulting pseudo-metric.

Let Ω ⊂ P be a domain. If x, y ∈ Ω, a chain from x to y is a sequence
C of projective maps f1, . . . , fm ∈ Proj(I,Ω) and pairs ai, bi ∈ I such
that

f1(a1) = x, f1(b1) = f2(a2), . . . , fm−1(bm−1) = fm(am), fm(bm) = y

and its length is defined as

2(C) =
m∑

i=1

dI(ai, bi).

Let C(x, y) denote the set of all chains from x to y. The Kobayashi
pseudo-distance døKob(x, y) is then defined as

døKob(x, y) = inf{2(C) | C ∈ C(x, y)}.

The resulting function enjoys the following obvious properties:

• døKob(x, y) ≥ 0;
• døKob(x, x) = 0;
• døKob(x, y) = døKob(y, x);
• (The triangle inequality) døKob(x, y) ≤ døKob(y, z)+ døKob(z, x).

(The composition of a chain from x to z with a chain from z to
y is a chain from x to y.)

• (The Schwarz lemma) If Ω,Ω′ are two domains in projective
spaces with Kobayashi pseudo-metrics d, d′ respectively and f :
Ω −→ Ω′ is a projective map, then d′(f(x), f(y)) ≤ d(x, y).
(The composition of projective maps is projective.)

• The Kobayashi pseudo-metric on the interval I equals the Hilbert
metric on I.

• døKob is invariant under the group AutΩ consisting of all collineations
of P preserving Ω.
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Proposition 3.3 (Kobayashi [Ko). )] Let Ω ⊂ P be properly convex.
Then the two functions døHilb, døKob : Ω× Ω −→ R are equal.

Corollary 3.4. The function døHilb : Ω×Ω −→ R is a complete metric
on Ω.

Proof of Proposition 33̇. Let x, y ∈ Ω be distinct points and let l = ←→xy
be the line incident to them. Now

døHilb
Ω (x, y) = døHilb

l∩Ω (x, y) = døKob
l∩Ω (x, y) ≤ døKob

Ω (x, y)

sby the Schwarz lemma applied to the projective map l ∩ Ω ↪→ Ω. For
the opposite inequality, let S be the intersection of a supporting hyper-
plane to Ω at x∞ and a supporting hyperplane to Ω at y∞. Projection
from S to l defines a projective map ΠS,lΩ −→ l ∩ Ω which retracts Ω
onto l ∩ Ω. Thus

døKob
Ω (x, y) ≤ døKob

l∩Ω (x, y) = døHilb
Ω (x, y)

(again using the Schwarz lemma) as desired. !

Corollary 3.5. Line segments in Ω are geodesics. If Ω ⊂ P is prop-
erly convex, x, y ∈ Ω, then the chain consisting of a single projective
isomorphism I −→ ←→xy ∩ Ω minimizes the length among all chains in
C(x, y).

3.4. The Hilbert metric. Let 8 ⊂ P2 denote a domain bounded by
a triangle. Then the balls in the Hilbert metric are hexagonal regions.
(In general if Ω is a convex k-gon in P2 then the unit balls in the
Hilbert metric will be interiors of 2k-gons.) Note that since Aut(8)
acts transitively on 8 (Aut(8) is conjugate to the group of diagonal
matrices with positive eigenvalues) all the unit balls are isometric.

Here is a construction which illustrates the Hilbert geometry of 8.
Start with a triangle 8 and choose line segments l1, l2, l3 from an arbi-
trary point p1 ∈ 8 to the vertices v1, v2, v3 of 8. Choose another point
p2 on l1, say, and form lines l4, l5 joining it to the remaining vertices.
Let

ρ = log |[v1, p1, p2, l1 ∩←→v2v3]|
where [, ] denotes the cross-ratio of four points on l1. The lines l4, l5
intersect l2, l3 in two new points which we call p3, p4. Join these two
points to the vertices by new lines li which intersect the old li in new
points pi. In this way one generates infinitely many lines and points
inside 8, forming a configuration of smaller triangles Tj inside 8. For
each pi, the union of the Tj with vertex pi is a convex hexagon which
is a Hilbert ball in 8 of radius ρ. Note that this configuration is
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combinatorially equivalent to the tesselation of the plane by congru-
ent equilateral triangles. Indeed, this tesselation of 8 arises from an
action of a (3,3,3)-triangle group by collineations and converges (in an
appropriate sense) to the Euclidean equilateral-triangle tesselation as
ρ −→ 0.

Exercise 3.6. Let 8 be the positive quadrant {(x, y) ∈ R2 | x, y > 0}.
Then the Hilbert distance is given by

d((x, y), (x′, y′)) = log max{ x

x′
,
x′

x
,
y

y′
,
y′

y
,
xy′

x′y
,
x′y

xy′
}.

For any two points p, p′ ∈ 8, show that there are infinitely many
geodesics joining p to p′. In fact show that there are even non-smooth
polygonal curves from p to p′ having minimal length.

Let Q ⊂ Pn be a quadric corresponding to a polarity of signature
(1, n) and let Ω be the convex region bounded by Q. Indeed, let us
take Ω to be the unit ball in Rn defined by

‖x‖2 =
n∑

i=1

(xi)2 < 1.

Then the Hilbert metric is given by the Riemannian metric

ds2 =
−4√

1 − ‖x‖2
d2
√

1 − ‖x‖2

=
4

(1 − ‖x‖2)2

n∑

i=1

(xidxi)2 + (1 − ‖x‖2)2(dxi)2

which has constant curvature −1. This is the only case when the
Hilbert metric is Riemannian; in general the Hilbert metric is Finsler,
given infinitesimally by a norm on the tangent spaces (not necessar-
ily a norm arising from a quadratic form). By changing

√
1 − ‖x‖2 to√

1 + ‖x‖2 in the above formula, one obtains a metric on Pn of constant
curvature +1. In 1866 Beltrami showed that the only Riemannian met-
rics on domains in Pn where the geodesics are straight line segments are
(up to a collineation and change of scale factor) Euclidean metrics and
these two metrics. Hilbert’s fourth problem was to determine all met-
ric space structures on domains in Pn whose geodesics are straight line
segments. There are many unusual such metrics, see Busemann [Bu]
and Pogorelov [Po].
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4. Geometric structures on manifolds

If M is a manifold, we wish to impart to it (locally) affine and/or
projective geometry. The corresponding global object is a geometric
structure modelled on affine or projective geometry, or simply an affine
structure or projective structure on M . (Such structures are also called
“affinely flat structures,” “flat affine structures,” “flat projective struc-
tures,” etc. We will not be concerned with the more general “non-flat”
structures here and hence refer to such structures as affine or pro-
jective structures.) For various reasons, it is useful to approach this
subject from the more general point of view of locally homogeneous
structures, that is, geometric structures modelled on a homogeneous
space. In what follows X will be a space with a geometry on it and
G is the group of transformations of X which preserves this geometry.
We shall consider manifolds M having the same dimension as that of
X: thus M locally looks like X — topologically — but we wish to
model M on X geometrically . If (X, G) is affine geometry (so that
X = Rn and G = Aff(Rn)) then a (X, G)-structure will be called an
affine structure; if (X, G) is projective geometry (so that X = Pn and
G = Aut(Pn) the collineation group of Pn) then an (X, G)-structure
will be called a projective structure. An affine structure on a manifold
is the same thing as a flat torsionfree affine connection, and a projec-
tive structure is the same thing as a flat normal projective connection
(see Chern-Griffiths [CG], Kobayashi [K1] or Hermann [H] for the the-
ory of projective connections). We shall refer to a projective structure
modelled on RPn an RPn-structure; a manifold with an RPn-structure
will be called an RPn-manifold.

In many cases of interest, there may be a readily identifiable geo-
metric entity on X whose stabilizer is G. In that case the geometry
of (X, G) may be considered the geometry centered upon this object.
Perhaps the most important such entity is a Riemannian metric. For
example if X is a simply-connected Riemannian manifold of constant
curvature K and G is its group of isometries, then locally modelling M
on (X, G) is equivalent to giving M a Riemannian metric of curvature
K. (This idea can be vastly extended, for example to cover indefinite
metrics, locally homogeneous metrics whose curvature is not necessarily
constant, etc.) In particular Riemannian metrics of constant curvature
are special cases of (X, G)-structures on manifolds.

Let G be a Lie group acting transitively on a manifold X. Let
U ⊂ X be an open set and let f : U −→ X be a smooth map. We
say that f is locally-(X, G) if for each component Ui ⊂ U , there exists
gi ∈ G such that the restriction of gi to Ui ⊂ X equals the restriction
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of f to Ui ⊂ U . (O course f will have to be a local diffeomorphism.)
An (X, G)-atlas on M is a pair (U ,Φ) where U is an open covering
of M and Φ = {φα : Uα −→ X}Uα∈U is a collection of coordinate
charts such that for each pair (Uα, Uβ) ∈ U × U the restriction of
φα ◦ (φβ)−1 to φβ(Uα ∩ Uβ)) is locally-(X, G). An (X, G)-structure on
M is a maximal (X, G)-atlas and an (X, G)-manifold is a manifold
together with an (X, G)-structure on it. It is clear that an (X, G)-
manifold has an underlying real analytic structure, since the action of
G on X is real analytic.

Suppose that M and N are two (X, G)-manifolds and f : M −→ N is
a map. Then f is an (X, G)-map if for each pair of charts φα : Uα −→
X and ψβ : Vβ −→ X (for M and N respectively) the composition
ψβ◦f◦φ−1

α restricted to φα(Uα∩f−1(Vβ)) is locally-(X, G). In particular
we only consider (X, G)-maps which are local diffeomorphisms. Clearly
the set of (X, G)-automorphisms M −→ M forms a group, which we
denote by Aut(X,G)(M) or just Aut(M) when the context is clear.

Exercise 4.1. Let N be an (X, G)-manifold and f : M −→ N a
local diffeomorphism. There is a unique (X, G)-structure on M for
which f is an (X, G)-map. In particular every covering space of an
(X, G)-manifold has a canonical (X, G)-structure. Conversely if M is
an (X, G)-manifold upon which a discrete group Γ acts properly and
freely by (X, G)-automorphisms, then X/Γ is an (X, G)-manifold.

The fundamental example of an (X, G)-manifold is X itself. Evi-
dently any open subset Ω ⊂ X has an (X, G)-structure (with only one
chart—the inclusion Ω ↪→ X). Locally-(X, G) maps satisfy the Unique
Extension Property: If U ⊂ X is a connected nonempty open subset,
and f : U −→ X is locally-(X, G), then there exists a unique element
g ∈ G whose restriction to U is f . This rigidity property is a distin-
guishing feature of the kind of geometric structures considered here. It
follows that if Ω ⊂ X is a domain, an (X, G)-automorphism f : Ω → Ω
is the restriction of a unique element g ∈ G preserving Ω, that is::

Aut(X,G)(Ω) ∼= {g ∈ G | g(Ω) = Ω}

Exercise 4.2. Suppose that φ : M −→ Ω is a local diffeomorphism
onto a domain Ω ⊂ X. Show that there is a homomorphism

φ∗ : Aut(X,G)(M) −→ Aut(X,G)(Ω)
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whose kernel consists of all maps f : M −→ M making the diagram

M
φ−−−→ Ω

f

"
∥∥∥

M −−−→
φ

Ω

commute. Find examples where φ∗ is: (a) surjective but not injective;
(b) injective but not surjective.

In the first two lectures, we saw how it is possible for one geometry
to “contain” or “refine” another one. In this way one can pass from
structures modelled on one geometry to structures modelled on a ge-
ometry containing it. Let (X, G) and (X ′, G′) be homogeneous spaces
and let Φ : X → X ′ be a local diffeomorphism which is equivariant
with respect to a homomorphism φ : G → G′ in the following sense:
for each g ∈ G the diagram

X
Φ−−−→ X ′

g

"
"φ(g)

X −−−→
Φ

X ′

commutes. It follows that locally-(X, G) maps determine locally-(X ′, G′)-
maps and an (X, G)-structure on M induces an (X ′, G′)-structure on
M in the following way. Let ψα : Uα −→ X be an (X, G)-chart; the
composition Φ ◦ ψα : Uα −→ X ′ defines an (X ′, G′)-chart.

There are many important examples of this correspondence, most
of which occur when Φ is an embedding. For example when Φ is the
identity map and G ⊂ G′ is a subgroup, then every (X, G)-structure
is a fortiori an (X ′, G′)-structure. Thus every Euclidean structure
is a similarity structure which in turn is an affine structure. Sim-
ilarly every affine structure determines a projective structure, using
the embedding (Rn, Aff(Rn)) −→ (Pn, Proj(Pn)) of affine geometry in
projective geometry. Using the Klein model of hyperbolic geometry
(Hn, PO(n, 1)) −→ (Pn, Proj(Pn)) every hyperbolic-geometry structure
(that is, Riemannian metric of constant curvature -1) determines a
projective structure. Using the inclusion of the projective orthogonal
group PO(n+1) ⊂ PGL(n+1; R) one sees that every elliptic-geometry
structure (that is, Riemannian metric of constant curvature +1) deter-
mines a projective structure. Since every surface admits a metric of
constant curvature, we obtain the following:

Theorem 4.3. Every surface admits an RP2-structure.
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Exercise 4.4. Suppose that Φ : X −→ X ′ is a universal covering
space and G is the group of lifts of transformations g′ : X ′ −→ X ′ in
G′ to X. Let φ : G −→ G′ be the corresponding homomorphism. Show
that (Φ, φ) induces an isomorphism between the categories of (X, G)-
manifolds/maps and (X ′, G′)-manifolds/maps. For this reason we may
always assume (when convenient) that our model space X is simply-
connected.

4.1. Development, Holonomy. There is a useful globalization of the
coordinate charts of a geometric structure in terms of the universal
covering space and the fundamental group. Let M be an (X, G)-
manifold. Choose a universal covering space p : M̃ −→ M and let
π = π1(M) be the corresponding fundamental group. The covering
projection p induces an (X, G)-structure on M̃ upon which π acts by
(X, G)-automorphisms. The Unique Extension Property has the fol-
lowing important consequence.

Proposition 4.5. Let M be a simply connected (X, G)-manifold. Then
there exists an (X, G)-map f : M −→ X.

It follows that the (X, G)-map f completely determines the (X, G)-
structure on M , that is, the geometric structure on a simply-connected
manifold is “pulled back” from the model space X. The (X, G)-map f
is called a developing map for M and enjoys the following uniqueness
property. If f ′ : M −→ X is another (X, G)-map, then there exists an
(X, G)-automorphism φ of M and an element g ∈ G such that

M
f ′

−−−→ X

φ

"
"g

M
f−−−→ X

Proof of Proposition. Choose a basepoint x0 ∈ M and a coordinate
patch U0 containing x0. For x ∈ M , we define f(x) as follows. Choose
a path {xt}0≤t≤1 in M from x0 to x = x1. Cover the path by coordinate
patches Ui (where i = 0, . . . , n) such that xt ∈ Ui for t ∈ (ai, bi) where

a0 < 0 < a1 < b0 < a2 < b1 < a3 < b2 < · · · < an−1 < bn−2 < an < bn−1 < 1 < bn

Let ψi : Ui −→ X be an (X, G)-chart and let gi ∈ G be the unique
transformation such that gi ◦ ψi and ψi−1 agree on the component of
Ui ∩ Ui−1 containing the curve {xt}ai<t<bi−1 . Let

f(x) = g1g2 . . . gn−1gnψn(x)

and we must show that f is indeed well-defined. The map f does not
change if the cover is refined. Suppose that a new coordinate patch U ′
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is “inserted between” Ui−1 and Ui. Let {xt}a′<t<b′ be the portion of the
curve lying inside U ′ so

ai−1 < a′ < ai < bi−1 < b′ < bi.

