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INTRODUCTION

The goal of these notes is to have a glimpse of some of the study of the geometry and
dynamics of discrete groups of automorphisms of complex projective spaces.

These notes, written jointly by Angel Cano, Juan-Pablo Navarrete and José Seade,
have been prepared for the lectures of Seade at the “Advanced School and Workshop
on Discrete Groups in Complex Geometry”, at the Abdus Salam ICTP, 28th June to
2nd July of 2010. The notes are arranged into four sections, corresponding to the four
lectures. These are greatly based on work by the three authors as well as work with
Alberto Verjovsky.

Our starting point is the theory of Kleinian groups acting on the Rieman sphere. These
were introduced by F. Klein and H. Poincaré as the holonomy groups of certain differential
equations, and they can be regarded either as groups of conformal automorphims of the
Riemann sphere, as groups of isometries of hyperbolic space, or as groups of holomorphic
automorphisms of the complex projective line. Such a diversity of interesting viewpoints
obviously brings great richness into the subject, which springs into different theories when
going up into higher dimensions. We may thus look, for instance, at complex hyperbolic
geometry, or conformal automorphisms of spheres, or holomorphic transformations of
complex projective spaces.

The first section is about the classical theory of kleinian groups. This important
subject will be dealt with in a much deeper way in the lecture courses by Etienne Ghys
and Michael Kapovich. Thus our aim here is to give only a quick introduction to the
subject, paving the ground for the following sections.

In Section 2 we introduce the groups, and the concept, that give the title to these
lectures: Complex kleinian groups. These are by definition groups of holomorphic auto-
morphisms of complex projective spaces CPn. For n = 1 this is the setting discussed in
Section 1. We begin the section by reviewing the definition and construction of the projec-
tive spaces. Then we see how this relates to the interesting theory of complex hyperbolic
geometry, that will be studied in the lectures by John Parker.

In Section 3 we have a glance on the dynamics of complex kleinian groups. We discuss
the concept of limit set for these groups and we see that the quotient of their region of
discontinuity by the group action gives rise to orbifolds (often manifolds) with a projective
structure. This brings us into the subject of the course that William Goldman will lecture
on next week.

Finally, Section 4 is about work with Alberto Verjovsky. Here we see how “twistor
theory” can be used to construct complex kleinian groups with rich geometry and dynam-
ics. In fact this shows that the theory of classical kleinian groups embeds into the theory
of complex kleinian groups. For simplicity we restrict the discussion to the 4-sphere and
its twistor space, which is CP3. We describe these in detail.
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1 KLEINIAN GROUPS

1.1 Group actions

Let G be a group and M a smooth manifold. An action of G on M means a multiplication:

Φ : G×M −→ M

which preserves the group structure of G. That is, Φ satisfies:
i) If e denotes the identity in G, then Φ(e, x) = x for all x ∈M .
ii) Let · denote the product in G, then for all x ∈M and g, h ∈ G we have

Φ(g · h, x) = Φ(g, Φ(h, x)) .

Intuitively, an action means a method for “multiplying ” elements of the group G by
points in M , so that the result is a point in M . Notice that in the definition above we
are actually “multiplying ” the elements of G by the points in M by the left, so what we
have is a left action. One has the equivalent notion for right actions. Yet, for the sake of
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simplicity, in these we will speak just of ”actions”, not specifying in general whether they
are right or left actions.

We assume in the sequel that G is actually a Lie group. This means that G is itself a
smooth manifold and the group operations in G,

g �→ g−1 and (g, h) �→ g · h ,

are differentiable. We assume further that the map Φ is differentiable. Notice that in
this situation, every subgroup H of G acts on G by multiplication (on the right or on the
left). Also, if G acts on a manifold M , then the restriction of the action to H gives an
H-action on M .

Observe that for each g ∈ G we have a smooth map φg : M → M given by
φg(x) = Φ(g, x). This map has an inverse given by x �→ Φ(g−1, x). Hence each φg is
a diffeomorphism of M . That is, the differentiable group action Φ can be regarded as a
family of diffeomorphisms of M parameterized by G.

Similarly, for each x ∈M we have a smooth map Ox : G → M defined by g �→ Φ(g, x).
The image G(x) of Ox is called the orbit of x under the action of G:

G(x) = {y ∈M | y = Φ(g, x) for some g ∈ G} .

Given a G-action Φ on M , for each x ∈ M one has the stabilizer of x, also called the
isotropy subgroup of x, defined by:

Gx = {g ∈ G | Φ(g, x) = x} .

That is, Gx consists of all the elements in G that leave the point x fixed.
An action is called free if all stabilizers are trivial, i.e., if for all x ∈M and all g ∈ G\e

we have Φ(g, x) �= x.
For simplicity, if a group G acts on M we denote the action of g ∈ G at each point by

g · x.

Examples 1.1 i. Given fixed real numbers λ1, λ2, we may let R act on R
2 by

t · (x1, x2) �→ (eλ1tx1, e
λ1tx2) .

An action of the real numbers R on a manifold M is called a flow or also a one
parameter group of diffeomorphisms of M .

ii. Let O(2) be the orthogonal group generated by reflections on all lines through the
origin in R

2, and let Aff(2, R) be the group generated by reflections on all lines in
R

2. These groups act on R
2 in the obvious way. Now, given integers p, q, r ≥ 2 such

that
1

p
+

1

q
+

1

r
= 1 ,
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let T := Tp,q,r be a triangle in R
2 with inner angles π

p
+ π

q
+ π

r
, [We leave as an

exercise to show that the only possible triples are, up to permutation, the triples
(2, 3, 6), (2, 4, 4) and (3, 3, 3)] and let Σp,q,r be the subgroup of Aff(2, R) generated
by the reflections on the edges of T . Then Σp,q,r acts on R

2 in such a way that the
various (infinitely many) copies of T cover the plane.

Notice that if �1 and �2 are the lines determined by two edges of T that determine,
say, the angle π/p, then the reflection on �1 followed by the reflection on ell2 is a
rotation by an angle 2π/p around the point where these two lines meet.

X

Y

p

pp L

f

2fa

b
x

y

Figure 1: The point PP is the image of P by the reflection on the line L.

Hence the isotropy of this point, which is a vertex of T , is a cyclic group of order
2p.

iii. Let O(n) be, more generally, the group of linear maps of R
n generated by the reflec-

tions on hyperplanes through the origin, and let SO(n) be the index two subgroup of
O(n) consisting of elements that can be expressed by an even number of reflections.
This is the group of rotations of R

n. Both of these groups preserve the usual metric
in R

n, so they leave invariant each sphere centred at the origin, and we may think of
each of them as acting on the unit sphere. It is clear that the origin in R

n is a fixed
point for the corresponding actions, that is g · 0 = 0 for all g ∈ O(n). We leave it as
an exercise to show that all other points have isotropy O(n− 1) (and SO(n− 1)).

iv. Let f be a diffeomorphism of a manifold M . For instance, let M be the 2-sphere S
2

and identify it with the extended plane R̂
2 := R

2 ∪∞ by stereographic projection,
so that the origin (0, 0) corresponds to the South pole S while ∞ corresponds to

the North pole. And let f be the map in R̂
2 defined by (x, y) �→ (1

2
x, 2y). Now

iterate this function. That is, look at the family of maps f1 := f , f2 = f ◦ f1,
f3 = f ◦ f2 and so on. Define also f0 := Id and set f−1 := f−1; we may thus iterate



6 1 KLEINIAN GROUPS

f also backwards and get a family of maps {fn}n∈Z. Then the assignment n �→ fn

determines an action of the integers Z in S
2.

Notice that in this case we have two points which are fixed by the action, the poles S
and N . The points in the axes converge to S and N (either when travelling forwards
or backwards), while all other points converge to N .

Observe that in this example we can replace f by any other diffeomorphism and
get an action of Z on S

2. This will be relevant in the sequel. Notice too that if we
replace f by some other function which is not a diffeomorphism, then we do not
have an inverse f−1. In this case we do not have an action of Z. Yet, we can iterate
f forwards and look at the forwards orbits of points. And we can also look at the
inverse images of points, and get the backwards orbit.

1.2 Inversions and the Möbius group

General references for this and the following sections in this chapter are Beardon’s book
[3] and the excellent notes of M. Kapovich [13].

