
2153-4

Advanced School and Workshop on Discrete Groups in Complex 
Geometry 

Wiliam GOLDMAN

28 June - 5 July, 2010

University of Maryland, USA

 
 

"Locally homogeneous geometric manifolds"

 



Proceedings of the International Congress of Mathematicians
Hyderabad, India, 2010

Locally homogeneous geometric manifolds

William M. Goldman

Partially supported by the National Science Foundation

Abstract.
Motivated by Felix Klein’s notion that geometry is governed by its group of symme-

try transformations, Charles Ehresmann initiated the study of geometric structures on
topological spaces locally modeled on a homogeneous space of a Lie group. These locally
homogeneous spaces later formed the context of Thurston’s 3-dimensional geometrization
program. The basic problem is for a given topology Σ and a geometry X = G/H, to
classify all the possible ways of introducing the local geometry of X into Σ. For example,
a sphere admits no local Euclidean geometry: there is no metrically accurate Euclidean
atlas of the earth. One develops a space whose points are equivalence classes of geometric
structures on Σ, which itself exhibits a rich geometry and symmetries arising from the
topological symmetries of Σ.

We survey several examples of the classification of locally homogeneous geometric
structures on manifolds in low dimension, and how it leads to a general study of surface
group representations. In particular geometric structures are a useful tool in understand-
ing local and global properties of deformation spaces of representations of fundamental
groups.
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1. Historical background

While geometry involves quantitative measurements and rigid metric relations,
topology deals with the loose quantitative organization of points. Felix Klein
proposed in his 1872 Erlangen Program that the classical geometries be considered
as the properties of a space invariant under a transitive Lie group action. Therefore
one may ask which topologies support a system of local coordinates modeled on a
fixed homogeneous space X = G/H such that on overlapping coordinate patches,
the coordinate changes are locally restrictions of transformations from G.
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In this generality this question was first asked by Charles Ehresmann [55] at
the conference “Quelques questions de Geométrie et de Topologie,” in Geneva
in 1935. Forty years later, the subject of such locally homogeneous geometric
structures experienced a resurgence when W. Thurston placed his 3-dimensional
geometrization program [158] in the context of locally homogeneous (Riemannian)
structures. The rich diversity of geometries on homogeneous spaces brings in a
wide range of techniques, and the field has thrived through their interaction.

Before Ehresmann, the subject may be traced to several independent threads
in the 19th century:

• The theory of monodromy of Schwarzian differential equations on Riemann
surfaces, which arose from the integration of algebraic functions;

• Symmetries of crystals led to the enumeration (1891) by Fedorov, Schöenflies
and Barlow of the 230 three-dimensional crystallographic space groups (the
17 two-dimensional wallpaper groups had been known much earlier). The
general qualitative classification of crystallographic groups is due to Bieber-
bach.

• The theory of connections, curvature and parallel transport in Riemannian
geometry, which arose from the classical theory of surfaces in R

3.

The uniformization of Riemann surfaces linked complex analysis to Euclidean and
non-Euclidean geometry. Klein, Poincaré and others saw that the moduli of Rie-
mann surfaces, first conceived by Riemann, related (via uniformization) to the
deformation theory of geometric structures. This in turn related to deforming
discrete groups (or more accurately, representations of fundamental groups in Lie
groups), the viewpoint of the text of Fricke-Klein [62].

2. The Classification Question

Here is the fundamental general problem: Suppose we are given a manifold Σ (a
topology) and a homogeneous space (G, X = G/H) (a geometry). Identify a space
whose points correspond to equivalence classes of (G, X)-structures on Σ. This
space should inherit an action of the group of topological symmetries (the mapping
class group Mod(Σ)) of Σ. That is, how many inequivalent ways can one weave
the geometry of X into the topology of Σ? Identify the natural Mod(Σ)-invariant
geometries on this deformation space.

3. Ehresmann structures and development

For n > 1, the sphere Sn admits no Euclidean structure. This is just the familiar
fact there is no metrically accurate atlas of the world. Thus the deformation space
of Euclidean structures on Sn is empty. On the other hand, the torus admits a rich
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class of Euclidean structures, and (after some simple normalizations) the space of
Euclidean structures on T 2 identifies with the quotient of the upper half-plane H2

by the modular group PGL(2, Z).
Globalizing the coordinate charts in terms of the developing map is useful here.

Replace the coordinate atlas by a universal covering space M̃ −→ M with covering
group π1(M). Replace the coordinate charts by a local diffeomorphism, the devel-
oping map M̃

dev−−→ X, as follows. dev is equivariant with respect to the actions of
π1(M) by deck transformations on M̃ and by a representation π1(M) h−→ G, re-
spectively. The coordinate changes are replaced by the holonomy homomorphism
h. The resulting developing pair (dev, h) is unique up to composition/conjugation
by elements in G. This determines the structure.