Let ψ′ : U ′ −→ X be the corresponding coordinate chart and let
hi−1, hi ∈ G be the unique transformations such that ψi−1 agrees with
hi−1 ◦ψ′ on the component of U ′ ∩Ui−1 containing {xt}a′<t<bi−1 and ψ′

agrees with hi ◦ ψi on the component of U ′ ∩Ui containing {xt}ai<t<b′ .
By the unique extension property hi−1hi = gi and it follows that the
corresponding developing map

f(x) = g1g2 . . . gi−1hi−1higi+1 . . . gn−1gnψn(x)(9)

= g1g2 . . . gi−1gigi+1 . . . gn−1gnψn(x)(10)

is unchanged. Thus the developing map as so defined is independent
of the coordinate covering, since any two coordinate coverings have a
common refinement.

Next we claim the developing map is independent of the choice of
path. Since M is simply connected, any two paths from x0 to x are
homotopic. Every homotopy can be broken up into a succession of
“small” homotopies, that is, homotopies such that there exists a parti-
tion 0 = c0 < c1 < · · · < cm−1 < cm = 1 such that during the course of
the homotopy the segment {xt}ci<t<ci+1 lies in a coordinate patch. It
follows that the expression defining f(x) is unchanged during each of
the small homotopies, and hence during the entire homotopy. Thus f
is independent of the choice of path.

Since f is a composition of a coordinate chart with transformations
X −→ X coming from G, it follows that f is an (X, G)-map. The
proof of Proposition 46̇ is complete. !

If M is an arbitrary (X, G)-manifold, then we may apply Proposi-
tion 46̇ to a universal covering space M̃ . We obtain the following basic
result:

Theorem 4.6 (Development Theorem). Let M be an (X, G)-manifold
with universal covering space p : M̃ −→ M and group of deck trans-
formations π = π1(M) ⊂ Aut(p : M̃ −→ M). Then there exists a pair
(dev, h) such that dev : M̃ −→ X is an (X, G)-map and h : π −→ G is
a homomorphism such that, for each γ ∈ π,

M̃
dev−−−→ X

γ

"
"h(γ)

M̃ −−−→
dev

X
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commutes. Furthermore if (dev′, h′) is another such pair, there exists
g ∈ G such that dev′ = g ◦ dev and h′(γ) = gh(γ)g−1 for each γ ∈ π.

We call such a pair (dev, h) a development pair, and the homomor-
phism h the holonomy representation. (It is the holonomy of a flat
connection on a principal G-bundle over M associated to the (X, G)-
structure.) The developing map is a globalization of the coordinate
charts of the manifold and the holonomy representation is a global-
ization of the coordinate changes. In this generality the Development
Theorem seems to be due to C. Ehresmann [Eh] in 1936.

Exercise 4.7. Let M be an (X, G)-manifold with development pair
(dev, h). Suppose that N −→ M is a covering space. Show that there
exists an (X, G)-map N −→ X ⇐⇒ the holonomy representation re-
stricted to π1(N) ↪→ π1(M) is trivial. Thus the holonomy covering
space M̂ −→ M — the covering space of M corresponding to the ker-
nel of h — is the “smallest” covering space of M for which a developing
map is “defined.”

Exercise 4.8. Suppose that M is a closed manifold with finite fun-
damental group. Show that if X is noncompact then M admits no
(X, G)-structure. If X is compact and simply-connected show that ev-
ery (X, G)-manifold is (X, G)-isomorphic to a quotient of X by a finite
subgroup of G. (Hint: if M and N are manifolds of the same dimen-
sion, f : M −→ N is a local diffeomorphism and M is closed, show
that f must be a covering space.)

As a consequence a closed affine manifold must have infinite funda-
mental group and every RPn-manifold with finite fundamental group is
a quotient of Sn by a finite group (and hence a spherical space form).

The process of inducing one geometric structure from another is eas-
ily understood in terms of developments:

Exercise 4.9. Suppose that (X, G) and (X ′, G′) represent a pair of
geometries for which there exists a pair (Φ, φ) as in 45̇. Show that
if M is an (X, G)-manifold with development pair (dev, h), then (Φ ◦
dev, φ ◦ h) is a development pair for the induced (X ′, G′)-structure on
M .

4.2. Completeness. In many important cases the developing map is
a diffeomorphism M̃ −→ X, or at least a covering map onto its image.
An extremely important case of this occurs when (X, G) is a Riemann-
ian homogeneous space, that is, when X possesses a G-invariant Rie-
mannian metric gX . Equivalently, X = G/H where the isotropy group
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H is compact. The Hopf-Rinow theorem from Riemannian geometry
has the following important consequence:

Proposition 4.10. Let (X, G) be a Riemannian homogeneous space.
Suppose that X is simply connected and M is a compact (X, G)-manifold.
Let p : M̃ −→ M be a universal covering space, π the associated fun-
damental group and (dev, h) the corresponding development pair. Then
dev : M̃ −→ X is a diffeomorphism and h : π −→ G is an isomorphism
of π onto a cocompact discrete subgroup Γ ⊂ G.

Proof. The Riemannian metric gM̃ = dev∗gX on M̃ is invariant under
the group of deck transformations π of M̃ and hence there is a Rie-
mannian metric gM on M such that p∗gM = gM̃ . Since M is compact,
the metric gM on M is complete and so is the metric gM̃ on M̃ . By
construction, dev : (M̃, gM̃) −→ (X, gX) is a local isometry. A lo-
cal isometry from a complete Riemannian manifold into a Riemannian
manifold is necessarily a covering map (Kobayashi-Nomizu [KN,]) so
dev is a covering map of M̃ onto X. Since X is simply connected,
it follows that dev is a diffeomorphism. Let Γ ⊂ G denote the im-
age of h. Since dev is equivariant respecting h, the action of π on X
given by h is equivalent to the action of π by deck transformations
on M̃ . Thus h is faithful and its image Γ is a discrete subgroup of G
acting properly and freely on X. Furthermore dev defines a diffeomor-
phism M = M̃/π −→ X/Γ. Since M is compact, it follows that X/Γ
is compact, and since the fibration G −→ G/H = X is proper, the
homogeneous space Γ\G is compact, that is, Γ is cocompact in G. !

One may paraphrase the above result abstractly as follows. Let
(X, G) be a Riemannian homogeneous space. Then there is an equiva-
lence of categories between the category of compact (X, G)-manifolds/maps
and discrete cocompact subgroups of G which act freely on X (the
morphisms being inclusions of subgroups composed with inner auto-
morphisms of G).

We say that an (X, G)-manifold M is complete if dev : M̃ −→ X
is a diffeomorphism (or a covering map if we don’t insist that X be
simply connected). An (X, G)-manifold M is complete ⇐⇒ its univer-
sal covering M̃ is (X, G)-isomorphic to X, that is, if M is isomorphic
to the quotient X/Γ (at least if X is simply connected). Note that if
(X, G) is contained in (X ′, G′) in the sense of 25̇, and X += X ′, then a
complete (X, G)-manifold is never complete as an (X ′, G′)-manifold.

Exercise 4.11 (Auslander-Markus [AM). ] Let M be an affine man-
ifold. Then M is complete in the above sense if and only if M is
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geodesically complete (in the sense of the affine connection on M cor-
responding to the affine structure). That is, show that M is a quotient
of affine space ⇐⇒ a particle moving at constant speed in a straight
line will continue indefinitely.

Proof. Clearly it suffices to assume that M is simply connected. If
M is a complete affine manifold, then dev : M −→ Rn is an affine
isomorphism and since Rn is geodesically complete, so is M . Con-
versely, suppose that M is geodesically complete. We must show that
dev : M −→ Rn is bijective. Choose a basepoint u ∈ M ; we may
assume that dev(u) = 0 ∈ Rn. Since M is complete, the exponential
map is defined on all of TuM . We claim that the composition

TuM
exp−−→ M

dev−−→ E

is an affine isomorphism. In local affine coordinates, exp(v) = u + v
and dev(u + v) = dev(u) + v = v; it follows that dev is bijective. !

Exercise 4.12. Suppose that X is simply connected. Let M be a closed
(X, G)-manifold with developing pair (dev, h). Show that M is complete
⇐⇒ the holonomy representation h : π −→ G is an isomorphism of π
onto a discrete subgroup of G which acts properly and freely on X.

4.3. Complete affine structures on the 2-torus. As in §4?̇?? the
compact complete affine 1-manifold R/Z is unique up to affine isomor-
phism. Its Cartesian square R/Z×R/Z is a Euclidean structure on the
two-torus, unique up to affine isomorphism. In this section we shall
describe all other complete affine structures on the two-torus and show
that they are parametrized by RP1. We shall see that affine isomor-
phism classes are parametrized by the plane R2 with a (non-Hausdorff)
whose open sets are the open subsets of R2 − {0} as well as R2 itself.

We begin by considering the one-parameter family of (quadratic)
diffeomorphisms of the affine plane E = R2 defined by

φr(x, y) = (x + ry2, y)

It is easy to check that φr ◦ φs = φr+s and thus φr and φ−r are inverse
maps. If u = (s, t) ∈ R2 we denote translation by u as τ(u) : E −→ E.
Conjugation of the translation τ(u) by φr yields the affine transforma-
tion

αr(u) = φr ◦ τ(u) ◦ φ−r =

[
1 2rt
0 1

] [
s + rt2

t

]

and αr : R2 −→ Aff(E) defines a simply transitive affine action. (Com-
pare [FG,§11̇9].) If Λ ⊂ R2 is a lattice, then E/αr(Λ) is a compact
complete affine 2-manifold M = M(r;Λ) diffeomorphic to a 2-torus.
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The parallel 1-form dy defines a parallel 1-form η on M and its
cohomology class [η] ∈ H1(M ; R) is a well-defined invariant of the
affine structure up to scalar multiplication. In general, M will have
no closed geodesics. If γ ⊂ M is a closed geodesic, then it must be a
trajectory of the vector field on M arising from the parallel vector field
∂/∂x on E; then γ is closed ⇐⇒ the intersection of the lattice Λ ⊂ R2

with the line R ⊕ {0} ⊂ R2 is nonzero.
To classify these manifolds, we observe that the normalizer of Gr =

αr(R2) equals
{ [

µ2 a
0 µ

]
| µ ∈ R∗, a ∈ R

}
· Gr

which acts on Gr conjugating

αr(s, t) %→ αr(µ
2s + at, µt)

Let

N =
{[

µ2 a
0 µ

]
| µ ∈ R∗, a ∈ R

}
;

then the space of affine isomorphism classes of these tori may be iden-
tified with the homogeneous space GL(2, R)/N which is topologically
R2−{0}. The groups Gr are all conjugate and as r −→ 0, each represen-
tation αr|π converges to an embedding of π as a lattice of translations
R2 −→ R2. It follows that the deformation space of complete affine
structures on T 2 form a space which is the union of R2 − {0} with a
point O (representing the Euclidean structure) which is in the closure
of every other structure.

4.4. Examples of incomplete structures. It is quite easy to con-
struct incomplete geometric structures on noncompact manifolds M .
Take any immersion f : M −→ X which is not bijective; then f in-
duces an (X, G)-structure on M . If M is parallelizable, then such an
immersion always exists (Hirsch []). More generally, let h : π −→ G
be a representation; then as long as the associated flat (X, G)-bundle
E −→ X possesses a section s : M −→ E whose normal bundle is
isomorphic to TM , there exists an (X, G)-structure with holonomy h
(see Haefliger []).

It is harder to construct incomplete geometric structures on com-
pact manifolds — indeed for certain geometries (X, G), there exist
closed manifolds for which every (X, G)-structure on M is complete.
As a trivial example, if X is compact and M is a closed manifold with
finite fundamental group, then by 4?̇?? every (X, G)-structure on M
is complete. As a less trivial example, if M is a closed manifold whose
fundamental group contains a nilpotent subgroup of finite index and
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whose first Betti number equals one, then every affine structure on M is
complete (see Fried-Goldman-Hirsch [FGH]). A simple example arises
as follows. Consider the group Γ ⊂ Euc(R3) generated by the three
isometries

A =




1 0 0
0 −1 0
0 0 −1








1
0
0



(11)

B =




−1 0 0
0 1 0
0 0 −1








0
1
0



(12)

C =




−1 0 0
0 −1 0
0 0 1








0
0
1



(13)

(14)

and Γ is a discrete group of Euclidean isometries which acts properly
and freely on R3 with quotient a compact 3-manifold M . Furthermore
there is a short exact sequence

Z3 ∼= 〈A2, B2, C2〉 ↪→ Γ
L→−→ Z/2 ⊕ Z/2

and it follows that every affine structure on M must be complete.
The basic example of an incomplete affine structure on a closed man-

ifold is a Hopf manifold. Consider Ω = Rn − {0}; then the group R∗

of homotheties (that is, scalar multiplications) acts on Ω properly and
freely with quotient the projective space RPn−1. Clearly the affine
structure on Ω is incomplete. Let λ ∈ R satisfy λ > 1; then the cyclic
group 〈λ〉 is a discrete subgroup of R∗ and the quotient Ω/〈λ〉 is a
compact incomplete affine manifold M . We shall denote this manifold
by Hopfn

λ. (A geodesic whose tangent vector “points” at the origin
will be incomplete; on the manifold M the affinely parametrized geo-
desic will circle around with shorter and shorter period until in a finite
amount of time will “run off” the manifold.) If n = 1, then M consists
of two disjoint copies of the Hopf circle R+/〈λ〉 — this manifold is
an incomplete closed geodesic (and every incomplete closed geodesic is
isomorphic to a Hopf circle). For n > 1, then M is connected and is
diffeomorphic to the product S1 ×Sn−1. For n > 2 both the holonomy
homomorphism and the developing map are injective.

If n = 2, then M is a torus whose holonomy homomorphism maps
π1(M) ∼= Z ⊕ Z onto the cyclic group 〈λ〉. Note that devM̃ −→ R2 is
neither injective nor surjective, although it is a covering map onto its
image. For k ≥ 1 let π(k) ⊂ π be the unique subgroup of index k which
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intersects Kerh ∼= Z in a subgroup of index k. Let M (k) denote the
corresponding covering space of M . Then M (k) is another closed affine
manifold diffeomorphic to a torus whose holonomy homomorphism is
a surjection of Z ⊕ Z onto 〈λ〉.

Exercise 4.13. Show that for k += l, the two affine manifolds M (k)

and M (l) are not isomorphic. (Hint: consider the invariant defined
as the least number of breaks of a broken geodesic representing a sim-
ple closed curve on M whose holonomy is trivial.) Thus two different
affine structures on the same manifold can have the same holonomy
homomorphism.

Exercise 4.14. Suppose that λ < −1. Then M = (Rn−{0})/〈λ〉 is an
incomplete compact affine manifold doubly covered by Hopfn

λ. What is
M topologically?