Let us consider now another type of transformations, which are analogous to re-
flections, the inversions. Given a circle C = C(a, r) in the plane R

2 with centre at a
point a ∈ R

2 and radius r, the inversion in C is the map ι = ι(a, r) of the 2-sphere

S
2 ∼= R̂

2 := R
2 ∪∞ defined for each z = (x, y) �= a,∞ by:

ιa,r(x, y) = (a1, a2) +
r2

|(x, y)− (a1, a2)|2
(
x− a1, y − a2

)
;

define ι(a) = ∞ and ι(∞) = a. Notice that each z = (x, y) �= a,∞ is carried into the
unique point z′ = (x′, y′) in the line determined by z and a which satisfies:

d(z, a) · d(z′, a) = r2 ,

where d( , a) is the usual distance to a. We remark that for circles of maximal length (i.e.,
radius 1 in the 2-sphere) this map is just a reflection in the corresponding line in R

2.
Notice this formula is easily adapted to describing inversions in (n − 1)-spheres in

S
n ∼= R

n ∪∞.
It is an exercise to show that inversions are conformal maps, i.e., they preserve angles.

That is, if two curves in S
2 meet with an angle θ, then their images under an inversion

also meet with an angle θ. Moreover, one has that if C1 , C2 are circles in S
2 and ι1

is the inversion with respect to C1, then ι1(C2) = C2 if and only if C1 and C2 meet
orthogonally. We leave the prove as an exercise (Show first that two circles C1, C2 in S

2

meet orthogonally at the points P1 y P2 if and only if the centre z2 of C2 is the meeting
point of the lines L∞ and L′∞, which are tangent to C1 at P1 and P2, and conversely, the
centre z1 of C1 is the meeting point of the lines L∈ and L′∈, tangent to C2 at these points.)

In fact the same statement holds in all dimensions (with essentially the same proof):
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c

Figure 2: A collar of circles having C as a common orthogonal circle.

Theorem 1.2 Let Cn−1
1 , Cn−1

2 be spheres of dimension n− 1 in S
n and ι1 the inversion

with respect to C1. Then ι1(C2) = C2 if and only if C1 and C2 meet orthogonally.

We now let Möb(Sn) be the group of diffeomorphisms of S
n ∼= R̂ = R

n∪{∞} generated
by inversions on all (n− 1)-spheres in S

n, and let Möb(Bn) be the subgroup of Möb(Sn)
consisting of maps that preserve the unit ball B

n in R
n.

Notice that if the (n−1)-sphere S1 meets S
n−1 = ∂B

n orthogonally then C := S1∩S
n−1

is an (n− 2)-sphere in S
n−1 and the restriction to S

n−1 of the inversion ιS1 coincides with
the inversion on S

n−1 defined by the (n− 2)-sphere C. In other words one has a canonical
group homomorphism Möb(Bn) → Möb(Sn−1).

Conversely, given an (n− 2)-sphere C in S
n−1 there is a unique (n− 1)-sphere S in S

n

that meets S
n−1 orthogonally at C. The inversion

ιC : S
n−1 → S

n−1

extends canonically to the inversion:

ιS : B
n → B

n ,

thus giving a canonical group homomorphism Möb(Sn−1) → Möb(Bn), which is obviously
the inverse morphism of the previous one. Thus one has:

Lemma 1.3 There is a canonical group isomorphism Möb(Bn) ∼= Möb(Sn−1) .

Definition 1.4 We call Möb(Bn) (and also Möb(Sn)) the general Möbius group of the
ball (or of the sphere).
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The subgroup Möb+(Bn) of Möb(Bn) of words of even length consists of the elements
in Möb(Bn) that preserve the orientation. This is an index two subgroup of Möb(Bn).
Similar considerations apply to Möb(Sn). We call Möb+(Bn) and Möb+(Sn) Möbius groups
(of the ball and of the sphere, respectively).

It is easy to see that Möb(Sn) includes:

• Euclidean translations: t(x) = x+a, where a ∈ R
n. These are obtained by reflections

on parallel hyperplanes.

• Rotations: t(x) = Ox, where O ∈ SO(n) ; obtained by reflections on hyperplanes
through the origin.

• Homotecies, obtained by inversions on spheres with same centre and different radius.

In fact one has:

Theorem 1.5 The group Möb(Sn) of Möbius transformations is generated by the previ-
ous transformations: Translations, rotations and homotecies, together with the inversion:
t(x) = x/‖x‖2.

It is clear that the rotations are actually contained in Möb+(Bn), since hyperplanes
through the origin meet transversally the unit sphere in Rn. In fact one has that Möb+(Bn)
contains the orthogonal group SO(n) as the stabilizer (or isotropy) subgroup at the origin
0 of its action on the open ball B

n. The stabilizer of 0 under the action of the full
group Möb(Bn) is O(n). This implies that Möb+(Bn) acts transitively on the space of
lines through the origin in B

n. Moreover, Möb+(Bn) clearly acts also transitively on the
intersection with B

n of each ray through the origin. Thus it follows that Möb+(Bn) acts
transitively on B

n. In other words we have:

Theorem 1.6 The group Möb+(Bn) acts transitively on the unit open ball B
n with isotropy

SO(n). Furthermore, this action extends to the boundary S
n−1 = ∂B

n and defines a
canonical isomorphism between this group and the Möbius group Möb+(Sn−1).

We remark that for n > 2, Möb+(Sn−1) is the group of (orientation preserving) con-
formal automorphisms of the sphere (see for instance Apanasov’s book). That is, we
have:

Theorem 1.7 For all n > 2 we have group isomorphisms

Möb+(Bn) ∼= Möb+(Sn−1) ∼= Conf+(Sn−1) .

In fact the previous constructions show that every element in Möb+(Bn) extends canon-
ically to a conformal automorphism of the sphere at infinity S

n−1
∞ := H

n

R
\ H

n
R

and con-
versely, every conformal automorphism of S

n−1
∞ extends to an element in Möb+(Bn).
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1.3 Hyperbolic space

We now use Theorem 1.6 to construct a model for hyperbolic n-space H
n
R
. We recall that

a riemannian metric g on a smooth manifold M means a choice of a positive definite
quadratic form on each tangent space TxM , varying smoothly over the points in M . Such
a metric determines lengths of curves as usual, and so defines a metric on M in the usual
way, by declaring the distance between two points to be the infimum of the lengths of
curves connecting them.

Now consider the open unit ball B
n, its tangent space T0B

n at the origin, and fix the
usual riemannian metric on it, which is invariant under the action of O(n). Given a point
x ∈ B

n, consider an element γ ∈ Möb(Bn) with γ(0) = x. Let Dγ0 denote the derivative
at 0 of the automorphism γ : B

n → B
n. This defines an isomorphism of vector spaces

Dγ0 : T0B
n → TxB

n and allows us to define a riemannian metric on TxB
n. In this way we

get a riemannian metric at each tangent space of B
n.

We claim that the above construction of a metric on the open ball is well defined,
i.e., that the metric one gets on TxB

n does not depend on the choice of the element
γ ∈ Möb(Bn) taking 0 into x. In fact, if η ∈ Möb(Bn) is another element taking 0 into x,
then η−1 ◦ γ leaves 0 invariant and is therefore an element in O(n). Since the orthogonal
group O(n) preserves the metric at T0B

n, it follows that both maps, γ and η, induce the
same metric on TxB

n. Hence this construction yields to a well-defined riemannian metric
on B

n.

It is easy to see that this metric is complete and homogeneous with respect to points,
directions and 2-planes, so it has constant (negative) sectional curvature.

Definition 1.8 The open unit ball B
n ⊂ R

n equipped with the above metric serves as
a model for the hyperbolic n-space H

n
R
. The group Möb(Bn) is its group of isometries,

also denoted Iso(Hn
R
), and its index two subgroup Möb+(Bn) is the group of orientation

preserving isometries of H
n
R
, Iso+(Hn

R
).

In the sequel we denote the real hyperbolic space by H
n
R
, to distinguish it from the

complex hyperbolic space H
n
C

(of real dimension 2n) that we will consider later. Also,
we denote by S

n−1
∞ the sphere at infinity, that is, the boundary of H

n
R

in S
n. We set

H
n

R
:= H

n
R
∪ S

n−1
∞ .

Given that we have a metric in H
n
R
, we can speak of length of curves, area, volume,

and so on. We also have the concept of geodesics: curves that minimize (locally) the
distance between points. These are the segments of curves in H

n
R

which are contained in
circles that meet the boundary S

n−1
∞ orthogonally.