Here is the precise correspondence. Suppose that

{(Uα, ψα) | Uα ∈ U}

is a (G, X)-coordinate atlas: U is an open covering by coordinate patches Uα, with

coordinate charts Uα
ψα−−→ X for Uα ∈ U . For every nonempty connected open

subset U ⊂ Uα ∩ Uβ , there is a (necessarily unique)

g(U ; Uα, Uβ) ∈ G

such that
ψα|U = g(U) ◦ ψβ |U .

(Since a homogeneous space X carries a natural real-analytic structure invari-
ant under G, every (G, X)-manifold carries an underlying real-analytic structure.
For convenience, therefore, we fix a smooth structure on Σ, and work in the dif-
ferentiable category, where tools such as transversality are available. Since we
concentrate here in low dimensions (like 2), restricting to smooth manifolds and
mappings sacrifices no generality. Therefore, when we speak of “a topological space
Σ” we really mean a smooth manifold Σ rather than just a topological space.)

The coordinate changes {g(U ; Uα, Uβ)} define a flat (G, X)-bundle as follows.
Start with the trivial (G, X)-bundle over the disjoint union

∐
Uα∈U Uα, having

components
Eα := Uα ×X

Πα−−→ Uα.

Now identify, for
(u, uα, uβ) ∈ U × Uα × Uβ ,

the two local total spaces U ×X ⊂ Eα with U ×X ⊂ Eβ by
(
u, x

)
α
←→ (

u, g(U ; Uα, Uβ)x
)
β
. (1)

The fibrations Πα over Uα piece together to form a fibration E(M) Π−→ M over M
with fiber X, and structure group G, whose total space E = E(M) is the quotient
space of the Eα by the identifications (1). The foliations Fα of Eα defined locally
by the projections Uα × X −→ X piece together to define a foliation F(M) of
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E(M) transverse to the fibration. In this atlas, the coordinate changes are locally
constant maps Uα ∩ Uβ −→ G. This reduces the structure group from G with
its manifold topology to G with the discrete topology. We call the fiber bundle(
E(M),F(M)

)
the flat (G, X)-bundle tangent to M .

Such a bundle pulls back to a trivial bundle over the universal covering M̃ −→
M . Thus it may be reconstructed from the trivial bundle M̃ × X −→ M̃ as
the quotient of a π1(M)-action on M̃ × X covering the action on M̃ by deck
transformations. Such an action is determined by a homomorphism π1(M) h−→ G,
the holonomy representation. Isomorphism classes of flat bundles with structure
group G correspond to G-orbits on Hom

(
π1(M), G

)
by left-composition with inner

automorphisms of G.
The coordinate charts Uα

ψα−−→ X globalize to a section of the flat (G, X)-
bundle E −→ M as follows. The graph graph(ψα) is a section transverse both to
the fibration and the foliation Fα. Furthermore the identifications (1) imply that
the restrictions of graph(ψα) and graph(ψβ) to U ⊂ Uα ∩Uβ identify. Therefore all

the ψα are the restrictions of a globally defined F-transverse section M
Dev−−→ E. We

call this section the developing section since it exactly corresponds to a developing
map.

Conversely, suppose that (E,F) is a flat (G, X)-bundle over M and M
s−→ E is

a section transverse to F . For each m ∈ M , choose an open neighborhood U such
that the foliation F on the local total space Π−1(U) is defined by a submersion
Π−1(U) ΨU−−→ X. Then the compositions ΨU ◦ s define coordinate charts for a
(G, X)-structure on M .

In terms of the universal covering space M̃ −→ M and holonomy representation
h, a section M

s−→ E corresponds to an π1(M)-equivariant mapping M̃
s̃−→ X,

where π1(M) acts on X via h. The section s is transverse to F if and only if the
corresponding equivariant map s̃ is a local diffeomorphism.

4. Elementary consequences

As the universal covering M̃ immerses in X, no (G, X)-structure exists when M
is closed with finite fundamental group and X is noncompact. Furthermore if X
is compact and simply connected, then every closed (G, X)-manifold with finite
fundamental group would be a quotient of X. Thus by extremely elementary
considerations, no counterexample to the Poincaré conjecture could be modeled
on S3.