There is another point of view concerning Hopf manifolds in dimen-
sion two. Let M be a two-torus; we may explicitly realize M as a
quotient C/Λ where Λ ⊂ C is a lattice. The complex exponential map
exp : C −→ C∗ is a universal covering space having the property that

exp ◦τ(z) = ez · exp

where τ(z) denotes translation by z ∈ C. For various choices of lattices
Λ, the exponential map exp : M̃ = C −→ C∗ is a developing map for a
(complex) affine structure on M with holonomy homomorphism

π ∼= Λ@ > exp >> exp(Λ) ↪→ C∗ ⊂ Aff(C)

We denote this affine manifold by exp(C/Λ); it is an incomplete com-
plex affine 1-manifold or equivalently an incomplete similarity 2-manifold.
Every compact incomplete orientable similarity manifold is equivalent
to an exp(C/Λ) for a unique lattice Λ ⊂ C. Taking Λ ⊂ C to be the
lattice generated by log λ and 2πi we obtain the Hopf manifold Hopf2

λ.
More generally the lattice generated by log λ and 2kπi corresponds to
the k-fold covering space of Hopf 2

λ described above. There are “frac-
tional” covering spaces of the Hopf manifold obtained from the lattice
generated by log λ and 2π/n for n > 1; these manifolds admit n-fold
covering spaces by Hopf2

λ. The affine manifold M admits no closed
geodesics ⇐⇒ Λ ∩ R = {0}. Note that the exponential map defines
an isomorphism C/Λ −→ M which is definitely not an isomorphism of
affine manifolds.

A Hopf manifold is the prototypical example of a radiant affine man-
ifold. Many properties of Hopf manifolds are shared by radiant struc-
tures. The following theorem characterizes radiant affine structures:
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Proposition 4.15. Let M be an affine manifold with development pair
(dev, h). The following conditions are equivalent:

• h(π) fixes a point in E (by conjugation we may assume this
fixed point is the origin 0);

• M is isomorphic to a (E, GL(E))-manifold;
• M possesses a radiant vector field (see 17̇).

If M satisfies these conditions, we say the affine structure on M is
radiant. If ρM is a radiant vector field on M , we shall often refer to
the pair (M, ρM ) as well as a radiant affine structure. A closed radiant
affine manifold M is always incomplete (5?̇??) and the radiant vector
field is always nonsingular so that χ(M) = 0. Furthermore the first
Betti number of a closed radiant affine manifold is always positive.

Exercise 4.16 (Products of affine manifolds). Let Mm, Nn be affine
manifolds. Show that the Cartesian product Mm × Nn has a natu-
ral affine structure. Show that M × N is complete ⇐⇒ both M and
N are complete; M × N is radiant ⇐⇒ both M and N are radiant.
On the other hand, find compact manifolds M, N each of which has a
projective structure but M × N does not admit a projective structure.
If M1, . . . , Mr are manifolds with real projective structures, show that
the Cartesian product M1 × · · · × Mr × T r−1 admits a real projective
structure (Benzécri [B2]).

4.5. Maps between manifolds with different geometries. In many
cases, we wish to consider maps between different manifolds with geo-
metric structures modelled on different geometries. To this end we con-
sider the following general situation. Let (X, G) and (X ′, G′) be two
homogeneous spaces representing different geometries and consider a
family M of maps X −→ X ′ such that if f ∈ M, g ∈ G, g′ ∈ G′,
then the composition g′ ◦ f ◦ g ∈ M. If U ⊂ X is a domain, a map
f : U −→ X ′ is locally-M if for each component Ui ⊂ U there exists
fi ∈ M such that the restriction of f to Ui ⊂ U equals the restriction
of fi to Ui ⊂ X. Let M be an (X, G)-manifold and N an (X ′, G′)-
manifold. Suppose that f : M −→ N is a smooth map. We say that
f is an M-map if for each pair of charts φα : Uα −→ X (for M) and
ψβ : Vβ −→ X (for N) the composition ψβ ◦ f ◦ φ−1

α restricted to
φα(Uα ∩ f−1(Vβ)) is locally-M.

The basic examples are affine and projective maps between affine and
projective manifolds: For affine maps we take (X, G) = (Rm, Aff(Rm))
and (X ′, G′) = (Rn, Aff(Rn)) and M = aff(Rm, Rn). For example if
M, N are affine manifolds, and M × N is the product affine manifold
(see 41̇7), then the projections M × N −→ M and M × N −→ N are
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affine. Similarly if x ∈ M and y ∈ N , the inclusions {x}×N ↪→ M×N
and M × {y} ↪→ M × N are each affine. For projective maps we take
(X, G) = (Pm, Proj(Pm)) and (X ′, G′) = (Pn, Proj(Pn)) and M the set
Proj(Pm, Pn) of projective maps Pm → Pn (or more generally the collec-
tion of locally projective maps defined on open subsets of Pm). Thus
if M is an RPn-manifold it makes sense to speak of projective maps
I −→ M and thus the Kobayashi pseudo-metric dKob : M × M −→ R
is defined. The following theorem combines results of Kobayashi [Kb2]
and Vey [V1,V2], and is a kind of converse to 34̇:

Theorem 4.17. Let M be a compact RPn-manifold and let M̃ be its
universal covering space. Then dKob is a metric ⇐⇒ M̃ is projectively
isomorphic to properly convex domain in RPn.

4.6. Fibration of geometries. One can also “pull back” geometric
structures by “fibrations” of geometries as follows. Let (X, G) be a
homogeneous space and suppose that Φ : X ′ −→ X is a fibration with
fiber F and that φ : G′ −→ G is a homomorphism such that for each
g′ ∈ G′ the diagram

X ′ g′−−−→ X ′

Φ

"
"Φ

X ′ −−−→
φ(g′)

X ′

commutes.
Suppose that M is an (X, G)-manifold. Let p : M̃ −→ M be a

universal covering with group of deck transformations π and (dev, h) a
development pair. Then the pullback dev∗Φ is an F -fibration M̃ ′ over
M̃ and the induced map dev′ : M ′ −→ X ′ is a local diffeomorphism and
thus a developing map for an (X ′, G′)-structure on M̃ ′. We summarize
these maps in the following commutative diagram:

M̃ ′ dev′−−−→ X ′

"
"Φ

M̃ −−−→
dev

X

Suppose that the holonomy representation h : π −→ G lifts to h′ :
π −→ G′. (In general the question of whether h lifts will be detected
by certain invariants in the cohomology of M .) Then h′ defines an
extension of the action of π on M̃ to M̃ ′ by (X ′, G′)-automorphisms.
Since the action of π on M̃ ′ is proper and free, the quotient M ′ = M̃ ′/π
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is an (X ′, G′)-manifold. Moreover the fibration M̃ ′ −→ M̃ descends to
an F -fibration M ′ −→ M .

An important example is the following. Let G = GL(n + 1; R) and

X ′ = Rn+1−{0}. Let Sn = R̃Pn denote the universal covering space of
RPn; for n > 1 this is a two-fold covering space realized geometrically
as the sphere of directions in Rn+1. Furthermore the group of lifts of
PGL(n + 1; R) to Sn equals the quotient GL(n + 1; R)/R+ ∼= SL±(n +
1; R). The quotient map Φ : Rn+1 − {0} −→ Sn is a principal R+-
bundle.

Let M be an RPn-manifold with development pair (dev, h); then
there exists a lift of h : π −→ PGL(n + 1, R) to h̃ : π −→ GL(n + 1; R).
The preceding construction then applies and we obtain a radiant affine
structure on the total space M ′ of a principal R+-bundle over M with
holonomy representation h̃. The radiant vector field ρM ′ generates the
(fiberwise) action of R+; this action of R∗ on M ′ is affine, given lo-
cally in affine coordinates by homotheties. (This construction is due
to Benzécri [B2] where the affine manifolds are called variétés coniques
affines. He observes there that this construction defines an embed-
ding of the category of RPn-manifolds into the category of (n + 1)-
dimensional affine manifolds.)

Since R+ is contractible, every principal R+-bundle is trivial (al-
though there is in general no preferred trivialization). Choose any
λ > 1; then the cyclic group 〈λ〉 ⊂ R+ acts properly and freely on
M ′ by affine transformations. We denote the resulting affine manifold
by M ′

λ and observe that it is homeomorphic to M × S1. (Alterna-
tively, one may work directly with the Hopf manifold Hopfn+1

λ and its
R∗-fibration Hopfn+1

λ −→ RPn.) We thus obtain:

Proposition 4.18 (Benzécri [B2, §23̇1̇). ] Suppose that M is an RPn-
manifold. Let λ > 1. Then M×S1 admits a radiant affine structure for
which the trajectories of the radiant vector field are all closed geodesics
each affinely isomorphic to the Hopf circle R+/〈λ〉.

Since every (closed) surface admits an RP2-structure, we obtain:

Corollary 4.19. (Benzécri) Let Σ be a closed surface. Then Σ × S1

admits an affine structure.

If Σ is a closed hyperbolic surface, the affine structure on M = Σ×S1

can be described as follows. A developing map maps the universal
covering of M onto the convex cone Ω = {(x, y, z) ∈ R3 | x2 +y2−z2 <
0, z > 0} which is invariant under the identity component G of SO(2, 1).
The group G × R+ acts transitively on Ω with isotropy group SO(2).
Choosing a hyperbolic structure on Σ determines an isomorphism of
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π1(Σ) onto a discrete subgroup Γ of G; then for each λ > 1, the group
Γ× 〈λ〉 acts properly and freely on Ω with quotient the compact affine
3-manifold M .

Exercise 4.20. A CPn-structure is a geometric structure modelled on
complex projective space CPn with coordinate changes locally from the
projective group PGL(n + 1; C)). If M is a CPn-manifold, show that
there is a T 2-bundle over M which admits a complex affine structure
and an S1-bundle over M which admits an RP2n+1-structure.

4.7. The classification of RP1-manifolds. The basic general ques-
tion concerning geometric structures on manifolds is, given a topologi-
cal manifold M and a geometry (X, G) , whether an (X, G)-structure
on M exists, and if so, to classify all (X, G)-structures on M . Ideally,
one would like a deformation space, a topological space whose points
correspond to isomorphism classes of (X, G)-manifolds.

As an exercise to illustrate these general ideas, we classify RP1-
manifolds (Compare Kuiper [Kp3], Goldman [G2]). To simplify mat-

ters, we pass to the universal covering X = R̃P1, which is homeomor-

phic to R and the corresponding covering group G = ˜PGL(2, R) which
acts on X. Suppose that M is a connected noncompact RP1-manifold
(and thus diffeomorphic to an open interval). Then a developing map
dev : M ≈ R −→ R ≈ X is necessarily an embedding of M onto an
open interval in X. Given two such embeddings f, f ′ : M −→ X whose
images are equal, there exists a diffeomorphism j : M −→ M such that
f ′ = j ◦ f . Thus two RP1-structures on M which have equal develop-
ing images are isomorphic. Thus the classification of RP1-structures on
M is reduced to the classification of G-equivalence classes of intervals
J ⊂ X. Choose a diffeomorphism X ≈ R ≈ (−∞,∞); an interval in
X is determined by its pair of endpoints in [−∞,∞]. Since G acts
transitively on X, an interval J is either bounded in X or projectively
equivalent to X itself or one component of the complement of a point in
X. Suppose that J is bounded. Then either the endpoints of J project
to the same point in RP1 or to different points. In the first case, let
N > 0 denote the degree of the map J/∂J −→ RP1 induced by dev;
in the latter case choose an interval J+ such that the the restriction
of the covering projection X −→ RP1 to J+ is injective and the union
J ∪ J+ is an interval in X whose endpoints project to the same point
in RP1. Let N > 0 denote the degree of the restriction of the covering
projection to J ∪ J+. Since G acts transitively on pairs of distinct
points in RP1, it follows easily that bounded intervals in X are deter-
mined up to equivalence by G by the two discrete invariants: whether
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the endpoints project to the same point in RP1 and the positive integer
N . It follows that every (X, G)-structure on M is (X, G)-equivalent to
one of the following types. We shall identify X with the real line and
group of deck transformations of X −→ RP1 with the group of integer
translations.

• A complete (X, G)-manifold (that is, dev : M −→ X is a dif-
feomorphism);

• dev : M −→ X is a diffeomorphism onto one of two components
of the complement of a point in X, for example, (0,∞).

• dev is a diffeomorphism onto an interval (0, N) where N > 0 is
a positive integer;

• dev is a diffeomorphism onto an interval (0, N + 1
2).

Next consider the case that M is a compact 1-manifold; choose a
basepoint x0 ∈ M . Let π = π(M, x0) be the corresponding funda-
mental group of M and let γ ∈ π be a generator. We claim that
the conjugacy class of h(γ) ∈ G completely determines the structure.
Choose a lift J of M − {x0} to M̃ which will be a fundamental do-
main for π. Then J is an open interval in M̃ with endpoints y0 and
y1. Choose a developing map dev : M̃ −→ X and a holonomy rep-
resentation h : π −→ G; then dev(y1) = h(γ)dev(y0). If dev′ is a
developing map for another structure with the same holonomy, then
by applying an element of G we may assume that dev(y0) = dev′(y0)
and that dev(y1) = dev′(y1). Furthermore there exists a diffeomor-
phism φ : J −→ J such that dev′ = φ ◦ dev; this diffeomorphism lifts
to a diffeomorphism M̃ −→ M̃ taking dev to dev′. Conversely suppose
that η ∈ G is orientation-preserving (this means simply that η lies
in the identity component of G) and is not the identity. Then there
exists x0 ∈ X which is not fixed by η; let x1 = ηx0. There exists a
diffeomorphism J −→ X taking the endpoints yi of J to xi for i = 0, 1.
This diffeomorphism extends to a developing map dev : M̃ −→ X. In
summary:

Theorem 4.21. A compact RP1-manifold is either projectively equiv-
alent to a Hopf circle R+/〈λ〉, the complete affine manifold R/Z or is
complete as an RP1-manifold. Let G0 denote the identity component
of the universal covering group G of PGL(2, R). Let M be a closed 1-
manifold. Then the set of isomorphism classes of RP1-structures on M
is in bijective correspondence with the set of G-conjugacy classes in the
set G0 − {1} of elements of G0 not equal to the identity.

Exercise 4.22. Determine all automorphisms of each of the above list
of RP1-manifolds.
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5. Affine structures on surfaces

In this section we classify affine structures on closed 2-manifolds.
This classification falls into two steps: first is the basic result of Benzécri
that a closed surface admits an affine structure if and only if its Euler
characteristic vanishes. From this it follows that the affine holonomy
group of a closed affine 2-manifold is abelian and the second step uses
simple algebraic methods to classify affine structures.

We observe that affine structures on noncompact surfaces have a
much different theory. First of all, every orientable noncompact sur-
face admits an immersion into R2 and such an immersion determines
an affine structure with trivial holonomy. Immersions can be classi-
fied up to crude relation of regular homotopy, although the isotopy
classification of immersions of noncompact surfaces seems forbiddingly
complicated. Furthermore if h : π −→ Aff(E) is a homomorphism
such that the character det ◦L ◦ h : π −→ Z/2 equals the first Stiefel-
Whitney class (that is, its kernel is the subgroup of π corresponding
to the orientable double covering of M), then it can be shown that
there is an affine structure on M with holonomy h. In general it seems
hopeless to try to classify general geometric structures (that is, not
satisfying some extra geometric hypothesis) on noncompact manifolds
under anything but the crudest equivalence relations.