Notice that the constructions above show that every isometry of Iso(Hn
R
) extends

canonically to a conformal automorphism of the sphere at infinity S
n−1
∞ and conversely,

every conformal automorphism of S
n−1
∞ extends to an isometry of H

n
R
.
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1.4 Kleinian groups

We now consider a subgroup Γ ⊂ Iso(Hn
R
) and look at its action on the hyperbolic space

H
n
R
. We want to study how the orbits of points in H

n
R

(and in H
n

R
) behave under the

action of Γ. Let us begin with an example. Consider, as before, integers p, q, r ≥ 2 , but
now we assume that

1/p + 1/q + 1/r < 1 .

Let T = Tp,q,r be a triangle in D bounded by geodesics, with angles π/p, π/q and π/r.

Recall these geodesics are segments of circles in R̂
2 orthogonal to the boundary of D, so

we have isometries of H
2
R

defined by the inversions on these three circles, the “sides” of
T .

Let Γ∗ be the group of isometries of H
2
R

generated by the inversions on the sides of
T . Notice that Γ∗ has three special orbits of fixed points in H

2
R
, which correspond to the

three vertices of T . The corresponding isotropy subgroups are cyclic of orders 2p, 2q, 2r
respectively. The various images of T under the action of Γ cover the whole space H

2
R
, and

it is intuitively clear that given any point x0 in the circle S
1
∞ = ∂H

2
R

and a point x inside
H

2
R
, there is a sequence {γn} of elements in Γ∗ such that the sequence {γn(x)} converges

to x0. This means that in this example the limit set is the whole circle at infinity.

Definition 1.9 Let Γ ⊂ Iso(Hn
R
) be a discrete subgroup. The limit set of Γ is the subset

Λ = Λ(Γ) of S
n−1
∞ of points which are accumulation points of orbits in H

n
R
. That is,

Λ :=
{

y ∈ S
n−1
∞ | y = lim{gm(x)} for some x ∈ H

n
R

and {gm} a sequence in Iso(Hn
R
)
}

.

By definition, this is a closed, invariant subset of S
n−1
∞ which is non-empty, unless Γ

is finite. This is the set where the dynamics concentrate. It can happen that Λ is the
whole sphere at infinity, as for instance in the previous example of the triangle subgroups
of isometries of H

2
R
.

Definition 1.10 A discrete subgroup of Iso(Hn+1) ∼= Conf(Sn) is kleinian if its limit set
is not the whole sphere at infinity.
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Figure 3: The triangle group 〈2, 3, 7〉

In the sequel we refer to these as conformal kleinian groups, to distinguish them from
the complex kleinian groups that we shall study later.

We remark that nowadays the term “Kleinian group” is being often used for an arbi-
trary discrete subgroup of hyperbolic motions, regardless of whether or not the region of
discontinuity is empty.

Let us consider for a moment a more general setting. Let G be some group, acting on
a smooth manifold M .
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Definition 1.11 The action of G is discontinuous at x ∈ M if there is a neighbourhood
U of x such that the set

{g ∈ G | gU ∩ U �= ∅}
is finite. The set of points in M at which G acts discontinuously is called the region of
discontinuity. The action is discontinuous on M if it is discontinuous at every point in
M . The action is properly discontinuous if for each non empty compact set K ⊂ M the
set

{g ∈ G | gK ∩K �= ∅} ,

is finite.

Example 1.12 (Kulkarni) Consider the map T in R2 given by (x, y) �→ (1
2
x, 2y) and

all its iterates {Tn}n∈Z. This gives an action of Z in R
2 which is discontinuous away from

the origin 0. Notice that if we take a circle C around the origin, then its forward orbit
accumulates on the whole {y}-axe, while the backwards orbit accumulates on the {x}-axe.
So this action is not properly discontinuous on R

2 \ {0}. Yet we notice that the action is
properly discontinuous on R

2 \ {x = 0} and also on R
2 \ {y = 0}.

It is clear that every properly discontinuous action is a fortiori discontinuous. The
example above shows that the converse statement is false in general, but it is true for
conformal kleinian groups. In fact one has (see the literature for a proof):

Theorem 1.13 Let G be a discrete subgroup of Iso(Hn
R
). Then G acts properly discon-

tinuously on H
n
R

and its limit set is the complement of the region of discontinuity Ω of
its action on S

n−1
∞ . Furthermore, Ω is the maximal region in S

n−1
∞ where the action is

properly discontinuous, and it is also the maximal region in the sphere where the action
is equicontinuous.

For instance, consider an arbitrary family of pairwise disjoint closed 2-discs D1, ..., Dr

in the 2-sphere with boundaries the circles C1, ..., Cr. Let ι1, ..., ιr be the inversions on
these r circles, and let Γ be the subgroup of Iso(H3

R
) ∼= Möb(B3) ∼= Conf(S2) generated by

these maps. Then G has nonempty region of discontinuity that contains the complement
in S

2 of the union D1 ∪ ... ∪ Dr (which is a fundamental domain for Γ). One can show
that in this case the limit set is a Cantor set. This is an example of a Schottky group, and
Schottky groups are all Kleinian groups.

Continuing with this example, move the discs D1, ..., Dr so that each of them touches
tangentially exactly its two neighbors, and there is a common circle C orthogonal to all
of them. Then C is the limit set of the corresponding group of inversions.

Now move the circles slightly C1, ..., Cr, breaking the condition that they have a com-
mon orthogonal circle, keeping the condition that each disc touches with its two neighbors.
Then one has (this is not at all obvious) that the limit set becomes a fractal curve of Haus-
dorff dimension between 1 and 2, and choosing appropriate deformations one can cover
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Figure 4: A “kissing Schottky” group with C as limit set.

the whole range of Hausdorff dimension between 1 and 2. This is depicted in the figure
below, and this is an example of a more general result by Rufus Bowen.

These are all examples of kleinian groups. So we see that whenever we have a kleinian
group, the sphere S

n−1
∞ splits in two sets, which are invariant under the group action: the

limit set Λ, where the dynamics concentrates, and the region of discontinuity Ω where the
dynamics is “mild” and plays an important role in geometry, as we will see later.
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Figure 5: Deformation of a fuchsian group: The limit set is a quasi-circle

2 COMPLEX KLEINIAN GROUPS

In the previous section we studied discrete subgroups of isometries of real hyperbolic
spaces H

n
R
. We remark that when n = 3, the sphere at infinity is 2-dimensional and

we can think of it as being the Riemann sphere S
2, which is a complex 1-dimensional

manifold, diffeomorphic to the projective line CP
1. Moreover, in this case one has that

every (orientation preserving) element in the conformal group Conf+(S2) is actually a
Möbius transformation:

z �→ az + b

cz + d
,

where a, b, c, d are complex numbers such that ad − bz = 1. The set of all such maps
forms a group, which is isomorphic to the group PSL(2, C) of projective automorphisms
of CP

1:

PSL(2, C) := SL(2, C)/± Id ,

where SL(2, C) is the group of 2× 2 matrices with complex coefficients and determinant
1, and Id is the identity matrix. Hence, considering discrete subgroups of Iso+(H3

R
) is the

same thing as considering discrete subgroups of PSL(2, C).

What about higher dimensions? That is, what about discrete subgroups of PSL(n +
1, C), the group of automorphisms of the complex projective space CP

n? In the real case,
we have the group of isometries of the real hyperbolic space. And in the low dimensions
this coincides with groups of automorphisms of CP

1, which is a complex manifold. But
in higher dimensions, there is nothing similar.
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The topic we shall focus on will be precisely the study of discrete subgroups of auto-
morphisms of complex projective spaces, so we start by describing these spaces.

2.1 Complex projective space

We recall that the complex projective space CP
n is defined as:

CP
n = (Cn+1 − {0})/ ∼ ,

where ”∼” denotes the equivalence relation given by x ∼ y if and only if x = αy for some
nonzero complex scalar α. In short, CP

n is the space of complex lines through the origin
in C

n+1.
Consider for instance CP

1. Every point here represents a complex line through the
origin in C

2. Recall that a complex line � through the origin is always determined by a
unit vector in it, say v, together with all its complex multiples. In other words, a unit
vector v in C

2 determines the complex line

� = {λ · v |λ ∈ C} .

Notice that the unit vectors in C
2 form the 3-sphere S

3, just as the unit vectors in C form
the circle

S
1 = {z ∈ C | z = eiθ , θ ∈ [0, 2π]} .

Notice that the circle S
1 acts on C

2 in the obvious way: eiθ · (z1, z2) �→ (eiθz1, e
iθz2)). This

action preserves distances in C
2, so given a point v ∈ S

3 ⊂ C
2, its orbit under this S

1-
action is the set {(eiθ ·v}, which is a circle in S

3 contained in the complex line determined
by v. That is the intersection of S

3 with every complex line through the origin in C
2 is a

circle, and one has:
CP

1 ∼= S
3/S

1 ∼= S
2 .