5.1. Suspensions. Before discussing Benzécri’s theorem and the clas-
sification of 2-dimensional affine manifolds, we describe several con-
structions for affine structures from affine structures and projective
structures of lower dimension. Namely, let Σ be a smooth manifold
and f : Σ → Σ a diffeomorphism. The mapping torus of f is defined
to be the quotient M = Mf (Σ) of the product Σ × R by the Z-action
defined by

n : (x, t) %→ (f−nx, t + n)

It follows that dt defines a nonsingular closed 1-form ω on M tangent
to the fibration t : M −→ S1 = R/Z. Furthermore the vector field ∂

∂t
on Σ × R defines a vector field Sf on M , the suspension of the diffeo-
morphism f : Σ → Σ. The dynamics of f is mirrored in the dynamics
of Sf : there is a natural correspondence between the orbits of f and
the trajectories of Sf . The embedding Σ ↪→ Σ×{t} is transverse to the
vector field Sf and each trajectory of Sf meets Σ. Such a hypersurface
is called a cross-section to the vector field. Given a cross-section Σ to
a flow {ξt}t∈R, then (after possibly reparametrizing {ξt}t∈R), the flow
can be recovered as a suspension. Namely, given x ∈ Σ, let f(x) equal
ξt(x) for the smallest t > 0 such that ξt(x) ∈ Σ, that is, the first-return
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map or Poincaré map for {ξt}t∈R on Σ. For the theory of cross-sections
to flows we refer to Fried [F1].

Suppose that F is a foliation of a manifold M ; then F is locally defined
by an atlas of smooth submersions U −→ Rq for coordinate patches
U . An (X, G)-atlas transverse to F is defined to be a collection of
coordinate patches Uα and coordinate charts ψα : Uα −→ X such that
for each pair (Uα, Uβ) and each component C ⊂ Uα ∩ Uβ there exists
an element gC ∈ G such that gC ◦ ψα = ψβ on C. An (X, G)-structure
transverse to F is a maximal (X, G)-atlas transverse to F. Consider
an (X, G)-structure transverse to F; then an immersion f : Σ −→ M
which is transverse to F induces an (X, G)-structure on Σ.

A foliation F of an affine manifold is said to be affine if its leaves
are parallel affine subspaces (that is, totally geodesic subspaces). It is
easy to see that transverse to an affine foliation of an affine manifold is
a natural affine structure. In particular if M is an affine manifold and
ζ is a parallel vector field on M , then ζ determines a one-dimensional
affine foliation which thus has a transverse affine structure. Moreover
if Σ is a cross-section to ζ , then Σ has a natural affine structure for
which the Poincaré map Σ −→ Σ is affine.

Exercise 5.1. Show that the Hopf manifold Hopfn
λ has an affine foli-

ation with one closed leaf if n > 1 (two if n = 1) and its complement
consists of two Reeb components.

Let Σ be an affine manifold and f ∈ Aff(M) an automorphism. We
shall define an affine manifold M with a parallel vector field Sf and
cross-section Σ ↪→ M such that the corresponding Poincaré map is f .
We proceed as follows. Let Σ × R be the Cartesian product with the
product affine structure and let t : Σ×R −→ R be an affine coordinate
on the second factor. Then the map f̃ : Σ × R −→ Σ × R given by
(x, t) %→ (f−1(x), t + 1) is affine and generates a free proper Z-action
on Σ×R. Let M be the corresponding quotient affine manifold. Then
∂
∂t is a parallel vector field on Σ×R invariant under f̃ and thus defines
a parallel vector field Sf on M . Similarly the parallel 1-form dt on
Σ × R defines a parallel 1-form ωf on M for which ωf(Sf) = 1. For
each t ∈ R/Z, the inclusion Σ×{t} ↪→ M defines a cross-section to Sf .
We call (M, Sf) the parallel suspension or affine mapping torus of the
affine automorphism (Σ, f).

Exercise 5.2. Suppose that N and Σ are affine manifolds and that φ :
π1(Σ) −→ Aff(N) is an action of π1(Σ) on N by affine automorphisms.
The flat N-bundle over Σ with holonomy φ is defined as the quotient of
Σ̃×N by the diagonal action of π1(Σ) given by deck transformations on
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Σ̃ and by φ on N . Show that the total space M is an affine manifold
such that the fibration M −→ Σ is an affine map and the the flat
structure (the foliation of M induced by the foliation of Σ̃×N by leaves
Σ̃× {y}, for y ∈ N) is an affine foliation.

Now let (M, ρM ) be a radiant affine manifold of dimension n + 1.
Then there is an RPn-structure transverse to ρM . For in local affine
coordinates the trajectories of ρM are rays through the origin in Rn+1

and the quotient projection maps coordinate patches submersively into
RPn. In particular if Σ is an n-manifold and f : Σ −→ M is transverse
to ρM , then f determines an RPn-structure on Σ.

Proposition 5.3. Let Σ be a compact RPn-manifold and f ∈ Aut(Σ)
a projective automorphism. Then there exists a radiant affine manifold
(M, ρM) and a cross-section ι : Σ ↪→ M to ρM such that the Poincaré
map for ι equals ι−1 ◦ f ◦ ι. In other words, the mapping torus of a
projective automorphism of an compact RPn-manifold admits a radiant
affine structure.

Proof. Let Sn be the double covering of RPn (realized as the sphere
of directions in Rn+1) and let Φ : Rn+1 −→ Sn be the corresponding
principal R+-fibration. Let M ′ be the principal R+-bundle over M
constructed in 42̇0 and choose a section σ : M −→ M ′ and let {ξ′t}t∈R

be the radiant flow on M ′; let {ξ̃′t}t∈R be the radiant flow on M̃ ′.
Let (dev, h) be a development pair; then there exists a lift of f to an
affine automorphism f̃ of M̃ ; there exists a projective automorphism
g ∈ GL(n + 1; R)/R+ of the sphere of directions Sn such that

M̃ ′ dev
′

−−−→ Rn+1 − {0}

f̃

"
"g

M̃ ′ dev
′

−−−→ Rn+1 − {0}

Choose a compact set K ⊂ M̃ such that π1(M) ·K = M̃ . Let K̃ ⊂ M̃ ′

be the image of K under a lift of σ to a section M̃ −→ M̃ ′. Then there
exists t0 > 0 such that

K̃ ∩ f̃ ξ̃′t(K̃) = ∅
for t > t0. It follows that the affine automorphism ξtf̃ generates a free
and proper affine Z-action on M ′ for t > t0. We denote the quotient
by M . In terms of the trivialization of M ′ −→ M arising from σ, it is
clear that the quotient of M ′ by this Z-action is diffeomorphic to the
mapping torus of f . Furthermore the setion σ defines a cross-section
Σ ↪→ M to ρM whose Poincaré map corresponds to f . !
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We call the radiant affine manifold (M, ρM) the radiant suspension
of (Σ, f).

In general affine automorphisms of affine manifolds can display quite
complicated dynamics and thus the flows of parallel vector fields and
radiant vector fields can be similarly complicated. For example, any
element of GL(2; Z) acts affinely on the flat torus R2/Z2; the most inter-
esting of these are the hyperbolic elements of GL(2; Z) which determine
Anosov diffeomorphisms on the torus. Their suspensions thus deter-
mine Anosov flows on affine 3-manifolds which are generated by parallel
or radiant vector fields. Indeed, it can be shown (Fried [F4]) that every
Anosov automorphism of a nilmanifold M can be made affine for some
complete affine structure on M .

As a simple example of this we consider the linear diffeomorphism
of the two-torus T 2 = R2/Z2 defined by a hyperbolic element A ∈
GL(2; Z). The parallel suspension of A is the complete affine 3-manifold
R3/Γ where Γ ⊂ Aff(R3) is consists of the affine transformations

[
An 0
0 1

] [
p
n

]

where n ∈ Z and p ∈ Z2. Since A is conjugate in SL(2; R) to a di-
agonal matrix with reciprocal eigenvalues, Γ is conjugate to a discrete
cocompact subgroup of the subgroup of Aff(R3)

G =









eu 0 0
0 e−u 0
0 0 1








s
t
u



 | s, t, u ∈ R






which acts simply transitively. Since there are infinitely many conju-
gacy classes of hyperbolic elements in SL(2; Z) (for example the matri-
ces [

n + 1 n
1 1

]

for n > 1, n ∈ Z are all non-conjugate), there are infinitely many
isomorphism classes of discrete groups Γ. It follows (LȦuslander) that
there are infinitely many homotopy classes of compact complete affine
3-manifolds — in contrast to the theorem of Bieberbach that in each
dimension there are only finitely many homotopy classes of compact
flat Riemannian manifolds. Notice that each of these affine manifolds
possesses a parallel Lorentz metric and hence is a flat Lorentz manifold.

5.2. Existence of affine structures on 2-manifolds. The following
result is proved in [B1]; a more algebraic generalization/clarification
may be found in Milnor [Mi1]; for generalizations of Milnor’s result,
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see Benzécri [B3], Gromov [], Sullivan [Su]. For an interpretation of
this inequality in terms of hyperbolic geometry, see Goldman [G2].

Theorem 5.4. (Benzécri 1955) Let M be a closed 2-dimensional affine
manifold. Then χ(M) = 0.

Proof. By replacing M by its orientable double covering, we assume
that M is orientable. By the classification of surfaces, M is diffeomor-
phic to a closed surface of genus g ≥ 0. Since a simply connected closed
manifold admits no affine structure (§4?̇), M cannot be a 2-sphere and
hence g += 0. We assume that g > 1 and obtain a contradiction.

There exists a decomposition of M along 2g simple closed curves
a1, b1, . . . , ag, bg which intersect in a single point x0 ∈ M such that the
complement M −

⋃g
i=1(ai ∪ bi) is the interior of a 4g-gon F with edges

a+
1 , a−

1 , b+
1 , b−1 , . . . , a+

g , a−
g , b+

g , b−g . There are generators A1, B1, . . . , Ag, Bg ∈
π such that Ai(b

+
i ) = b−i and Bi(a

+
i ) = a−

i define identifications for a
quotient map F −→ M . A universal covering space is the quotient
space of the product π×F by identifications defined by the generators
A1, B1, . . . , Ag, Bg. Fix a development pair (dev, h). For convenience
we assume that the curves a1, b1, . . . , ag, bg all share the same tangent
vector at x0. Thus F is a polygon with 4g vertices, one of which has
angle 2π and all others have angle 0.

Let I = [a, b] be a closed interval. If f : I −→ R2 is a smooth
immersion, then its turning number τ(f) is defined as the total angular
displacement of its tangent vector. If f(t) = (x(t), y(t)), then

τ(f) =

∫ b

a

d tan−1(y′(t)/x′(t)) =

∫ b

a

x′(t)y′′(t) − x′′(t)y′(t)

x′(t)2 + y′(t)2
dt

is an analytic formula for the turning number. We can extend this
invariant to piecewise smooth immersions as follows. Suppose that f :
[a, b] −→ R2 is an immersion which is smooth on subintervals [ai, ai+1]
where a = a0 < a1 < · · · < am < am+1 = b. Let f ′

+(ai) = limt→ai+ f ′(t)
and f ′

−(ai) = limt→ai− f ′(t) be the two tangent vectors to f at ai; then
the total turning number of f is defined as

τ(f) =
m∑

i=0

(τ(f |[ai,ai+1]) + θ(f ′
−(ai+1), f

′
+(ai+1))

where θ(v1, v2) represents the positively measured angle between the
vectors v1, v2. Clearly reversing the orientation multiplies the turning
number by −1.

If f : S1 −→ R2 is an immersion, then τ(f) is an integer. The
Whitney-Graustein theorem asserts that two immersions f1, f2 : S1 −→
R2 are regularly homotopic ⇐⇒ τ(f1) = τ(f2). In particular if f :
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S1 −→ R2 is the restriction to the boundary of an orientation-preserving
immersion D2 −→ R2, then τ(f) = 1.

An elementary property relating turning number to affine transfor-
mations is the following:

Lemma 5.5. Suppose that f : [a, b] −→ R2 is a smooth immersion and
φ ∈ Aff+(R2) is an orientation-preserving affine automorphism. Then

|τ(f) − τ(φ ◦ f)| < π

Proof. If ψ is an orientation-preserving Euclidean isometry, then τ(f) =
τ(ψ◦f); by composing φ with an isometry we may assume that f(a) =
(φ ◦ f)(a) and f ′(a) = λ(φ ◦ f)′(a) for λ > 0.

Suppose that |τ(f)− τ(φ ◦ f)| ≥ π. Since for a ≤ t ≤ b, the function

|τ(f |[a,t]) − τ(φ ◦ f |[a,t])|

is a continuous function of t and equals 0 for t = a, there exists 0 <
t0 ≤ b such that

|τ(f |[a,t0]) − τ(φ ◦ f |[a,t0])| = π.

Then the tangent vectors f ′(t0) and (φ◦f)′(t0) have opposite direction,
that is, there exists µ > 0 such that

L(φ)(f ′(t0)) = (φ ◦ f)′(t0) = −µf ′(t0).

Thus the linear part L(φ) has two eigenvalues λ,−µ contradicting φ
being orientation-preserving. !

We apply these ideas to the restriction of the developing map dev to
∂F . Since dev|∂F is the restriction of the immersion dev|F of the 2-disc,

2π =τ(dev|∂F )

(15)

=
g∑

i=1

τ(dev|a+
i
) + τ(dev|a−

i
) + τ(dev|b+i ) + τ(dev|b−i ) + (4g − 2)π

(16)

=
g∑

i=1

τ(dev|a+
i
) − τ(h(Bi) ◦ dev|a+

i
) + τ(dev|b+i ) − τ(h(Ai) ◦ dev|b+i ) + (4g − 2)π

(17)

(The 4g − 1 contributions of π arise from the 4g − 1 vertices of F
having interior angle 0; the single vertex of F having interior angle 2π
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contributes −π.) Thus

(4 − 4g)π =
g∑

i=1

τ(dev|a+
i
) − τ(h(Bi) ◦ dev|a+

i
) + τ(dev|b+i ) − τ(h(Ai) ◦ dev|b+i )

(18)

and

(4g−4)π <
g∑

i=1

|τ(dev|a+
i
)−τ(h(Bi)◦dev|a+

i
)|+|τ(dev|b+i )−τ(h(Ai)◦dev|b+i )| < 2gπ

from which it follows g = 1. !

Shortly after Benzécri proved the above theorem, Milnor observed
that this result follows from a more general theorem on flat vector bun-
dles. Let E be the 2-dimensional oriented vector bundle over M whose
total space is the quotient of M̃ × R2 by the diagonal action of π by
deck transformations on M̃ and via L ◦ h on R2, (that is, the flat vec-
tor bundle over M associated to the linear holonomy representation.)
This bundle has a natural flat structure, since the coordinate changes
for this bundle are (locally) constant linear maps. Now an oriented
R2-bundle over a space M is classified by its Euler class which lies in
H2(M ; Z). For M a closed oriented surface H2(M ; Z) ∼= Z and if ξ is an
oriented R2-bundle over M which admits a flat structure, Milnor [Mi1]
showed that

|e(ξ)| < g.

If M is an affine manifold, then the bundle E is isomorphic to the
tangent bundle of M and hence has Euler number e(TM) = 2 − 2g.
Thus the only closed orientable surface whose tangent bundle has a flat
structure is a torus. Furthermore Milnor showed that any R2-bundle
whose Euler number satisfies the above inequality has a flat connection.

In the early 1950’s Chern suggested that in general the Euler char-
acteristic of a compact affine manifold must vanish. Based on the
Chern-Weil theory of representing characteristic classes by curvature,
several special cases of this conjecture can be solved: if M is a compact
complex affine manifold, then the Euler characteristic is the top Chern
number and hence can be expressed in terms of curvature of the com-
plex linear connection (which is zero). However, in general, for a real
vector bundle, only the Pontrjagin classes are polynomials in the cur-
vature — indeed Milnor’s examples show that the Euler class cannot
be expressed as a polynomial in the curvature of a linear connection
(although it can be expressed as a polynomial in the curvature of an
orthogonal connection. This difficulty was overcome by a clever trick
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by Kostant and Sullivan [KS] who showed that the Euler characteristic
of a compact complete affine manifold vanishes.

5.3. Nonexistence of affine structures on certain connected
sums. In 1961, L˙ Markus posed the following “research problem”
among the exercises in lecture notes for a class in cosmology at the
University of Minnesota:

Question 5.6. Let M be a closed affine manifold. Then M is geodesi-
cally complete ⇐⇒ M has parallel volume.

An affine manifold has parallel volume ⇐⇒ it admits a parallel vol-
ume form ⇐⇒ the affine coordinate changes are volume-preserving
⇐⇒ the linear holonomy group lies in SL(E). If h : π −→ Aff(E) is
the affine holonomy homomorphism and L ◦ h : π −→ GL(E) is the
linear holonomy then M has parallel volume ⇐⇒ the composition

det ◦L ◦ h : π −→ R∗

is the trivial homomorphism. Thus every affine structure on a manifold
with zero first Betti number has parallel volume.

This somewhat surprising conjecture seems to be one of the main
barriers in constructing examples of affine manifolds. A purely topo-
logical consequence of this conjecture is that a compact affine manifold
M with zero first Betti number is covered by Euclidean space (in par-
ticular all of its higher homotopy groups vanish). Thus there should be
no such structure on a nontrivial connected sum in dimensions greater
than two. (In fact no affine structure is presently known on a nontrivial
connected sum.) Since the fundamental group of a connected sum is a
free product the following result is relevant in this connection:

Theorem 5.7. (Smillie [Sm3]) Let M be a closed affine manifold with
parallel volume. Then the affine holonomy homomorphism cannot fac-
tor through a free group.

This theorem can be generalized much further — see Smillie [Sm3]
and Goldman-Hirsch [GH3].

Corollary 5.8. (Smillie [Sm3]) Let M be a closed manifold whose
fundamental group is a free product of finite groups (for example, a
connected sum of manifolds with finite fundamental group). Then M
admits no affine structure.

Proof. Proof of 51̇1 assuming 51̇0 Suppose M has an affine structure.
Since π1(M) is a free product of finite groups, the first Betti number
of M is zero. Thus M has parallel volume. Furthermore if π1(M) is a
free product of finite groups, there exists a free subgroup Γ ⊂ π1(M) of
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finite index. Let M̂ be the covering space with π1(M̂) = Γ. Then the
induced affine structure on M̂ also has parallel volume contradicting
Theorem. !

Proof. Proof of 51̇0 Let M be a closed affine manifold modelled on
an affine space E, p : M̃ −→ M a universal covering, and (dev :
M̃ −→ E, h : π −→ Aff(E)) a development pair. Suppose that M has
parallel volume and that there is a free group Π through which the
affine holonomy homomorphism h factors:

π@ > φ >> Π@ > h̄ >> Aff(E)

Choose a graph G with fundamental group Π; then there exists a map
f : M −→ G inducing the homomorphism φ : π = π1(M) −→ π1(G) =
Π. By general position, there exist points s1, . . . sk ∈ G such that f
is transverse to si and the complement G − {s1, . . . , sk} is connected
and simply connected. Let Hi denote the inverse image f−1(si) and
let H = ∪iHi denote their disjoint union. Then H is an oriented
closed smooth hypersurface such that the complement M − H ⊂ M
has trivial holonomy. Let M |H denote the manifold with boundary
obtained by splitting M along H ; that is, M |H has two boundary
components H+

i , H−
i for each Hi and there exist diffeomorphisms gi :

H+
i −→ H−

i (generating Π) such that M is the quotient of M |H by
the identifications gi. There is a canonical diffeomorphism of M − H
with the interior of M |H .

Let ωE be a parallel volume form on E; then there exists a parallel
volume form ωM on M such that p∗ωM = dev∗ωE . Since Hn(E) = 0,
there exists an (n − 1)-form η on E such that dη = ωE. For any
immersion f : S −→ E of an oriented closed (n − 1)-manifold S, the
integral ∫

S

f ∗η

is independent of the choice of η satisfying dη = ωE . Since Hn−1(E),
any other η′ must satisfy η′ = η + dθ and

∫

S

f ∗η′ −
∫

S

f ∗η =

∫

S

d(f ∗θ) = 0.

Since M − H has trivial holonomy there is a developing map dev :
M − H −→ E and its restriction to M − H extends to a developing
map dev : M |H −→ E such that

dev|H+
i

= h̄(gi) ◦ dev|H−

i

and the normal orientations of H+
i , H−

i induced from M |H are opposite.
Since h(gi) preserves the volume form ωE , d(h(gi)∗η) = d(η) = ωE and
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we have ∫

H+
i

dev∗η =

∫

H+
i

dev∗h(gi)
∗η = −

∫

H−

i

dev∗η

since the normal orientations of H±
i are opposite. We now compute

the ωM -volume of M :

øvol(M) =

∫

M

ωM =

∫

M |H

dev∗ωE =

∫

∂(M |H)

η =
k∑

i=1

∫

H+
i

η+

∫

H−

i

η = 0

a contradiction. !

One basic method of finding a primitive η for ωE is by a radiant
vector field ρ. Since ρ expands volume, we have dιρωE = nωE and
η = 1

nιρωE is a primitive for ωE. An affine manifold is radiant ⇐⇒ it
possesses a radiant vector field ⇐⇒ the affine structure comes from an
(E, GL(E))-structure ⇐⇒ its affine holonomy has a fixed point in E.
The following result generalizes the above theorem:

Theorem 5.9. (Smillie) Let M be a closed affine manifold with a
parallel exterior differential k-form which has nontrivial de Rham co-
homology class. Suppose U is an open covering of M such that for each
U ∈ U , the affine structure induced on U is radiant. Then dimU ≥ k;
that is, there exist k + 1 distinct open sets U1, . . . , Uk+1 ∈ U such that
the intersection U1 ∩ · · · ∩ Uk+1 += ∅. (Equivalently the nerve of U has
dimension at least k.)

A published proof of this theorem can be found in Goldman-Hirsch [GH3].

5.4. Radiant affine structures. Radiant affine manifolds have many
special properties, derived from the existence of a radiant vector field.
If M is a manifold with radiant affine structure modelled on an affine
space E, let (dev, h) be a development pair and ρE a radiant vector
field on E invariant under h(π), then there exists a (radiant) vector
field ρM on M such that

p∗ρM = dev∗ρE .

Theorem 5.10. Let M be a compact radiant manifold.

• Then M cannot have parallel volume. (In other words a com-
pact manifold cannot support a (Rn, SL(n; R))-structure.) In
particular the first Betti number of a closed radiant manifold is
positive.

• The developing image dev(M̃) does not contain any stationary
points of the affine holonomy. (Thus M is incomplete.) In
particular the radiant vector field ρM is nonsingular and the
Euler characteristic χ(M) = 0.
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Proof. Proof of (1) Let ωE = dx1 ∧ · · ·∧ dxn be a parallel volume form
on E and let ωM be the corresponding parallel volume form on M , that
is, p∗ωM = dev∗ωE. Let ηM denote the interior product

ηM =
1

n
ιρM ωM

and it follows from

dιρEωE = nωE

that dηM = ωM . But ωM is a volume form on M and

øvol(M) =

∫

M

ωM =

∫

M

dηM = 0

a contradiction. (Intuitively, the main idea in the proof above is that
the radiant flow on M expands the parallel volume uniformly. Thus
by “conservation of volume”a compact manifold cannot support both
a radiant vector field and a parallel volume form.) !

Proof. Proof of (2) We may assume that

ρE =
n∑

i=1

xi ∂

∂xi

and it will suffice to prove that 0 /∈ dev(M̃). Since the only zero of
ρE is the origin 0 ∈ E, ρM is nonsingular on the complement of F =
p(dev−1(0)). Since p and dev are local diffeomorphisms and 0 ∈ E is
discrete, it follows that F ⊂ M is a discrete set; since dev is continuous
and 0 is h(π)-invariant, F ⊂ M is closed. Hence F is a finite subset of
M .

Since M is a closed manifold, ρM is completely integrable and thus
there is a flow {Rt : M −→ M}t∈R whose infinitesimally generated by
−ρM . The flow lifts to a flow {R̃t : M −→ M}t∈R on M̃ which satisfies

dev(R̃tx) = e−tdev(x)

for x ∈ M̃, t ∈ R. Choose a neighborhood U of F , each component
of which develops to a small ball B about 0 in E. Let K ⊂ M̃ be
a compact set such that the saturation π(K) = M̃ ; then there exists
N >> 0 such that if e−t(dev(K)) ⊂ B for t ≥ N and thus R̃t(K) ⊂ B
for t ≥ N . It follows that U is an attractor for the flow of ρM and that
RN : M −→ U is a deformation retraction of the closed manifold M
onto U . Since a closed manifold is not homotopy-equivalent to a finite
set, this contradiction shows that 0 /∈ dev(M̃) as desired. !
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There is a large class of discrete groups Γ for which every affine
representation Γ −→ Aff(E) is conjugate to a representation factoring
through SL(E), that is, Γ −→ SL(E) ⊂ Aff(E). For example finite
groups have this property, and the above theorem gives an alternate
proof that the holonomy of a compact affine manifold must be infi-
nite. Another class of groups having this property are the Margulis
groups, that is, irreducible lattices in semisimple Lie groups of R-rank
greater than one (for example, SL(n, Z) for n > 2). It follows that the
affine holonomy of a compact affine manifold cannot factor through a
Margulis group. However, since SL(n; R) does admit a left-invariant
RPn2−1-structure, it follows that if Γ ⊂ SL(n; R) is a torsionfree cocom-
pact lattice, then there exists a compact affine manifold with holonomy
group Γ × Z although Γ itself is not the holonomy group of an affine
structure.

5.5. Associative algebras: the group objects in the category
of affine manifolds. Let a be an associative algebra over the field of
real numbers. We shall associate to a a Lie group G = G(a) with a
bi-invariant affine structure. Conversely, if G is a Lie group with a bi-
invariant affine structure, then we show that its Lie algebra g supports
an associative multiplication g × g −→ g satisfying

(19) [X, Y ] = XY − Y X

and that the corresponding Lie group with with bi-invariant affine
structure is locally isomorphic to G.

We begin by discussing invariant affine structures on Lie groups. If
G is a Lie group and a ∈ G, then the operations of left- and right-
multiplication are defined by

Lab = Rba = ab

Suppose that G is a Lie group with an affine structure. The affine
structure is left-invariant (resp˙right-invariant) ⇐⇒ the operations La :
G −→ G (respectively Ra : G −→ G) are affine. An affine structure is
bi-invariant ⇐⇒ it is both left-invariant and right-invariant.

Suppose that G is a Lie group with a left-invariant (respṙight-invariant,
bi-invariant) affine structure. Let G̃ be its universal covering group and

π1(G) ↪→ G̃ −→ G



58 WILLIAM M. GOLDMAN

the corresponding central extension. Then the induced affine struc-
ture on G̃ is also left-invariant (respṙight-invariant, bi-invariant). Con-
versely, since π1(G) is central in G̃, every left-invariant (respṙight-
invariant, bi-invariant) affine structure on G̃ determines a left-invariant
(respṙight-invariant, bi-invariant) affine structure on G. Thus there
is a bijection between left-invariant (respṙight-invariant, bi-invariant)
affine structures on a Lie group and left-invariant (respṙight-invariant,
bi-invariant) affine structures on any covering group. For this reason
we shall for the most part only consider simply connected Lie groups.

Suppose that G is a simply connected Lie group with a left-invariant
affine structure and let dev : G −→ E be a developing map. Then
corresponding to the affine action of G on itself by left-multiplications
there is a homomorphism α : G −→ Aff(E) such that the diagram

G
dev−−−→ E

Lg

"
"α(g)

G −−−→
dev

E

commutes for each g ∈ G. We may assume that dev maps the identity
element e ∈ G to the origin 0 ∈ E; it follows from (A2) that dev(g) =
α(g)dev(e) = α(g)·0 is the translational part of the affine representation
α : G −→ Aff(E) for each g ∈ G. Furthermore since dev is open, it
follows that the orbit α(G)(0) equals the developing image and is open.
Indeed the translational part, which is the differential of the evaluation
map

TeG = g −→ E = T0E

is a linear isomorphism. Such an action will be called locally simply
transitive.

Conversely suppose that α : G −→ Aff(E) is an affine representation
and O ⊂ E is an open orbit. Then for any point x0 ∈ O, the evalua-
tion map g %→ α(g)(x0) defines a developing map for an affine structure
on G. Since dev(Lgh) = α(gh)(x0) = α(g)α(h)(x0) = α(g)dev(h) for
g, h ∈ G, this affine structure is left-invariant. Thus there is an isomor-
phism between the category of Lie groups G with left-invariant affine
structure and open orbits of locally simply transitive affine representa-
tions G −→ Aff(E).

Now suppose that a is an associative algebra; we shall associate to a
a Lie group with bi-invariant affine structure as follows. We formally
adjoin to a a two-sided identity element 1 to construct an associative
algebra a ⊕ R1; then the affine hyperplane E = a × {1} in a ⊕ R1
is a multiplicatively closed subset; the multiplication is given by the
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Jacobson product

(a ⊕ 1)(b ⊕ 1) = (a + b + ab) ⊕ 1

and in particular left-multiplications and right-multiplications are affine
maps. Let G = G(a) be the set of all a ⊕ 1 which have left-inverses
(necessarily also in a ⊕ {1}); it follows from associativity that a ⊕ 1
is left-invertible ⇐⇒ it is right-invertible as well. It is easy to see
that G is an open subset of a ⊕ {1} and forms a group. Furthermore,
the associative property in a implies that the actions of G by both
left- and right- multiplication on E are affine. In this way we define a
bi-invariant affine structure on G.

5.6. The semiassociative property. We seek the converse construc-
tion, namely to associate to an bi-invariant affine structure on a Lie
group G an associative algebra. This can be accomplished neatly as
follows. Let g be the Lie algebra of left-invariant vector fields on G and
let ∇ be the flat torsionfree affine connection on G corresponding to a
left-invariant affine structure. Since the connection is left-invariant, for
any two left-invariant vector fields X, Y ∈ g, the covariant derivative
∇XY ∈ g is left-invariant. It follows that covariant differentiation

(X, Y ) %→ ∇XY

defines a bilinear multiplication g×g −→ g which we denote (X, Y ) %→
XY . Now the condition that ∇ has zero torsion is

(20) XY − Y X = [X, Y ]

and the condition that ∇ has zero curvature (using (A3)) is

X(Y Z) − Y (XZ) = (XY − Y X)Z

which is equivalent to the semi-associative property

(21) (XY )Z − X(Y Z) = (Y X)Z − Y (XZ).

Now suppose that ∇ is bi-invariant. Thus the right-multiplications
are affine maps; it follows that the infinitesimal right-multiplications
— the left-invariant vector fields — are affine vector fields. For a flat
torsionfree affine connection a vector field Z is affine ⇐⇒ the second
covariant differential ∇∇Z vanishes. Now ∇∇Z is the tensor field
which associates to a pair of vector fields X, Y the vector field

∇∇Z(X, Y ) = ∇X(∇Z(Y )) −∇Z(∇XY ) = ∇X∇Y Z −∇∇XY Z

and if X, Y, Z ∈ g we obtain the associative law X(Y Z)− (XY )Z = 0.
One can check that these two constructions
{
Associative algebras

}
⇐⇒

{
Bi-invariant affine structures on Lie groups

}
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are mutually inverse.
A (not necessarily associative) algebra whose multiplication satis-

fies (A2) is said to be a left-symmetric algebra, (algèbre symétrique
à gauche) or a Koszul-Vinberg algebra. We propose the name “semi-
associative algebra.” Of course every associative algebra satisfies this
property. If a is a semi-associative algebra, then the operation

(22) [X, Y ] = XY − Y X

is skew-symmetric and satisfies the Jacobi identity. Thus every semi-
associative algebra has an underlying Lie algebra structure. We denote
this Lie algebra by g. If g is a Lie algebra, then a semi-associative op-
eration satisfying (2) will be called an affine structure on g.