The projection S
3 → CP

1 ∼= S
2 is known as the Hopf fibration.

More generally, CP
n is a compact, connected, complex n-dimensional manifold, dif-

feomorphic to the orbit space S
2n+1/U(1), where U(1) ∼= S

1 is acting coordinate-wise on
the unit sphere in C

n+1. In fact, we usually represent the points in CP
n by homogeneous

coordinates (z1 : z2 : · · · : zn+1). This means that we are thinking of a point in CP
n as

being the equivalence class of the point (z1, z2 : · · · , zn+1) up to multiplication by non-zero
complex numbers. Hence if, for instance, we look at points where the first coordinate z1

is not zero, then the point (z1 : z2 : · · · : zn+1) is the same as (1 : z2

z1
: · · · : zn+1

z1
). Notice

this is just a copy of C
n. That is, every point in CP

n that can be represented by a point
(z1 : z2 : · · · : zn+1) with z1 �= 0, has a neighbourhood diffeomorphic to C

n, consisting of
all points with homogeneous coordinates (1 : w2 : · · · : wn+1). Of course similar remarks
apply for points where z2 �= 0 and so on. This provides the classical way for constructing
an atlas for CP

n with (n + 1) coordinate charts.
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Notice one has a projection S
2n+1 → CP

n, a Hopf fibration, and the usual riemannian
metric on S

2n+1 is invariant under the action of U(1). Therefore this metric descends to
a riemannian metric on CP

n, which is known as the Fubini-Study metric.

It is clear that every linear automorphism of C
n+1 defines a holomorphic automorphism

of CP
n, and it is well-known that every automorphism of CP

n arises in this way. Thus
one has that the group of projective automorphisms is:

PSL(n + 1, C) := GL(n + 1, C)/(C∗)n+1 ∼= SL(n + 1, C)/Zn+1 ,

where (C∗)n+1 is being regarded as the subgroup of diagonal matrices with a single nonzero
eigenvalue, and we consider the action of Zn+1 (viewed as the roots of the unity) on
SL(n+1, C) given by the usual scalar multiplication. Then PSL(n+1, C) is a Lie group
whose elements are called projective transformations.

There is a classical way of decomposing the projective space that paves the way for
studying complex hyperbolic geometry. For this we think of C

n+1 as being a union N− ∪
N0 ∪ N+, where each of these sets consists of the points (z0, · · · , zn) ∈ C

n+1 satisfying
that |z0|2 is, respectively, larger, equal or smaller than |z1|2 + · · · + |zn|2. It is clear that
each of these sets is a complex cone, that is, union of complex lines through the origin in
C

n+1, with (deleted) vertex at 0.
Obviously

S := {(z0, · · · , zn) ∈ N0 | z0 = 1 } ,

is a sphere of dimension (2n− 1), and N0 is the union of all complex lines in C
n+1 joining

the origin 0 ∈ C
n+1 with a point in S; each such line meets S in a single point. Hence

the projectivisation [S] = (N0 \ {0})/C
∗ of N0 is a (2n − 1)-sphere in CP

n that splits
this space in two sets, which are the projectivisations of N− and N+. The set N0 is often
called the cone of light.

Similarly, notice that the projectivisation of N− is an open (2n)-ball B in CP
n, bounded

by the sphere [S]. This ball serves as model for complex hyperbolic geometry, as we will
see in the following section, where we describe its full group of holomorphic isometries,
which is naturally a subgroup of projective transformations. This gives a natural source
of discrete subgroups of PSL(n+1, C), those coming from complex hyperbolic geometry.

2.2 Complex Kleinian groups

Our aim in these lectures is to study discrete groups G of PSL(n + 1, C) which act on
CP

n with non-empty region of discontinuity. Recall from the previous section that the
action of G is discontinuous at x ∈ CP

n if there is a neighbourhood U of x such that the
set

{g ∈ G | gU ∩ U �= ∅}
is finite. The set of points in CP

n at which G acts discontinuously is called the region of
discontinuity.
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Definition 2.1 A discrete subgroup Γ of PSL(n + 1, C) is complex kleinian if its region
of discontinuity in CP

n is non-empty.

This is a concept introduced by Alberto Verjovsky and Jos Seadesome years ago (see
SV1,SV2,SV3), which puts together several important areas of current research, as we
shall see (we refer to [11] for more on the topic). For n = 1, CP

1 is the Riemann sphere,
PSL(2, C) can be regarded as being the group of (orientation preserving) isometries of the
hyperbolic space H

3
R

and we are in the situation envisaged previously, of classical kleinian
groups.

Notice that in this classical case, there is a particularly interesting class of kleinian
subgroups of PSL(2, C): Those which are conjugate to a subgroup of PSL(2, R). This
latter group can be regarded as the group of Möbius transformations with real coefficients:

z �→ az + b

cz + d
, ad− bc = 1 , a, b, c, d ∈ R .

These are the Möbius transformations that preserve the upper half plane in C. And if
we identify the Riemann sphere with the extended plane C ∪ ∞, via stereographic pro-
jection, these are the conformal automorphisms of the sphere that preserve the Southern
hemisphere, i.e., they leave invariant a 2-ball in S

2. Equivalently, these are subgroups
of Iso H

3
R

which actually are groups of isometries of the hyperbolic plane H
2
R
. These are

called Fuchsian groups. In higher dimensions, this role is played by the so-called complex
hyperbolic groups. These are, by definition, subgroups of PSL(n + 1, R) which act on
CP

n leaving invariant a certain open ball of complex dimension n, which serves as model
for complex hyperbolic geometry. In the subsection below we speak a few words about
this interesting subject.

2.3 Complex hyperbolic groups

Let us look at the subset [N−] of CP
n consisting of points whose homogeneous coordinates

satisfy:
|z0|2 < |z1|2 + · · · |zn|2 . (2.2)

As noticed above, this set is an open ball B of real dimension 2n and its boundary,

[N0] := {(z0 : · · · : zn) ∈ CP
n | |z0|2 = |z1|2 + · · · |zn|2} ,

is a sphere of real dimension 2n− 1. This set [N−] is the usual starting point for complex
hyperbolic geometry; for this one needs to introduce a metric, which is known as the
Bergman metric. We shall do that in a way similar to the one we used for real hyperbolic
space.

Let U(n+1) be the unitary group. By definition, its elements are the (n+1)× (n+1)
matrices which satisfy

〈Uz, Uw〉 = 〈z, w〉 ,
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for all complex vectors z = (z0, ..., zn) and w = (w0, ..., wn), where 〈·, ·〉 is the usual
hermitian product on C

n+1: 〈z, w〉 =
∑n

i=0 zi · w̄i. This is equivalent to saying that the
columns of U form an orthonormal basis of C

n+1 with respect to the hermitian product.
We now let U(1, n) be the subgroup of U(n + 1) of transformations that preserve the

quadratic form
Q(z0, · · · , zn) = |z0|2 − |z1|2 − · · · − |zn|2 . (2.3)

In other words, an element U ∈ U(n + 1) is in U(1, n) if and only if Q(z) = Q(Uz) for
all points in C

n+1. Let PU(1, n) be its projectivization. Then the action of PU(1, n) on
CP

n leaves invariant the set [N−]. To see this, recall that a point in CP
n is in [N−] if

and only if its homogeneous coordinates satisfy equation (2.3). If (z0 : · · · : zn) is in [N−]
and γ is in PU(1, n), then the point γ(z0 : · · · : zn) is again in [N−]. Therefore the group
PU(1, n) acts on the ball [N−] ∼= B

2n.
Recall that to construct the real hyperbolic space H

n
R

we considered the unit open
ball B

n in R
n+1, and we looked at the action of the Möbius group Möb+(Bn) on this ball.

This action was transitive with isotropy O(n, R). So we can consider the usual metric
at the space T0(B

n), tangent to the ball at the origin, and spread it around using that
the action is transitive; we get a well-defined metric on the ball using the fact that the
isotropy O(n, R) preserves the usual metric.

Let us now do the analogous construction for the ball [N−] using the action of PU(1, n):
It is an exercise to show that this action is transitive, with isotropy PU(n). Let P be the
center of this ball, P := (0 : 0 : · · · : 0 : 1). We equip the tangent space TP ([N−]) ∼= C

n

with the usual hermitian metric, and spread this metric around [N−] using the action of
PU(1, n). Since the isotropy PU(n) preserves the metric in TP ([N−]) we get a well-defined
metric on the ball [N−] ∼= B

2n. This is the Bergman metric on the ball [N−], which thus
becomes a model for the complex hyperbolic space H

n
C
, with PU(1, n) as its group of

holomorphic isometries. Its boundary [N0] is the sphere at infinity S
2n−1
∞ .