Let L : a −→ Enda be the operation of left-multiplication defined by

L(X) : Y %→ XY

In terms of left-multiplication and the commutator operation defined
in (2), a condition equivalent to (1) is

(23) L([X, Y ]) = [L(X), L(Y )]

that is, that L : g −→ End(a) is a Lie algebra homomorphism. We
denote by aL the corresponding g-module. Furthermore the identity
map I : g −→ aL defines a cocycle of the Lie algebra g with coefficients
in the g-module aL:

(24) L(X)Y − L(Y )X = [X, Y ]

Let E denote an affine space with associated vector space a; then it
follows from (3) and (4) that the map α : g −→ aff(E) defined by

(25) α(X) : Y %→ L(X)Y + XisaLiealgebrahomomorphism.

Theorem 5.11. There is an isomorphism between the categories of
semi-associative algebras and simply connected Lie groups with left-
invariant affine structure. Under this isomorphism the associative al-
gebras correspond to bi-invariant affine structures.

There is a large literature on semi-associative algebras; we refer
to Helmstetter [He], Auslander [A1], Boyom [], Kim [], Medina [],
Koszul [], Vey [V1], Vinberg [Vb] and the references cited there for
more information.

One can translate geometric properties of a left-invariant affine struc-
ture on a Lie group G into algebraic properties of the correspond-
ing semi-associative algebra a. For example, the following theorem is
proved in Helmstetter [He] and indicates a kind of infinitesimal ver-
sion of Markus’ conjecture relating geodesic completeness to parallel
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volume. For more discussion of this result and proofs, see Helmstet-
ter [He] and also Goldman-Hirsch [GH4].

Theorem 5.12. Let G be a simply connected Lie group with left-
invariant affine structure. Let α : G −→ Aff(E) be the corresponding
locally simply transitive affine action and a the corresponding semi-
associative algebra. Then the following conditions are equivalent:

• G is a complete affine manifold;
• α is simply transitive;
• A volume form on G is parallel ⇐⇒ it is right-invariant;
• For each g ∈ G, det Lα(g) = det Ad(g)−1, that is, the distortion

of parallel volume by α equals the modular function of G;
• The subalgebra of End(a) generated by right-multiplications Ra :

x %→ xa is nilpotent.

In a different direction, we may say that a left-invariant affine struc-
ture is radiant ⇐⇒ the affine representation α corresponding to left-
multiplication has a fixed point, that is, is conjugate to a representation
G −→ GL(E). Equivalently, α(G) preserves a radiant vector field on E.
A left-invariant affine structure on G is radiant ⇐⇒ the corresponding
semi-associative algebra has a right-identity, that is, an element e ∈ a
satisfying ae = a for all a ∈ a.

Since the affine representation α : G −→ Aff(E) corresponds to
left-multiplication, the associated Lie algebra representation α : g −→
aff(E) maps g into affine vector fields which correspond to the infinites-
imal generators of left-multiplications, that is, to right-invariant vector
fields.. Thus with respect to a left-invariant affine structure on a Lie
group G, the right-invariant vector fields are affine. Let X1, . . . , Xn be
a basis for the right-invariant vector fields; it follows that the exterior
product

α(X1) ∧ · · · ∧ α(Xn) = f(x)dx1 ∧ · · · ∧ dxn

for a polynomial f ∈ R[x1, . . . , xn], called the characteristic polynomial
of the left-invariant affine structure. In terms of the algebra a, we have

f(X) = det(RX⊕1)

where RX⊕1 denotes right-multiplication by X ⊕ 1. In [He] and [GH4]
it is shown that the developing map is a covering map of G onto a
connected component of the set where f(x) += 0. In particular the
nonvanishing of f is equivalent to completeness of the affine structure.

5.7. 2-dimensional commutative associative algebras. One ob-
tains many examples of affine structures on closed 2-manifolds from
commutative associative algebras as follows. Let a be such an algebra
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and let Λ ⊂ a be a lattice. Then the universal covering group G of the
group of invertible elements a ⊕ 1 ∈ a ⊕ R1 acts locally simply transi-
tively and affinely on the affine space E = a⊕ {1}. The Lie algebra of
G is naturally identified with the algebra a and there is an exponential
map exp : a −→ G defined by the usual power series (in a). The corre-
sponding evaluation map at 1 defines a developing map for an invariant
affine structure on the vector group a and thus the quotient a/Λ is a
torus with an invariant affine structure. Some of these affine structures
we have seen previously in other contexts. It is a simple algebraic
exercise to classify 2-dimensional commutative associative algebras:

• a = R[x, y] where x2 = y2 = xy = 0. The corresponding affine
representation is the action of R2 on the plane by translation
and the corresponding affine structures on the torus are the
Euclidean structure.

• a = R[x] where x3 = 0. The corresponding affine representation
is the simply transitive action discussed in 41̇4. The correspond-
ing affine structures are complete but non-Riemannian.

• a = R[x, y] where x2 = xy = 0 and y2 = y. The algebra a is
the product of two 1-dimensional algebras, one corresponding
to the complete structure and the other corresponding to the
radiant structure. For various choices of Λ one obtains parallel
suspensions of Hopf circles. In these cases the developing image
is a half-plane.

• a = R[x, y] where x2 = 0 and xy = x, y2 = y. Since y is an
identity element, the corresponding affine structure is radiant.
For various choices of Λ one obtains radiant suspensions of the
complete affine 1-manifold R/Z. The developing image is a
half-plane.

• a = R[x, y] where x2 = x, y2 = y and xy = 0. This algebra is
the product of two algebras corresponding to radiant structures;
this structure is radiant since x+y is an identity element. Radi-
ant suspensions of Hopf circles are examples of affine manifolds
constructed in this way. The developing image is a quadrant in
R2.

• a = R[x, y] where x2 = −y2 = x and xy = y. In this case a ∼= C
and we obtain the complex affine 1-manifolds, in particular the
Hopf manifolds are all obtained from this algebra. Clearly x is
the identity and these structures are all radiant. The developing
image is the complement of a point in the plane.
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6. Convex affine and projective structures

These are the lecture notes from the last two weeks of the spring
semester 1988. Most of this material is taken from Benzecri [B2] and
Vinberg [Vb], although some of the proofs of Benzecri’s results are
simplified. The main goal was a description of which kinds of convex
sets arise as covering spaces of compact manifolds with real projective
structures. In dimension two, the universal covering space of a closed
surface of negative Euler characteristic with a convex projective struc-
ture is bounded by either a conic or a C1 convex curve which is nowhere
twice differentiable. This statement is given in C1̇8. I am grateful to
William Thurston for explaining to me in 1981 why the boundary of
such a domain is differentiable and to Sid Frankel, Karsten Grove, John
Millson and Ser Peow Tan for several clarifying conversations on the
proofs given here.

6.1. The geometry of convex cones in affine space. Let V be a
real vector space of dimension n. A convex cone in V is a subset Ω ⊂ V
such that if t1, t2 > 0 and x1, x2 ∈ Ω, then t1x1 + t2x2 ∈ Ω. A convex
cone Ω is sharp if it contains no complete affine line.

Lemma 6.1. Let Ω ⊂ V be an open convex cone in a vector space.
Then there exists a unique linear subspace W ⊂ V such that:

• Ω is invariant under translation by vectors in W (that is, Ω is
W -invariant;)

• There exists a sharp convex cone Ω0 ⊂ V/W such that Ω =
π−1

W (Ω0) where πW : V −→ V/W denotes linear projection with
kernel W .

Proof. Let

W = {w ∈ V | x + tw ∈ Ω, ∀x ∈ Ω, t ∈ R}.
Then W is a linear subspace of V and Ω is W -invariant. Let Ω0 =
πW (Ω) ⊂ V/W ; then Ω = π−1

W (Ω0). It remains to show that Ω0 is
sharp and to this end we can immediately reduce to the case W = 0.
Suppose that Ω contains a complete affine line {y + tw | t ∈ R} where
y ∈ Ω and w ∈ V . Then for each s, t ∈ R

xs,t =
s

s + 1
x +

1

s + 1
(y + stw) ∈ Ω

whence
lim
s→∞

xs,t = x + tw ∈ Ω̄.

Thus x + tw ∈ Ω̄ for all t ∈ R. Since x ∈ Ω and Ω is open and convex,
it follows that x + tw ∈ Ω for all t ∈ R and w ∈ W as claimed. !
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Suppose that Ω ⊂ V is a sharp convex cone. Its dual cone is defined
to be the set

Ω∗ = {ψ ∈ V ∗ | ψ(x) > 0, ∀x ∈ Ω̄}
where V ∗ is the vector space dual to V .

Lemma 6.2. Let Ω ⊂ V be a sharp convex cone. Then its dual cone
Ω∗ is a sharp convex cone.

Proof. Clearly Ω∗ is a convex cone. We must show that Ω∗ is sharp and
open. Suppose first that Ω∗ contains a line; then there exists ψ0, λ ∈ V ∗

such that λ += 0 and ψ0 + tλ ∈ Ω∗ for all t ∈ R, that is, for each x ∈ Ω,

ψ0(x) + tλ(x) > 0

for each t ∈ R. Let x ∈ Ω; then necessarily λ(x) = 0. For if λ(x) += 0,
there exists t ∈ R with ψ0(x) + tλ(x) ≤ 0, a contradiction. Thus Ω∗

is sharp. The openness of Ω∗ follows from the sharpness of Ω. Since
Ω is sharp, its projectivization P(Ω) is a properly convex domain; in
particular its closure lies in an open ball in an affine subspace E of P
and thus the set of hyperplanes in P disjoint from P(Ω) is open. It
follows that P(Ω∗), and hence Ω∗, is open. !

Lemma 6.3. The canonical isomorphism V −→ V ∗∗ maps Ω onto Ω∗∗.

Proof. We shall identify V ∗∗ with V ; then clearly Ω ⊂ Ω∗∗. Since both
Ω and and Ω∗∗ are open convex cones, either Ω = Ω∗∗ or there exists
y ∈ ∂Ω∩Ω∗∗. Let H ⊂ V be a supporting hyperplane for Ω at y. Then
the linear functional ψ ∈ V ∗ defining H satisfies ψ(y) = 0 and ψ(x) > 0
for all x ∈ Ω. Thus ψ ∈ Ω∗. But y ∈ Ω∗∗ implies that ψ(y) > 0, a
contradiction. !

Theorem 6.4. Let Ω ⊂ V be a sharp convex cone. Then there exists
a real analytic Aff(Ω)-invariant closed 1-form α on Ω such that its
covariant differential ∇α is an Aff(Ω)-invariant Riemannian metric
on Ω. Furthermore α(ρV ) = −n < 0 where ρV is the radiant vector
field on V .

Let dψ denote a parallel volume form on V ∗. The characteristic
function f : Ω −→ R of the sharp convex cone Ω is defined by the
integral

(26) f(x) =

∫

Ω∗

e−ψ(x)dψ

for x ∈ Ω. This function will define a canonical Riemannian geome-
try on Ω which is invariant under the automorphism group Aff(Ω) as
well as a canonical diffeomorphism Ω −→ Ω∗. (Note that replacing
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the parallel volume form dψ by another one cdψ changes replaces the
characteristic function f by a constant multiple cf . Thus f : Ω −→ R
is well-defined only up to scaling.) For example in the one-dimensional
case, where Ω = R+ ⊂ V = R we have Ω∗ = R+ and

f(x) =

∫ ∞

0

e−ψxdψ =
1

x
.

We begin by showing the integral (C-1) converges for x ∈ Ω. For
x ∈ V and t ∈ R consider the hyperplane cross-section

V ∗
x (t) = {ψ ∈ V ∗ | ψ(x) = t}

and let
Ω∗

x(t) = Ω∗ ∩ V ∗
x (t).

For each x ∈ Ω we obtain a decomposition

Ω∗ =
⋃

t>0

Ω∗
x(t)

and for each s > 0 there is a diffeomorphism

hs : Ω∗
x(t) −→ Ω∗

x(st)

hs(ψ) = sψ.

We decompose the volume form dψ on Ω∗ as

dψ = dψt ∧ dt

where dψt is an (n− 1)-form on V ∗
x (t). Now the volume form (hs)∗dψst

on Ω∗
x(t) is a parallel translate of tn−1dψt. Thus

f(x) =

∫ ∞

0

(
e−t

∫

Ω∗
x(t)

dψt

)
dt

=

∫ ∞

0

e−ttn−1

(∫

Ω∗
x(1)

dψ1

)
dt

= (n − 1)! øarea(Ω∗
x(1)) < ∞

since Ω∗
x(1) is a bounded subset of V ∗

x (1). Since øarea(Ω∗
x(n)) =

nn−1øarea(Ω∗
x(1)),

(27) f(x) =
n!

nn
øarea(Ω∗

x(n))

Let ΩC denote the tube domain Ω +
√
−1 V ⊂ V ⊗ C. Then the

integral defining f(x) converges absolutely for x ∈ ΩC. It follows that
f : Ω −→ R extends to a holomorphic function ΩC −→ C from which
it follows that f is real analytic on Ω.

Lemma 6.5. The function f(x) −→ +∞ as x −→ ∂Ω.
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Proof. Consider a sequence {xn}n>0 in Ω converging to x∞ ∈ ∂Ω. Then
the functions

Fk : Ω∗ −→ R

ψ %→ e−ψ(xk)

are nonnegative functions converging uniformly to F∞ on every com-
pact subset of Ω∗ so that

lim inf f(xk) = lim inf

∫

Ω∗

Fk(ψ)dψ ≥
∫

Ω∗

F∞(ψ)dψ.

Suppose that ψ0 ∈ V ∗ defines a supporting hyperplane to Ω at x∞;
then ψ0(x∞) = 0. Let K ⊂ Ω∗ be a closed ball; then K + R+ψ0 is a
cylinder in Ω∗ with cross-section K1 = K ∩ ψ−1

0 (c) for some c > 0.
∫

Ω∗

F∞(ψ)dψ ≥
∫

K+R+ψ0

e−ψ(x∞)dψ

≥
∫

K1

(

∫ ∞

0

dt)e−ψ(x∞) dψ1 = ∞

where dψ1 is a volume form on K1. !

Lemma 6.6. If γ ∈ Aff(Ω) ⊂ GL(V ) is an automorphism of Ω, then

(28) f ◦ γ = det(γ)−1 · f

In other words, if dx is a parallel volume form on E, then f(x) dx
defines an Aff(Ω)-invariant volume form on Ω.

Proof.

f(γx) =

∫

Ω∗

e−ψ(γx)dψ

=

∫

γ−1Ω∗

e−ψ(x)γ∗dψ

=

∫

Ω∗

e−ψ(x)(det γ)−1dψ

= (det γ)−1f(x)

!

Since det(γ) is a constant, it follows from (C-3) that log f transforms
under γ by the additive constant log det(γ)−1 and thus

α = d log f = f−1df
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is an Aff(Ω)-invariant closed 1-form on Ω. Furthermore taking γ to
be the homothety hs : x %→ sx we see that f ◦ hs = s−n · f and by
differentiating we have

α(ρV ) = −n.

Let X ∈ TxΩ ∼= V be a tangent vector; then df(x) ∈ T ∗
xΩ maps

X %→ −
∫

Ω∗

ψ(X)e−ψ(x)dψ.

Using the identification T ∗
xΩ ∼= V ∗ we obtain a map

Φ : Ω −→ V ∗

x %→ −d log f(x).

As a linear functional, Φ(x) maps X ∈ V to
∫
Ω∗ ψ(X)e−ψ(x)dψ∫

Ω∗
e−ψ(x)dψ

so if X ∈ Ω, the numerator is positive and Φ(x) > 0 on Ω. Thus
Φ : Ω −→ Ω∗. Furthermore by decomposing the volume form on Ω∗ we
obtain

Φ(x) =

∫ ∞
0 e−ttn

(∫
Ω∗

x(1) ψ1dψ1

)
dt

∫ ∞

0 e−ttn−1
(∫

Ω∗
x(1) dψ1

)
dt

= n

∫
Ω∗

x(1) ψ1dψ1dt
∫
Ω∗

x(1) dψ1dt

= nøcentroid(Ω∗
x(1)).

Since

Φ(x) ∈ n · Ω∗
x(1) = Ω∗

x(n),

that is, Φ(x) : x %→ n,

(29) Φ(x) = øcentroid(Ω∗
x(n)).

The logarithmic Hessian d2 log f = ∇d log f = ∇α is an Aff(Ω)-
invariant symmetric 2-form on Ω. Now for any function f : Ω −→ R
we have

d2(log f) = ∇(f−1df) = f−1d2f − (f−1df)2

and d2f(x) ∈ S2T ∗
xΩ assigns to a pair (X, Y ) ∈ TxΩ× TxΩ = V × V

∫

Ω∗

ψ(X)ψ(Y )e−ψ(x)dψ
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We claim that d2 log f is positive definite:

f(x)2d2 log f(x)(X, X) =

∫

Ω∗

e−ψ(x)dψ

∫

Ω∗

ψ(X)2e−ψ(x)dψ

− (

∫

Ω∗

ψ(X)e−ψ(x)dψ)2

= ‖e−ψ(x)/2‖2
2 ‖ψ(X)e−ψ(x)/2‖2

2

− 〈e−ψ(x)/2, ψ(X)e−ψ(x)/2〉22 > 0

by the Schwartz inequality, since the functions

ψ %→ e−ψ(x)/2, ψ %→ ψ(X)e−ψ(x)/2

on Ω∗ are not proportional. (Here 〈, 〉2 and ‖ ‖2 respectively denote the
usual L2 inner product and norm on (Ω∗, dψ).) It follows that d2 log f
is positive definite and hence defines an Aff(Ω)-invariant Riemannian
metric on Ω.

We can characterize the linear functional Φ(x) ∈ Ω∗ quite simply.
Since Φ(x) is parallel to df(x), each of its level hyperplanes is parallel
to the tangent plane of the level set Sx of f : Ω −→ R containing x.
Since Φ(x)(x) = n, we obtain:

Proposition 6.7. The tangent space to the level set Sx of f : Ω −→ R
at x equals Φ(x)−1(n).

This characterization yields the following result:

Theorem 6.8. Φ : Ω −→ Ω∗ is bijective.

Proof. Let ψ0 ∈ Ω∗ and let Q0 = {z ∈ V | ψ0(z) = n}. Then the
restriction of log f to the affine hyperplane Q0 is a convex function
which approaches +∞ on ∂(Q0∩Ω). It follows that f |Q0∩Ω has a unique
critical point x0, which is necessarily a minimum. Then Tx0Sx0 = Q0

from which it follows from the above proposition that Φ(x0) = ψ0.
Furthermore if Φ(x) = ψ0, then f |Q0∩Ω has a critical point at x so
x = x0. It follows that Φ : Ω −→ Ω∗ is bijective as claimed. !

If Ω ⊂ V is a sharp convex cone and Ω∗ is its dual, then let ΦΩ∗ :
Ω∗ −→ Ω be the diffeomorphism Ω∗ −→ Ω∗∗ = Ω defined above. If
x ∈ Ω, then ψ = (Φ∗)−1(x) is the unique ψ ∈ V ∗ such that:

• ψ(x) = n;
• The centroid of Ω ∩ ψ−1(n) equals x.

The duality isomorphism GL(V ) −→ GL(V ∗) (given by inverse trans-
pose of matrices) defines an isomorphism Aff(Ω) −→ Aff(Ω∗). Let
ΦΩ : Ω −→ Ω∗ and ΦΩ∗ : Ω∗ −→ Ω∗∗ = Ω be the duality maps for
Ω and Ω∗ respectively. Vinberg points out in [Vb] that in general the
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composition ΦΩ∗ ◦ ΦΩ : Ω −→ Ω is not the identity, although if Ω is
homogeneous, that is, Aff(Ω) ⊂ GL(V ) acts transitively on Ω, then
ΩΩ∗ ◦ ΦΩ = øidΩ:

Proposition 6.9. (Vinberg [Vb]) Let Ω ⊂ V be a homogeneous sharp
convex cone. Then ΦΩ∗ : Ω∗ −→ Ω and ΦΩ : Ω −→ Ω∗ are inverse
maps.

Proof. Let x ∈ Ω and Y ∈ V ∼= TxΩ be a tangent vector. Denote by
gx : TxΩ× TxΩ −→ R the canonical Riemannian metric ∇α = d2 log f
at x. Then the differential of ΦΩ : Ω −→ Ω∗ at x is the composition

TxΩ
g̃x→ −→T ∗

xΩ ∼= V ∗ ∼= TΦ(x)Ω
∗

where g̃x : TxΩ −→ T ∗
xΩ is the linear isomorphism corresponding to

gx and the isomorphisms T ∗
xΩ ∼= V ∗ ∼= TΦ(x)Ω∗ are induced by parallel

translation. Taking the directional derivative of the equation

αx(ρx) = −n

with respect to Y ∈ V ∼= TxΩ we obtain

(30)
0 = (∇Y α)(ρ) + α(∇Y ρ) = gx(ρx, Y ) + αx(Y ) = gx(x, Y ) − Φ(x)(Y ).

Now let fΩ : Ω −→ R and fΩ∗ : Ω∗ −→ R be the characteristic
functions for Ω and Ω∗ respectively. Then fΩ(x) dx is a volume form
on Ω invariant under Aff(Ω) and fΩ∗(ψ) dψ is a volume form on Ω∗

invariant under the induced action of Aff(Ω) on Ω∗. Moreover Φ : Ω −→
Ω∗ is equivariant with respect to the isomorphism Aff(Ω) −→ Aff(Ω∗)
and thus the tensor field

x %→ fΩ(x) dx⊗ (fΩ∗ ◦Φ(x) dψ) ∈ ∧nTxΩω⊗∧nTΦ(x)Ω
∗ ∼= ∧nV ⊗∧nV ∗

is invariant under Aff(Ω). But the tensor field dx⊗ dψ ∈ ∧nV ⊗∧nV ∗

is invariant under all of Aff(V ) and thus the coefficient

h(x) = fΩ(x) dx ⊗ (fΩ∗ ◦ Φ(x) dψ)

is a function on Ω which is invariant under Aff(Ω). Since Ω is homoge-
neous, it follows that h is constant.

Differentiating log h we obtain

0 = d log fΩ(x) + d log(fΩ∗ ◦ Φ)(x)

which, since d log fΩ∗(ψ) = ΦΩ∗(ψ),

0 = −Φ(x)(Y ) + ΦΩ∗(dΦ(Y )) = −Φ(x)(Y ) + gx(Y,ΦΩ∗ ◦ ΦΩ(x))

Combining this equation with (C-C) we obtain

ΦΩ∗ ◦ ΦΩ(x) = x
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as desired. !

It follows that if Ω is a homogeneous cone, then Φ(x) ∈ Ω∗ is the
centroid of the cross-section Ω∗

x(n) ⊂ Ω∗ in V ∗.

6.2. Convex bodies in projective space. Let P = P(V ) and P∗ =
P(V ∗) be the associated projective spaces. Then the projectivization
P(Ω) ⊂ P of Ω is by definition a properly convex domain and its closure
K = P(Ω) a convex body . Then the dual convex body K∗ equals
the closure of the projectivization P(Ω∗) consisting of all hyperplanes
H ⊂ P such that Ω̄∩H = ∅. A pointed convex body consists of a pair
(K, x) where K is a convex body and x ∈ øint(K) is an interior point
of K. Let H ⊂ P be a hyperplane and E = P − H its complementary
affine space. We say that the pointed convex body (K, u) is centered
relative to E (or H) if u is the centroid of K in the affine geometry of
E. By projectivization we obtain from Theorem C1̇0:

Proposition 6.10. Let (K, u) be a pointed convex body in a projective
space P. Then there exists a hyperplane H ⊂ P disjoint from K such
that in the affine space E = P − H, the centroid of K ⊂ E equals u.

Proof. Let V = V (P) be the vector space corresponding to the pro-
jective space P and let Ω ⊂ V be a sharp convex cone whose projec-
tivization is the interior of K. Let x ∈ Ω be a point corresponding to
u ∈ øint(K). Let ΦΩ∗ : Ω∗ −→ Ω be the duality map for Ω∗ and let
ψ = (ΦΩ∗)−1(y). Then the centroid of the cross-section

Ωψ(n) = {x ∈ Ω | ψ(x) = n}
in the affine hyperplane ψ−1(n) ⊂ V equals y. Let H = P(Ker(ψ))
be the projective hyperplane in P corresponding to ψ; then projec-
tivization defines an affine isomorphism ψ−1(n) −→ P − H mapping
Ωψ(n) −→ K. Since affine maps preserve centroids, it follows that
(K, u) is centered relative to H . !

Thus every pointed convex body (K, u) is centered relative to a
unique affine space containing K. In dimension one, this means the
following: let K ⊂ RP1 be a closed interval [a, b] ⊂ R and let a < x < b
be an interior point. Then x is the midpoint of [a, b] relative to the
“hyperplane” H obtained by projectively reflecting x with respect to
the pair {a, b}:

H = R[a,b](x) =
(a + b)x − 2ab

2x − (a + b)

An equivalent version of C1̇2 involves using collineations to “move a
pointed convex body” inside affine space to center it:
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Proposition 6.11. Let K ⊂ E be a convex body in an affine space and
let x ∈ øint(E) be an interior point. Let P ⊃ E be the projective space
containing E. Then there exists a collineation g : P −→ P such that:

• g(K) ⊂ E;
• (g(K), g(x)) is centered relative to E.

The one-dimensional version of this is just the fundamental theorem
of projective geometry: if [a, b] is a closed interval with interior point
x, then there is a unique collineation taking

a %→ −1, x %→ 0, b %→ 1

thereby centering ([a, b], x) ∈ C∗(P).
We also have the following uniqueness statement:

Proposition 6.12. Let Ki ⊂ E be convex bodies (i = 1, 2) in an
affine space E with centroids ui, and suppose that g : P −→ P is a
collineation such that g(K1) = K2 and g(u1) = u2. Then g is an affine
automorphism of E, that is, g(E) = E.

Proof. Let V be a vector space containing E as an affine hyperplane
and let Ωi be the sharp convex cones in V whose projective images are
Ki. By assumption there exists a linear map g̃ : V −→ V and points
xi ∈ Ωi mapping to ui ∈ Ki such that g̃(Ω1) = Ω2 and g̃(x1) = x2. Let
Si ⊂ Ωi be the level set of the characteristic function fi : Ωi −→ R
containing xi. Since (Ki, ui) is centered relative to E, it follows that
the tangent plane TxiSi = E ⊂ V . Since the construction of the
characteristic function is linearly invariant, it follows that g̃(S1) = S2.
Moreover g̃(Tx1S1) = Tx2S2, that is, g̃(E) = E and g ∈ Aff(E) as
desired. !

6.3. Spaces of convex bodies in projective space. Let C(P) de-
note the set of all convex bodies in P, with the topology induced from
the Hausdorff metric on the set of all closed subsets of P (which is
induced from the Fubini-Study metric on P). Let

C∗(P) = {(K, x) ∈ C(P) × P | x ∈ øint(K)}

be the corresponding set of pointed convex bodies, with a topology
induced from the product topology on C(P)×P. The collineation group
G acts continuously on C(P) and on C∗(P). Recall that an action of
a group Γ on a space X is syndetic if there exists a compact subset
K ⊂ X such that ΓK = X.
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Theorem 6.13. (Benzécri) The collineation group G acts properly and
syndetically on C∗(P). quotient. In particular the quotient C∗(P)/G is
a compact Hausdorff space.

While the quotient C∗(P)/G is Hausdorff, the space of equivalence
classes of convex bodies C(P)/G is generally not Hausdorff. Some basic
examples are the following. Suppose that Ω is a properly convex do-
main whose boundary is not C1 at a point x1. Then ∂Ω has a “corner”
at x1 and we may choose homogeneous coordinates so that x1 = [1, 0, 0]
and Ω̄ lies in the domain

8 = {[x, y, z] ∈ RP2 | x, y, z > 0}

in such a way that ∂Ω is tangent to ∂8 at x1. Under the one-parameter
group of collineations defined by

gt =




e−t 0 0
0 1 0
0 0 et





as t −→ +∞, the domains gtΩ converge to 8. It follows that the G-
orbit of Ω̄ in C(P) is not closed and the equivalence class of Ω̄ is not a
closed point in C(P)/G unless Ω was already a triangle.

Similarly suppose that Ω is a properly convex domain which is not
strictly convex, that is, its boundary contains a nontrivial line segment
σ. (We suppose that σ is a maximal line segment contained in ∂Ω.) As
above, we may choose homogeneous coordinates so that Ω ⊂ 8 and
such that Ω̄ ∩ 8̄ = σ̄ and σ lies on the line {[x, y, 0] | x, y ∈ R}. As
t −→ +∞ the image of Ω under the collineation

gt =




e−t 0 0
0 e−t 0
0 0 e2t





converges to a triangle region with vertices {[0, 0, 1]} ∪ ∂σ. As above,
the equivalence class of Ω̄ in C(P)/G is not a closed point in C(P)/G
unless Ω is a triangle.

As a final example, consider a properly convex domain Ω with C1

boundary such that there exists a point u ∈ ∂Ω such that ∂Ω is C2

at u. In that case there is an osculating conic C to ∂Ω at u. Choose
homogeneous coordinates such that u = [1, 0, 0] and C = {[x, y, z] |
xy +z2 = 0}. Then as t −→ +∞ the image of Ω under the collineation

gt =




e−t 0 0
0 et 0
0 0 1
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converges to the convex region {[x, y, z] | xy + z2 < 0} bounded by C.
As above, the equivalence class of Ω̄ in C(P)/G is not a closed point in
C(P)/G unless ∂Ω is a conic.

In summary:

Proposition 6.14. Suppose Ω̄ ⊂ RP2 is a convex body whose equiva-
lence class [Ω̄] is a closed point in C(P)/G. Suppose that ∂Ω is neither
a triangle nor a conic. Then ∂Ω is a C1 strictly convex curve which is
nowhere C2.

Let Π : C∗(P) −→ C(P) denote the map which forgets the point
of a pointed convex body; it is induced from the Cartesian projection
C(P) × P −→ C(P).