Since the action of PU(1, n) on H
n
C

is by isometries, then one has (by general results of
groups of transformations) that every discrete subgroup of PU(1, n) acts discontinuously
on H

n
C
. Hence, regarded as a subgroup of PU(n + 1), such a group acts on CP

n with
non-empty region of discontinuity. In other words, we have:

Every complex hyperbolic discrete group is a complex kleinian group,

a statement that generalises to higher dimensions the well-known fact that every fuchsian
subgroup of PSL(2, R) is kleinian when regarded as a subgroup of PSL(2, C).

2.4 Complex affine groups

There is another classical way of constructing the projective space, and this also plays a
significant role for producing discrete subgroups of PSL(n + 1, C). This is by thinking of
CP

n as being the union of C
n and the “hyperplane at infinity”:

CP
n = C

n ∪ CP
n−1 .
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A way for doing so is by writing

C
n+1 = C

n × C = {(Z, zn) |Z = (z0, ..., zn−1) ∈ C
n and zn ∈ C} .

Then every point in the hyperplane {(Z, 1)} determines a unique line through the origin
in C

n+1, i.e., a point in CP
n; and every point in CP

n is obtained in this way except for
those corresponding to lines (or “directions”) in the hyperplane {(Z, 0)}, which form the
“hyperplane at infinity” CP

n−1. It is clear that every affine map of C
n+1 leaves invariant

the hyperplane at infinity CP
n−1. Furthermore, every such map carries lines in C

n+1 into
lines in C

n+1, so the map naturally extends to the hyperplane at infinity. This gives a
natural inclusion of the affine group

Aff(Cn) ∼= GL(n, C) � C
n ,

in the projective group PSL(n + 1, C). Hence every discrete subgroup of Aff(Cn) is a
discrete subgroup of PSL(n + 1, C).

A discrete subgroup of Aff(Cn) is called a complex crystallographic group (sometimes
this name is reserved for groups with compact quotient). Crystallographic groups have
been studied by various authors.

3 GEOMETRY AND DYNAMICS

3.1 The limit set: an example

In the first section of these notes we defined the limit set of a kleinian group in the classical
way: It is the set of accumulation points of the orbits. This is indeed a good definition in
that setting in all possible ways: Its complement Ω is the maximal region of discontinuity
for the action of the group on the sphere, and Ω is also the region of equicontinuity, i.e.,
the set of points where the group forms a normal family.

It could be nice to have such a “universal” concept in the setting we envisage in these
notes, that of groups of automorphisms of CPn. Alas this is not possible in general and
there is not a concept of limit set which can be said to be “ the correct” one. Rather,
there are several possible definitions, each with its own interest and characteristics and
which coincide under certain conditions. This is illustrated by the example below.

Indeed the question of giving “the definition” of limit set can be rather subtle, as
pointed out by R. Kulkarni in the general setting of discrete group actions [14].

Consider the following example from [16]. Let γ ∈ PSL(3, C) be the projectivisation
of the linear map γ̃ given by:

γ̃ =

⎛⎝ α1 0 0
0 α2 0
0 0 α3

⎞⎠
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where α1α2α3 = 1 and |α1| < |α2| < |α3|. We denote by Γ the cyclic subgroup of
PSL(3, C) generated by γ; we may choose the αi so that Γ is conjugate to a subgroup of
PU(1, 2). Denote by {e1, e2, e3} the usual basis of C

3. Each of these vectors represents a
complex line in C

3 and therefore determines a point in CP
2, that for simplicity we denote

also by {e1, e2, e3}; these are fixed points of the action, since the corresponding lines are
invariant. The conditions on the norm of the eigenvalues imply that the backwards orbit
of “almost” every point in CP

2 converges to e1, while most of the forward orbits converge
all to e3. To be precise, notice that since {e1, e2, e3} are fixed points, the lines joining
them, ←−→ei, ej, are invariant lines and the set of accumulation points of all orbits consists of
the points {e1, e2, e3}. The first of these is an attractor, the second is a saddle point and
the latter is a source.

It is not hard to show that:

i. Γ acts discontinuously on Ω0 = CP
2 − (←−→e1, e2 ∪ ←−→e3, e2), and also on Ω1 = CP

2 −
(←−→e1, e2 ∪ {e3}) and Ω2 = CP

2 − (←−→e3, e2 ∪ {e1}).
ii. Ω1 and Ω2 are the maximal open sets where Γ acts properly discontinuously; and

Ω1/Γ and Ω2/Γ are compact complex manifolds. (In fact they are Hopf manifolds).

iii. Ω0 is the largest open set where Γ forms a normal family.

It follows that even if the set of accumulation points of the orbits consists of the points
{e1, e2, e3}, in order to actually get a properly discontinuous action we must remove a
larger set. Furthermore, in this example we see that there is not a largest region where
the action is properly discontinuous, since neither Ω1 nor Ω2 is contained in the other.

So one has several candidates to be called as “limit set”:

• The points {e1, e2, e3} where all orbits accumulate. But the action is not properly
discontinuous on all of its complement. Yet, this definition is good if we make this
group conjugate to one in PU(1, 2) and we restrict the discussion to the “hyperbolic
disc” H

2
C

contained in CP
2. This corresponds to taking the Chen-Greenberg limit

set of Γ, that we shall define below.

• The two lines ←−→e1, e2 , ←−→e3, e2, which are attractive sets for the iterations of γ (in one
case) or γ−1 (in the other case). This corresponds to Kulkarni’s limit set of Γ, that
we define below, and it has the nice property that the action on its complement is
properly discontinuous and also, in this case, equicontinuous. And yet, the propo-
sition above says that away from either one of these two lines the action of Γ is
discontinuous. So this region is not “maximal”.

• Then we may be tempted to taking as limit set the complement of the “maximal
region of discontinuity”, but there is no such region: there are two of them, the
complements of each of the two invariant lines, so which one we choose?
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• Similarly we may want to define the limit set as the complement of “the equicon-
tinuity region”. In this particular example, that definition may seem appropriate.
The problem is that this would rule out important cases, as for instance the Hopf
manifolds, which can not be written in the form U/G where G is a discrete subgroup
of PSL(3, C) acting equicontinuously on an open set U of CP

2. Moreover, there are
examples where Γ is the fundamental group of certain compact complex surfaces
(Inoue surfaces) and the action of Γ on CP

2 has no points of equicontinuity.

Thus one has different definitions with nice properties in different settings. For ex-
ample, we will see that for Schottky groups in higher odd dimensional projective spaces,
there is yet another definition of limit set which seems appropriate.

We shall say more about limit sets later.

3.2 The limit set for complex hyperbolic groups

Consider now a discrete subgroup G of PU(1, n). As before, we take as model for complex
hyperbolic n-space H

n
C

the ball B ∼= B
2n in CP

n consisting of points with homogeneous
coordinates satisfying

|z1|2 + · · ·+ |zn|2 < |z0|2 ,

whose boundary is a sphere ∂H
n
C
∼= S

2n−1
∞ , and we equip B with the Bergman metric ρ to

get H
n
C
.

The following notion was introduced in [12].

Definition 3.1 If G is a discrete subgroup of PU(1, n), then its Chen-Greenberg limit
set , denoted ΛCG(G), is the set of accumulation points of the G-orbit of any point in H

n
C
.

As remarked earlier, the fact that the action on H
n
C

is by isometries and G is discrete
implies that the orbit of every x ∈ H

n
C

must accumulate in ∂H
n
C
. Hence the limit set

ΛCG(G) is contained in the sphere at infinity, likewise in the conformal case. Moreover,
one also has the following result of Chern-Greenberg:

Proposition 3.2 If the set ΛCG(G) ⊂ X has more than two points, then every orbit in
ΛCG(G) is dense in ΛCG(G).

The proof of this result is entirely analogous to the proof in the classical case, for
groups of isometries of the real hyperbolic space, and it relies on the fact that the action
is by isometries of H

n
C
.

It is clear from the definition that ΛCG(G) is a closed invariant subset of S
2n−1
∞ , and

the result above says that this set is minimal. In particular ΛCG(G) does not depend on
the choice of the orbit of the point in H

n
C
.

Thus, when considering subgroups of PU(1, n) acting on the complex hyperbolic space
H

n
C
, this definition of limit set is a good definition. Yet, if we consider the action of G on
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the whole projective space, it is easy to show that the action is not properly discontinuous
away from the ball [N−] ⊂ CP

n, which serves as model for H
n
C
. So we need to introduce

another notion of limit set.

R. Kulkarni introduced in [14] a concept of limit set that he motivated through an
example, which actually inspired the example we gave above. This definition of limit
set applies in a very general setting of discrete group actions, and it has the important
property of assuring that its complement is an open invariant set where the group acts
properly discontinuously. For this, recall that given a family {Aβ} of subsets of X, where
β runs over some infinite indexing set B, a point x ∈ X is a cluster (or accumulation)
point of {Aβ} if every neighbourhood of x intersects Aβ for infinitely many β ∈ B.

Given a space X and a group G as above, let L0(G) be the closure of the set of points
in X with infinite isotropy group. Let L1(G) be the closure of the set of cluster points of
orbits of points in X − L0(G), i.e., the cluster points of the family {γ(x)}γ∈G, where x
runs over X − L0(G).

Finally, let L2(G) be the closure of the set of cluster points of {γ(K)}γ∈G, where K
runs over all the compact subsets of X − {L0(G) ∪ L1(G)}. We have:

Definition 3.3 i. Let X be as above and let G be a group of homeomorphisms of X.
The Kulkarni limit set of G in X is the set

ΛKul(G) := L0(G) ∪ L1(G) ∪ L2(G).

ii. The Kulkarni region of discontinuity of G is

ΩKul(G) ⊂ X := X − ΛKul(G).

It is easy to see that the set ΛKul(G) is closed in X and it is G-invariant (it can be
empty). The set ΩKul(G) (which also can be empty) is open, G-invariant, and G acts
properly discontinuously on it.

When G is a Möbius (or conformal) group, the classical definitions of the limit set and
the discontinuity set coincide with the above definitions.

In the example in Section 3.1 one has that the sets L0(G) and L1(G) are equal, and
they consist of the three points {e1, e2, e3}, while L2(G) consists of the lines ←−→e1, e2 and←−→e2, e3, passing through the saddle point.

That example also shows that although Kulkarni’s limit set has the property of assuring
that the action on its complement is discontinuous, this region is not always maximal.
Yet, one can show that in the case of actions of complex hyperbolic groups on CP

2,
“generically” this region is the largest open set where the action is discontinuous, and
it coincides with the region of equicontinuity, by [16]. In fact a similar statement holds
“generically” for discrete subgroups of PSL(3, C), by [5, 6, 7, 8].
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A first obvious question is to determine the relation between these two notions of limit
set in the case of complex hyperbolic groups, as well as the relation of these sets with the
corresponding region of equicontinuity.

One has the following theorem due to J. P. Navarrete [16] in the two dimensional case,
and to A. Cano and J. Seade [10] in higher dimensions. For this, let S

2n−1
∞ ⊂ CP

n be
the boundary of H

n
C
, so it is the sphere at infinity. Notice that for each point x ∈ S

2n−1
∞

there is a unique complex projective subspace Hx of complex dimension n − 1 which is
tangent to S

2n−1
∞ at x. Given a discrete subgroup G ⊂ PU(1, n), let HG be the union of

all these projective subspaces for all points in the limit set ΛCG(G) ⊂ S
2n−1
∞ . This set is

clearly G-invariant, since ΛCG(G) is invariant and the G action on S
2n−1
∞ is by holomorphic

transformations.

Theorem 3.4 (Navarrete, Cano-Seade) Let G ⊂ PU(1, n) be a discrete subgroup and
let Eq(G) be its equicontinuity region in P

n
C
. Then P

n
C
\Eq(G) is the union of all complex

projective hyperplanes tangent to ∂H
n
C

at points in Λ(G), and G acts properly discontin-
uously on Eq(G). Moreover, if n = 2 then Eq(G) coincides with the Kulkarni region of
discontinuity ΩKul(G).

We do not know yet whether or not in higher dimensions the Kulkarni region of
discontinuity of G coincides with the region of equicontinuity.

Let us mention some other interesting examples of complex kleinian groups. We refer
to [9] for details.

Example 3.5 (Fundamental groups of complex tori.) Let v1, . . . , v4 ∈ C
2 − {0}

be R-linearly independent vectors and gi : CP
2 → CP

2 be the projective transformations
induced by the translation generated by vi. Then Γ =< g1, . . . , g4 > is a group isomorphic
to Z

4 and satisfies
Eq(Γ) = ΩKul(Γ) = C

2.

Moreover C
2 is the largest open set where Γ acts properly discontinuously.

Example 3.6 (Fundamental groups of Hopf surfaces.) Let Γg =< g > be the
cyclic group of PSL(3, C) induced by the affine transformation g(z, w) = (λz, λw), where
|λ| < 1. Then Eq(Γg) = ΩKul(Γg) = C

2\{0} is the largest open set where Γg acts properly
discontinuously. One can show that (C2 \ {0})/Γg is a compact manifold, and in fact this
is a Hopf Manifold.

Example 3.7 (Suspensions.) Every element g ∈ PSL(2, C) has two liftings to SL(3, C),
that we may denote ±g. We call the projective transformations induced by the following
matrices (

g 0
0 1

)
;

( −g 0
0 1

)
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the suspension of g on PSL(3, C). Now given Γ ⊂ PSL(2, C) a Kleinian group and
G ⊂ C

∗ a discrete group, we will define the suspension of Γ with respect G, in symbols
Sus(G, Γ), as the group

〈
{g ∈ PSL(3, C)|g is a lift of an element g̃ ∈ Γ} ∪

⎧⎨⎩
⎛⎝ g 0 0

0 g 0
0 0 g−2

⎞⎠ : g ∈ G

⎫⎬⎭
〉

.

Then Eq(Sus(G, Γ)) = P
2
C
\ C = ΩKul(G) is the largest open set where Γ acts properly

discontinuously; here:

C =

{ ⋃
p∈Λ(Γ)

←−→p, e3 if G es finite.⋃
p∈Λ(Γ)

←−→p, e3 ∪←−→e1, e2 if G es infinite.

Example 3.8 (An Inoue Surface.) Let M ∈ SL(3, Z) be a matrix with eigenvalues
α, β, β where α > 1, β �= β. Let (a1, a2, a3) be a real eigenvector belonging to α and
(b1, b2, b3) an eigenvector belonging to β. Now, let GM be the group induced by the trans-
formations:

γ0(w, z) = (αw, βz),
γi(w, z) = (w + ai, z + bi) i = 1, 2, 3.

Then ΩKul(GM) = H
+×C is the largest open set where GM acts properly discontinuously

and ΩKul(GM)/GM is a compact surface, called Inoue Surface. However in this case
Eq(GM) = ∅.
Example 3.9 (A Group induced by a Toral Automorphism.) Let M be the matrix

M =

(
3 5
−5 8

)
.

It is not hard to check that the eigenvalues of M are

α± =
−5±√21

2
and a choice of the corresponding eigenvectors could be

v+ = (1,
−11 +

√
21

10
), v− = (

−11 +
√

21

10
, 1) .

Set Γ�

M be the group induced by the following transformations:

γ0(w, z) = (α+w, α−z);

γ1(w, z) = (w + 1, z + −11+
√

21
10

);

γ2(w, z) = (w + −11+
√

21
10

, z + 1);
γ3(w, z) = (z, w).

Then ΩKul(Γ
�

A) = Eq(Γ�

A) =
⋃

j,j=0,1(H
(−1)i×H

(−1)j
) is the largest open set where Γ�

A acts
properly discontinuously.
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3.3 Divisible open sets and proyective structures

As mentioned before, roughly speaking, when we have a discrete group action, we generally
have two invariant sets: one of them is where the dynamics concentrates, the limit set (in
a suitable definition), and another where the dynamics is in some sense “mild”.

For instance, one of the main reasons for studying discrete subgroups of PU(1, n) is
because given any such subgroup G, the quotient H

n
C
/G is a complex hyperbolic orbifold.

Orbifolds are a generalization of manifolds. If G acts freely on H
n
C

then the quotient H
n
C
/Γ

is actually a compact manifold with a complex hyperbolic structure. This is a very rich
and interesting geometric structure, and many of the lectures we shall hear about in this
meeting will be precisely about complex hyperbolic manifolds.

For instance, when n = 1, the complex hyperbolic line H
1
C

coincides with the real
hyperbolic plane H

2
R
, and the Riemann-Köebe uniformization theorem says that every

oriented, closed surface of genus more than 1 has a hyperbolic structure.
We now recall that we have already shown that complex hyperbolic groups are canon-

ically subgroups of PSL(n + 1, C), the group of holomorphic automorphisms of complex
projective space. And the similar statement applies to real hyperbolic geometry, that is,
every discrete subgroup of Iso Hn

R
is canonically a subgroup of PSL(n + 1, R), the group

of automorphisms of real projective space. As we explain below, this means that ev-
ery real (or complex) hyperbolic manifold is canonically a real (or complex, respectively)
projective manifold.