Theorem 6.15. (Benzécri) Let Ω ⊂ P is a properly convex domain
such that there exists a subgroup Γ ⊂ Aut(Ω) which acts syndetically
on Ω. Then the corresponding point [Ω̄] ∈ C(P)/G is closed.

In the following result, all but the continuous differentiability of the
boundary in the following result was originally proved in Kuiper [Kp2]
using a somewhat different technique; the C1 statement is due to
Benzécri [B2] as well as the proof given here.

Corollary 6.16. Suppose that M = Ω/Γ is a convex RP2-manifold
such that χ(M) < 0. Then either the RP2-structure on M is a hy-
perbolic structure or the boundary ∂Ω of its universal covering is a C1

strictly convex curve which is nowhere C2.

Proof. Apply Proposition C1̇6 to Theorem C1̇7. !

Proof of Theorem C1̇7 assuming Theorem C1̇5. Let Ω be a properly con-
vex domain with an automorphism group Γ ⊂ Aff(Ω) acting syndeti-
cally on Ω. It suffices to show that the G-orbit of {Ω̄} in C(P) is closed,
which is equivalent to showing that the G-orbit of Π−1({Ω̄}) = {Ω̄}×Ω
in C∗(P) is closed. This is equivalent to showing that the image of
{Ω̄}×Ω ⊂ C∗(P) under the quotient map C∗(P) −→ C∗(P)/G is closed.
Let K ⊂ Ω be a compact subset such that ΓK = Ω; then {Ω̄} × K
and {Ω̄}× Ω have the same image in C∗(P)/Γ and hence in C∗(P)/G.
Hence it suffices to show that the image of {Ω̄} × K in C∗(P)/G is
closed. Since K is compact and the composition

K −→ {Ω̄}× K ↪→ {Ω̄}× Ω ⊂ C∗(P) −→ C∗(P)/G

is continuous, it follows that the image of K in C∗(P)/G is compact. By
Theorem A, C∗(P)/G is Hausdorff and hence the image of K in C∗(P)/G
is closed, as desired. The proof of Theorem C1̇5 is now complete. !
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Now we begin the proof of Theorem C1̇5. Choose a fixed hyperplane
H∞ ⊂ P and let E = P − H∞ be the corresponding affine patch and
Aff(E) the group of affine automorphisms of E. Let C(E) ⊂ C(P)
denote the set of convex bodies K ⊂ E, with the induced topology.
(Note that the C(E) is a complete metric space with respect to the
Hausdorff metric induced from the Euclidean metric on E and we may
use this metric to define the topology on C(E). The inclusion map
C(E) ↪→ C(P) is continuous, although not uniformly continuous.) We
define a map ι : C(E) −→ C∗(P) as follows. Let K ∈ C(E) be a convex
body in affine space E; let ι(K) to be the pointed convex body

ι(K) = (K, øcentroid(K)) ∈ C∗(P);

clearly this map is equivariant with respect to the embedding Aff(E) −→
G.

We must relate the actions of Aff(E) on C(E) and G on C(P). Recall
that a topological transformation groupoid consists of a small category
G whose objects form a topological space X upon which a topological
group G acts such that the morphisms a → b consist of all g ∈ G such
that g(a) = b. We write G = (X, G). A homomorphism of topologi-
cal transformation groupoids is a functor (f, F ) : (X, G) −→ (X ′, G′)
arising from a continuous map f : X −→ X ′ which is equivariant with
respect to a continuous homomorphism F : G −→ G′.

The space of isomorphism classes of objects in a category G will be
denoted Iso(G). We shall say that G is proper (respṡyndetic) if the
corresponding action of G on X is proper (respṡyndetic). If G and G′

are topological categories, a functor F : G −→ G′ is an equivalence of
topological categories if the induced map Iso(F ) : Iso(G) −→ Iso(G′)
is a homeomorphism and F is fully faithful, that is, for each pair of
objects a, b of G, the induced map F∗ : Hom(a, b) −→ Hom(F (a), F (b))
is a homeomorphism. If F is fully faithful it is enough to prove that
Iso(F ) is surjective. (Compare Jacobson [].) We have the following
general proposition:

Lemma 6.17. Suppose that (f, F ) : (X, G) −→ (X ′, G′) is a homomor-
phism of topological transformation groupoids which is an equivalence
of groupoids and such that f is an open map. If (X, G) is proper, so is
(X ′, G′). If (X, G) is syndetic, so is (X ′, G′).

Proof. An equivalence of topological groupoids induces a homeomor-
phism of quotient spaces

X/G −→ X ′/G′
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so if X ′/G′ is compact (respḢausdorff) so is X/G. Since (X, G) is
syndetic if and only if X/G is compact, this proves the assertion about
syndeticity. By Koszul [p3̇,Remark 2] (X, G) is proper if and only
if X/G is Hausdorff and the action (X, G) is wandering (or locally
proper): each point x ∈ X has a neighborhood U such that G(U, U) =
{g ∈ G | g(U) ∩ U += ∅} is precompact. Since (f, F ) is fully faithful,
F maps G(U, U) isomorphically onto G′(f(U), f(U)). Suppose that
(X, G) is proper. Then X/G is Hausdorff and so is X ′/G′. We claim
that G′ acts locally properly on X ′. Let x′ ∈ X ′. Then there exists
g′ ∈ G′ and x ∈ X such that g′f(x) = x′. Since G acts locally properly
on X, there exists a neighborhood U of x ∈ X such that G(U, U) is
precompact. It follows that U ′ = g′f(U) is a neighborhood of x′ ∈ X ′

such that G′(U ′, U ′) ∼= G(U, U) is precompact, as claimed. Thus G′

acts properly on X ′. !

Theorem 6.18. Let E ⊂ P be an affine patch in projective space. Then
the map

ι : C(E) −→ C∗(P)

K %→ (K, øcentroid(K))

is equivariant with respect to the inclusion Aff(E) −→ G and the cor-
responding homomorphism of topological transformation groupoids

ι : (C(E), Aff(E)) −→ (C∗(P), G)

is an equivalence of groupoids.

Proof. The surjectivity of ι∗ : C(E)/Aff(E) −→ C∗(P)/G follows imme-
diately from C1̇1 and the bijectivity of ι∗ : Hom(a, b) −→ Hom(ι(a), ι(b))
follows immediately from C1̇3. !

Thus the proof of C1̇4 is reduced (via C2̇0 and C2̇1) to the following:

Theorem 6.19. Aff(E) acts properly and syndetically on C(E).

Let Ell ⊂ C(E) denote the subspace of ellipsoids in E; the affine
group Aff(E) acts transitively on Ell with isotropy group the orthog-
onal group — in particular this action is proper. If K ∈ C(E) is a
convex body, then there exists a unique ellipsoid øell(K) ∈ Ell (the
ellipsoid of inertia of K such that for each affine map ψ : E −→ R such
that ψ(øcentroid(K)) = 0 the moments of inertia satisfy:

∫

K

ψ2dx =

∫

ell(K)

ψ2dx
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Proposition 6.20. Taking the ellipsoid-of-inertia of a convex body

ell : C(E) −→ Ell

defines an Aff(E)-invariant proper retraction of C(E) onto Ell.

Proof. Proof of C2̇2 assuming C2̇3 Since Aff(E) acts properly and syn-
detically on Ell and ell is a proper map, it follows that Aff(E) acts
properly and syndetically on C(E). !

Proof of C2̇2 assuming C2̇3. ell is clearly affinely invariant and con-
tinuous. Since Aff(E) acts transitively on Ell, it suffices to show that
a single fiber ell−1(e) is compact for e ∈ Ell. We may assume that e
is the unit sphere in E centered at the origin 0. Since the collection of
compact subsets of E which lie between two compact balls is compact
subset of C(E), Theorem C2̇3 will follow from: !

Proposition 6.21. For each n there exist constants 0 < r(n) < R(n)
such that every convex body K ⊂ Rn whose centroid is the origin and
whose ellipsoid-of-inertia is the unit sphere satisfies

Br(n)(O) ⊂ K ⊂ BR(n)(O).

The proof of C2̇4 is based on:

Lemma 6.22. Let K ⊂ E be a convex body with centroid O. Suppose
that l is a line through O which intersects ∂K in the points X, X ′.
Then

(31)
1

n
≤ OX

OX ′
≤ n.

Proof. Let ψ ∈ E∗ be a linear functional such that ψ(X) = 0 and
ψ−1(1) is a supporting hyperplane for K at X ′; then necessarily 0 ≤
ψ(x) ≤ 1 for all x ∈ K. We claim that

(32) ψ(O) ≤ n

n + 1
.

For t ∈ R let ht : E −→ E be the homothety fixing X having strength
t, that is

ht(x) = t(x − X) + X.

We shall compare the linear functional ψ with the “polar coordinates”
on K defined by the map

F : [0, 1] × ∂K −→ K

(t, s) %→ hts

which is bijective on (0, 1]× ∂K and collapses {0}× ∂K onto X. Thus
there is a well-defined function t : K −→ R such that for each x ∈ K,
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there exists x′ ∈ ∂K such that x = F (t, x′). Since 0 ≤ ψ(F (t, s)) ≤ 1,
it follows that for x ∈ K,

0 ≤ ψ(x) ≤ t(x)

Let µ = µK denote the probability measure supported on K defined
by

µ(S) =

∫
S∩K dx∫

K dx
.

There exists a measure ν on ∂K such that for each measurable function
f : E −→ R

∫
f(x)dµ(x) =

∫ 1

t=0

∫

s∈∂K

f(ts)tn−1dν(s)dt,

that is, F ∗dµ = tn−1dν ∧ dt.
The first moment of t : K −→ [0, 1] is then given by

t̄(K) =

∫

K

t dµ =

∫
K t dµ∫
K dµ

=

∫ 1

0 tn
∫
∂K dν dt

∫ 1

0 tn−1
∫
∂K dν dt

=
n

n + 1

and since the value of the affine function ψ on the centroid equals the
first moment of ψ on K, we have

0 < ψ(O) =

∫

K

ψ(x) dµ(x) <

∫

K

t(x) dµ =
n

n + 1
.

Now the distance function on the line
←−→
XX ′ is affinely related to the

linear functional ψ, that is, there exists a constant c > 0 such that for

x ∈
←−→
XX ′ the distance Xx = c|ψ(x)|; since ψ(X ′) = 1 it follows that

ψ(x) =
Xx

XX ′

and since OX + OX ′ = XX ′ it follows that

OX ′

OX
=

XX ′

OX
− 1 ≥ n + 1

n
− 1 =

1

n
.

This gives the second inequality of (C-5). The first inequality follows
by reversing the roles of X, X ′. !

Proof of C2̇4. Let X ∈ ∂K be a point at minimum distance from the
centroid O; then there exists a supporting hyperplane H at x which
is orthogonal to

←→
OX and let ψ : E −→ R be the corresponding linear

functional of unit length. Let a = ψ(X) > 0 and b = ψ(X ′) < 0; by
C2̇3 we have −b < na.

We claim that 0 < |ψ(x)| < na for all x ∈ K. To this end let
x ∈ K; we may assume that ψ(x) > 0 since −na < ψ(X ′) ≤ ψ(x).
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Furthermore we may assume that x ∈ ∂K. Let z ∈ ∂K be the other
point of intersection of

←→
Ox with ∂K; then ψ(z) < 0. Now

1

n
≤ Oz

Ox
≤ n

implies that
1

n
≤ |ψ(z)|

|ψ(x)|
≤ n

(since the linear functional ψ is affinely related to signed distance along
←→
Ox). Since 0 > ψ(z) ≥ −a, it follows that |ψ(x)| ≤ na as claimed.

Let wn denote the moment of inertia of ψ for the unit sphere; then
we have

wn =

∫

K

ψ2dµ ≤
∫

K

n2a2dµ = n2a2

whence a ≥ √
wn/n. Taking r(n) =

√
wn/n we see that K contains

the r(n)-ball centered at O.
To obtain the upper bound, observe that if C is a right circular

cone with vertex X, altitude h and base a sphere of radius ρ and
t : C −→ [0, h] is the altitudinal distance from the base, then the
integral ∫

C

t2dµ =
2h3ρn−1vn−1

(n + 2)(n + 1)n

where vn−1 denotes the (n−1)-dimensional volume of the unit (n−1)-
ball. Let X ∈ ∂K and C be a right circular cone with vertex X and
base an (n − 1)-dimensional ball of radius r(n). We have just seen
that K contains Br(n)(O); it follows that K ⊃ C. Let t : K −→ R
be the unit-length linear functional vanishing on the base of C; then
t(X) = h = OX. Its second moment is

wn =

∫

K

t2dµ ≥
∫

C

t2dµ =
2h3r(n)n−1vn−1

(n + 2)(n + 1)n

and thus it follows that

OX = h ≤ R(n)

where

R(n) =

(
(n + 2)(n + 1)nwn

2r(n)n−1vn−1

) 1
3

as desired. The proof is now complete. !

The volume of the unit ball in Rn is given by
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vn =

{
πn/2

(n/2)! for n
2(n+1)/2π(n−1)/2

1·3·5···n for n odd

and its moments of inertia are

wn =

{
vn

n+2 for n even
2vn
n+2 for n odd
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(Grenoble) 29 (1979), 17–35

39. Hermann, R., “Gauge fields and Cartan-Ehresmann connections, Part A,” In-
terdisciplinary Mathematics, Vol. X, Math Sci Press (1975), Brookline, Mas-
sachusetts

40. Hirsch, M., Immersions of manifolds, Trans. A. M. S.
41. Johnson, D. and Millson, J. J., Deformation spaces associated to compact

hyperbolic manifolds, in “Discrete groups in geometry and analysis, Papers in



PROJECTIVE GEOMETRY ON MANIFOLDS 81

honor of G. D. Mostow on his sixtieth birthday,” Progress in Mathematics 67

(1987), 48–106 Birkhäuser, Boston—Basel
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bourg, CNRS (1953), 79–87
54. Kuiper, N., On convex locally projective spaces, Convegno Int. Geometria Diff.,

Italy (1954), 200–213
55. Kuiper, N. H., Locally projective spaces of dimension one, Mich. Math. J. 2

(1953–4), 95–97
56. Kulkarni, R., The principle of uniformization, J. Diff. Geo. 13 (1978), 109–138
57. Loewner, C., and Nirenberg, L., Partial differential equations invariant un-

der conformal and projective transformations, in “Contributions to Analysis,”
Academic Press (1974), 19–38 245–272

58. Lok, W. L., Deformations of locally homogeneous spaces and Kleinian groups,
Doctoral Thesis, Columbia University 1984

59. Margulis, G. A., Free properly discontinuous groups of affine transformations,
Dokl. Akad. Nauk SSSR 272 (1983), 937–940

60. Margulis, G. A., Complete affine locally flat manifolds with a free fundamental
group, J. Soviet Math. 134 (1987), 129–134

61. Milnor, J. W., On the existence of a connection with curvature zero, Comm.
Math. Helv. 32 (1958), 215-223

62. Milnor, J. W., On fundamental groups of complete affinely flat manifolds, Adv.
Math. 25 (1977), 178–187



82 WILLIAM M. GOLDMAN

63. Nagano, T., and Yagi, K., The affine structures on the real two-torus I, Osaka
J. of Math. 11 (1974), 181-210

64. Pogorelov, A. V., “Hilbert’s Fourth Problem,” Winston & Sons, Washington,
D. C. (1979)

65. Scott, G. P., The geometries of 3-manifolds, Bull. Lond. Math. Soc. 15 (1983),
401–487

66. Shima, H., Hessian manifolds and convexity, in “Manifolds and Lie groups,
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