Let us explain briefly what this means.
A topological n-dimensional manifold means a topological, metric, space X, equipped

with a locally finite covering by open sets Uα, each of these coming with a homeomorphism
hα from Uα into an open subset of R

n. The set {(Uα, hα)} is called an atlas for X. In
other words, an atlas tells us how X looks by pieces, just as a usual ”atlas” for the earth
tells us how it looks by pieces, since we can not make a round picture of the earth fit into
a book! Again, as in a usual atlas for the earth, given the local maps (in general called
coordinate charts), in order to get the global picture we must indicate how each chart is
glued together with its neighbours. In other words, consider two of these open sets Uα

and Uβ with non-empty intersection, then we have homeomorphisms hα, hβ from Uα ∩Uβ

into open subset of R
n, and we can consider the homeomorphism:

φα,β := hβ ◦ h−1
α : hα(Uα ∩ Uβ) → hβ(Uα ∩ Uβ) .

These homeomorphisms are called the transition functions for the given atlas, and they
tell us how the little pieces, or coordinate charts, must be glued together in order to
reconstruct the manifold X.

Notice each φα,β is a homeomorphism between open subsets of R
n so it makes sense

to ask whether this is also a diffeomorphism, or a diffeomorphism of class Cr, r ≥ 1. By
definition, a topological manifold X is a differentiable manifold of class Cr if we can equip
it with an atlas such that all the transition functions are differentiable manifold of class
Cr.
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For instance, a teardrop is a topological manifold of dimension 2, for it is homeomor-
phic to a 2-sphere, so we can cover by two open sets (the sphere minus the North pole,
and the sphere minus the South pole), each homeomorphic to a 2-disc

Figure 6: A teardrop

It is a deep theorem in low dimensional topology, due to Hirsch, that every closed (=
compact with no boundary) topological manifold of dimension ≤ 3 is homeomorphic to a
smooth manifold. But in higher dimensions this is no longer true.

In general, we may ask whether the manifold X can be given an atlas where the
transition functions satisfy further restrictions, besides being differentiable. For instance,
if n is even, then the functions φα,β can be regarded as homeomorphisms between open
subsets of C

n and we can ask whether they are actually holomorphic functions. If this
is the case then we say that X is a complex manifold. That is, a complex n-manifold
means a differentiable manifold of dimension 2n equipped with an atlas for which all the
transition functions are not only differentiable of class C

∞, but they are actually complex
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analytic maps.

A complex manifold of (complex) dimension one is called a Riemann surface. Such a
manifold is then a 2-dimensional real surface, equipped with the structure of a complex
manifold. And we shall hear a lot about Riemann surfaces in this meeting.

Of course that the same differentiable manifold can be equipped with many different
complex structures. For instance the 2-sphere only admits one complex structure (up to
equivalence), and this is what we call the Riemann sphere. However, for the torus S

1×S
1,

its different (non-equivalent) complex structures are in one-to-one correspondence with the
points in S

2. And for closed surfaces of genus g > 1, it is know (essentially since Riemann)
that its different complex structures form a complex manifold of complex dimension 3g−3.

Now, given a smooth manifold X we may try to equip it with an atlas such that the
coordinate functions satisfy some other type of restriction. For instance, we may ask the
transitions functions to be all local isometries of the real hyperbolic space. That is, we
may ask the transitions functions to be differentiable maps between open subsets of, say,
the upper half space

R
n
+ := {(x1, · · · , xn) ∈ R

n |xn > 0 } ,

that we can equip with the hyperbolic metric, and ask the transition functions to preserve
this metric. If this is possible, i.e., if we can endow X with such an atlas, then we say we
have equipped X with a hyperbolic structure.

Similarly, we can think of R
n as been an open subset of the real projective space RP

n
R

and ask the transition functions to be restriction of projective automorphisms. If we can
do so, then we have equipped the manifold X with a projective structure.

In other words, to say that X is a projective manifold means that X is modelled locally
by open subsets of RP

n
R

which are glued by elements in the projective group PSL(n+1, R).

Of course that analogous statements hold for complex manifolds: A complex manifold
of (complex dimension) n admits a complex projective structure if it can be equipped
with an atlas where all the transition functions are elements in the projective group
PSL(n + 1, C). This is a topic very much related to what we have been discussing so far
in these lectures.

For instance, let Γ be a discrete subgroup of PSL(n + 1, C) and let ΩKul be its
Kulkarni region of discontinuity. Suppose for simplicity that Γ acts freely on ΩKul. That
is, if γ(x) = x for some point x ∈ ΩKul and some γ ∈ Γ, then γ is the identity. Then one
has that:

The quotient M := ΩKul/Γ is a complex manifold with a projective structure,

and of course it is interesting to study the geometry and topology of the manifolds one gets
in this way. For instance, if Γ is a cocompact complex hyperbolic group, then ΩKul is H

n
C

and what we get is a complex hyperbolic manifold. But there are many other interesting
families of manifolds arising in this way. It is also interesting to study complex hyperbolic
group which are not cocompact, and consider their action on CP

n, not only on H
n
C
. This is
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being done in dimension 2 by Waldemar Barrera, Juan-Pablo Navarrete and Angel Cano
(see [9]; also [10]).

In dimension two, there are interesting articles by various authors studying the com-
pact complex surfaces with a projective structure, such as Kobayashi, Ochiai, Inoue and
Klingler, among others. And if we look at these questions from the viewpoint of the group
actions, then this is the work of Angel Cano’s thesis.

Following Y. Benoist, let us say that an open set Ω ⊂ CPn is divisible if there exists
a discrete subgroup Γ ⊂ PSL(n + 1, C) for which Ω is an invariant set and the quotient
Ω/Γ is compact. Then, for n = 2, Cano show’s that there are two families of possible
divisible sets, according to whether or not the corresponding groups are elementary (in a
sense that we make precise below).

In the first case, the region Ω is a-fortiori the Kulkarni region of discontinuity of the
group and up to projective equivalence we have the following four possibilities:

i. ΩKul(Γ) = CP
2. Then the group is finite and the Kulkarni limit set ΛKul(Γ) is

empty.

ii. ΩKul(Γ) = C
2. Then Γ is affine, the quotient ΩKul(Γ)/Γ is a finite covering (possibly

ramified) of a surface biholomorphic to a complex torus or a Kodaira surface, and
the limit set ΛKul(Γ) is a projective line.

iii. ΩKul(Γ) = C × C
∗. Then ΩKul(Γ)/Γ is a finite covering (possibly ramified) of a

surface biholomorphic to a complex torus. The limit set ΛKul(Γ) consists of two
lines.

iv. ΩKul(Γ) = C
∗ × C

∗. Then ΩKul(Γ)/Γ is also a finite covering (possibly ramified) of
a surface biholomorphic to a complex torus. The Kulkarni limit set now consists of
three lines.

The second case is when the limit set contains infinitely many projective lines or points
away from these lines. In this situation he proves that up to projective equivalence one
has the following possibilities:

i. The group is complex hyperbolic and ΩKul(Γ) is H
2
C
.

ii. The group is affine, ΩKul(Γ) = C × (H− ∪ H
+), and ΩKul(Γ)/Γ is equal to M or

M �M where M = (C×H)/ΓC×H is an Inoue Surface ( � denotes disjoint union).

iii. The group is affine and ΩKul(Γ) = U × C
∗ where U ⊂ P

1
C

is the discontinuity
region of a classical kleinian group. In this case ΩKul(Γ)/Γ =

⊔
i∈I Ni where I is

at most countable, and the Ni are orbifolds whose universal covering orbifold is
biholomorphic to H × C. Every compact connected component is a finite covering
(possibly ramified) of an elliptic affine surface.
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4 KLEINIAN GROUPS AND TWISTOR THEORY

We have been talking so far about complex kleinian groups, that is, discrete subgroups of
PSL(n + 1, C) acting on CP

n with non-empty region of discontinuity. For n = 1 this is
the theory of classical kleinian groups, which has been for decades one of the main areas
of geometry, low dimensional topology and holomorphic dynamics.

It is natural to ask how rich this theory is, or can be, for n > 1. In higher dimensions we
know it includes complex hyperbolic groups as well as the complex affine groups. In this
section we shall discuss a construcion by Seade and Verjovsky, that gives other interesting
families of complex kleinian groups. This gives a way for constructing compact manifolds
that arising as quotient of open invariant subsets of CPn divided by some kleinian action.
There us also a rich dynamics happening.

4.1 The Calabi-Penrose fibration

To start, we need to speak about twistor theory. This is an important area of geometry
and mathematical physics, developed by various authors, most notably by Roger Penrose,
in the late 1970s. There are also important contributions by M. Atiyah, N. Hitchin
and several other authors. The idea is that each even-dimensional, oriented riemannian
manifold M has its twistor space Z(M), a manifold which is a fibre bundle over M , and
which under certain differential geometric restrictions on M , has a canonical complex
structure. Furthermore, Penrose’s twistor program springs from the fact that there is
a rich interplay between the conformal geometry of the manifold M and the complex
geometry of its twistor space. What Seade and Verjovsky did was showing that this
interplay between the conformal geometry of M and the complex geometry of its twistor
space can be pushed forward to dynamics. As a consequence we obtaine that every
conformal kleinian group, or rather, every group of isometries of a real hyperbolic space
(with non-empty region of discontinuity in the sphere at infinity) can be realised as a
complex kleinian group, i.e., as a discrete group of holomorphic transformations of some
complex projective space, with non-empty region of discontinuity.

This theory is particularly nice when the manifold M is the 4-sphere S4 endowed with
its usual metric, and that is what we shall focus on in this section. The corresponding
twistor space turns out to be the complex projective space CP

3. This particular case is
also relevant for other interesting problems in differential geometry, studied independently
by E. Calabi. Hence in this case the twistor fibration:

π : CP
3 −→ S

4 ,

is also known as the Calabi-Penrose fibration.

To construct this fibration, recall first that the complex projective line CP
1 is the

space of lines through the origin in C
2, and so it is diffeomorphic to the sphere S

2. We



30 4 KLEINIAN GROUPS AND TWISTOR THEORY

claim that, similarly, the sphere S
4 is diffeomorphic to the quaternionic projective line

HP
1. Let us explain this.
Recall that the complex numbers can be regarded as being R

2 with a richer structure,
coming from the fact that we have added the symbol i, which corresponds to the point
(0, 1) in R

2, with i2 = −1. Similarly, we have the space of quaternions H. As a set, this is
R

4, a four-dimensional vector space over the real numbers, equipped with a richer struc-
ture, obtained by quaternionic multiplication. To define this multiplication we consider
the usual basis of R

4 and let i = (0, 1, 0, 0), j = (0, 0, 1, 0) and k = (0, 0, 0, 1); we identify
the scalar 1 with the vector (1, 0, 0, 0). Then we define a multiplication by setting:

i2 = j2 = k2 = ijk = −1

From this we get the well-known relations ij = k; jk = i; ki = j, and also ij = −ji and
so on. We extend this multiplication to all elements in H in the obvious way using that
1, i, j, k form a basis it as a vector space.

Notice that every quaternion can be expressed as:

q = a0 + a1i + a2j + a3k = (a0 + a1i) + (a2 + a3i)j = z1 + z2j .

So we see that every quaternion can be regarded as a pair of complex numbers, just as
each complex number can be regarded as a pair of real numbers.

We consider now the space C
4 and we identify it with H ×H = H2. Notice that we

can multiply vectors in v ∈ C
4 by complex numbers (scalars) in the usual way:

λ · (z1, z2, z3, z4) = (λz1, λz2, λz3, λz4) .

Doing so, each vector v ∈ C
4 determines a unique complex line �v in C

4 passing through
the origin:

�v := {z = (z1, z2, z3, z4) ∈ C
4 | z = λ v , for some λ ∈ C} .

Similarly, given a vector v ∈ H2 ∼= C
4, we can multiply it by quaternions, but one must

decide to use either right or left multiplication (now this does matter, since this multipli-
cation is non-commutative). In either case one gets, for each vector v, a quaternionic line
Lv, which is a 4-plane:

Lv := {q = (q1, q2) ∈ H2 | q = λ v , for some λ ∈ H} .

Notice that each quaternionic line is actually a copy of C
2 embedded in C

4, spanned by
the complex lines �v and �jv. In fact Lv is filled by complex lines.

Just as CP
3 is obtained from C

4 \ 0 by identifying points in the same complex line, so
too we can form the quaternionic projective space:

HP
1 :=

H2 \ 0

H∗
∼= S

7/S
3 ,
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the space of left quaternionic lines in H ×H. In other words, two non-zero quaternions
q1, q2 are identified if there is another quaternion q such that q q1 = q2.

We leave it as an exercise to show that, just as one has:

RP
1 ∼= S

1 and CP
1 ∼= S

2 ,

so too one has:

HP
1 ∼= S

4 .

Therefore we see that if in C
4 ∼= H2 :

i) We identify each complex line to a point, then we get CP
3;

ii) And if we identify each quaternionic line to a point, we get HP
1 ∼= S

4 .

Since every complex line is contained in a unique quaternionic line, we thus get a projection
map:

π : CP
3 −→ HP

1 ,

which is easily seen to be a locally trivial fibration, i.e., a fibre bundle. For each point
[q1 : q2] ∈ HP

1 the fiber π−1([q1 : q2]) consists of all the complex lines through the origin
in C

4 ∼= H2 which are contained in the same quaternionic line, which is a copy of C
2.

Hence each fibre is diffeomorphic to CP
1 ∼= S

2.
This is the Calabi-Penrose fibration, also known as the twistor fibration of the 4-sphere.

4.2 Conformal dynamics versus holomorphic dynamics

We now recall that one has a group isomorphism:

Conf+(S2) ∼=
{az + b

cz + d

∣∣∣ a, b, c, d ∈ C

} ∼= PSL(2, C) .

The proof of these facts can be adapted to showing the analogous statements (see Ahlfors’
works [1, 2]):

Conf+(S4) ∼=
{

(az + b)(cz + d)−1
∣∣∣ a, b, c, d ∈ H

} ∼= PSL(2,H) ,

where the latter is the projectivisation of the group of 2 × 2 invertible matrices with

coefficients in H and determinant one. Notice that one such matrix

(
a b
c d

)
acts linearly

on H2, and so it also acts on C
4 ∼= H2, with quaternionic multiplication being regarded

as a 2× 2 complex matrix. Hence there is a natural embedding

Conf+(S4) ↪→ PSL(4, C) .

Therefore we get:
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Proposition 4.1 Every group of orientation preserving isometries of the real hyperbolic
space H

5
R

has a canonical lifting to a group of holomorphic automorphisms of the complex
projective space CP

3.

CP
3

eΓ−−−→ CP
3

π

⏐⏐� ⏐⏐�π

S
4 Γ−−−→ S

4

This result is well-known in full generality (not only for the 4-sphere) for people
working in twistor theory; this is also proved in [19] in a different way, using twistor
theory. Notice that given an element γ ∈ Conf+(S4), its lifting to PSL(4, C) is an
automorphism of CP

3 that carries fibres of π into fibres of π, and these are copies of S
2.

The fibres of π are called twistor lines, and it turns out that the action of Γ on CP
3 carries

twistor lines into twistor lines isometrically. Using this one can prove (see [19]):

Theorem 4.2 Let Γ ⊂ Conf+(S4) be a Kleinian group and let Ω(Γ) ⊂ S
4 be its region of

discontinuity in the sphere. Denote by Γ̃ its lifting to PSL(4, C). Then:

• The Kulkarni region of discontinuity ΩKul(Γ̃) is π−1(Ω(Γ)).

• The action of Γ̃ on the limit set ΛKul(Γ̃) := CP
3 \ ΩKul(Γ̃) is minimal if and only

if Γ is either Zariski dense in Conf+(S4) or else it is conjugate in Conf+(S4) to a
Zariski dense subgroup of Conf+(S3).

• The quotient ΩKul(Γ̃)/Γ̃ is an orbifold with a complex projective structure, and it is
a manifold whenever Γ is torsion-free.

Notice also that Conf+(S4) is a Lie group of real dimension 15, while PSL(4, C) is a
complex Lie group of complex dimension 15. The construction above says that every de-
formation of a kleinian subgroup of Conf+(S4) lifts to a deformation of the corresponding
kleinian subgroup of PSL(4, C). Yet, in this latter group we have plenty of space to get
deformations of the group that do not come form deformations below. We conclude that:

The theory of kleinian subgroups of PSL(4, C) is richer than that of Iso+(H5)!

Similar statements hold in higher dimensions (see [19]; also [20]).
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