When G acts properly on X (that is, when the isotropy group is compact),
then G preserves a Riemannian metric on X which passes down to a metric on
M . This metric lifts to a Riemannian metric on the the universal covering M̃ ,
for which dev is a local isometry. Suppose that M is closed. The Riemannian
metric on M makes M into a metric space, which is necessarily complete. By the
Hopf-Rinow theorem, M is geodesically complete, and (after possibly replacing X
with its universal covering space X̃, and G by an appropriate group G̃ of lifts), the
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local isometry dev is a covering space, and maps M̃ bijectively to X̃. In particular
such structures correspond to discrete cocompact subgroups of G̃. In this way
the subject of Ehresmann geometric structures extends the subject of discrete
subgroups of Lie groups.

In general, even for closed manifolds, the developing map may fail to be sur-
jective (for example, Hopf manifolds), and even may not be a covering space onto
its image (Hejhal [103], Smillie [152], Sullivan-Thurston [155]).

5. The hierarchy of geometries

Often one geometry “contains” another geometry as follows. Suppose that G and
G′ act transitively on X and X ′ respectively, and X

f−→ X ′ is a local diffeomor-
phism equivariant respecting a homomorphism G

F−→ G′. Then (by composition
with f and F ) every (G, X)-structure determines a (G′, X ′)-structure. For exam-
ple, when f is the identity, then G may be the subgroup of G′ preserving some extra
structure on X = X ′. In this way, various flat pseudo-Riemannian geometries are
refinements of affine geometry. The three constant curvature Riemannian geome-
tries (Euclidean, spherical, and hyperbolic) have both realizations in conformal
geometry of Sn (the Poincaré model) and in projective geometry (the Beltrami-
Klein model) in RPn. In more classical differential-geometric terms, this is just
the fact that the constant curvature Riemannian geometries are conformally flat
(respectively projectively flat). Identifying conformal classes of conformally flat
Riemannian metrics as Ehresmann structures follows from Liouville’s theorem on
the classification of conformal maps of domains in R

n for n ≥ 3.
An interesting and nontrivial example is the classification of closed similarity

manifolds by Fried [63]. Here X = R
n and G is its group of similarity transfor-

mations. Fried showed that every closed (G, X)-manifold M is either a Euclidean
manifold (so G reduces to the group of isometries) or a Hopf manifold, a quotient
of R

n \ {0} by a cyclic group of linear expansions. In the latter case M carries a(
R

+ ·O(n), Rn \ {0})-structure. Such manifolds are finite quotients of Sn−1 × S1.

6. Deforming Ehresmann structures

One would like a space whose points are equivalence classes of (G, X)-structures on
a fixed topology Σ. The prototype of such a deformation space is the Teichmüller
space T(Σ) of biholomorphism classes of complex structures on a fixed surface
Σ. That is, we consider a Riemann surface M with a diffeomorphism Σ −→
M , which is commonly called a marking. Although complex structures are not
Ehresmann structures, there is still a formal similarity. (This formal similarity can
be made into an equivalence of categories via the uniformization theorem, but this
is considerably deeper than the present discussion.) For example, every Riemann
surface diffeomorphic to T 2 arises as C/Λ, where Λ ⊂ C is a lattice. Two such
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lattices Λ, Λ′ determine isomorphic Riemann surfaces if ∃ζ ∈ C
∗ such that Λ′ = ζΛ.

The space of such equivalence classes identifies with the quotient H2/PSL(2, Z).
The quotient H2/PSL(2, Z) has the natural structure of an orbifold,) and is not
naturally a manifold.

In general deformation spaces will have very bad separation properties. (For
example the space of complete affine structures on T 2 naturally identifies with
the quotient of R

2 by the usual linear action of SL(2, Z) (Baues, see [8].) This
quotient admits no nonconstant continuous mappings into any Hausdorff space!)
To deal with such pathologies, we form a larger space with a group action, whose
orbit space parametrizes isomorphism classes of (G, X)-manifolds diffeomorphic to
Σ. In general, passing to the orbit space alone loses too much information, and
may result in an unwieldy topological space. For this reason, considering the de-
formation groupoid, consisting of structures (rather than equivalence classes) and
isomorphisms between them, is a more meaningful and useful object to parametrize
geometric structures.

Therefore we fix a smooth manifold Σ and define a marked (G, X)-structure on

Σ as a pair (M, f) where M is a (G, X)-manifold and Σ
f−→ M a diffeomorphism.

Suppose that Σ is compact (possibly ∂Σ 
= ∅). Fix a fiber bundle E over Σ with
fiber X and structure group G. Give the set Def(G,X)(Σ) of such marked (G, X)-
structures on Σ the C1-topology on pairs (F , Dev) of foliations F and smooth
sections Dev. Clearly the diffeomorphism group Diff(Σ) acts on Def(G,X)(Σ) by left-
composition. Define marked (G, X)-structures (M, f) and (M ′, f ′) to be isotopic
if they are related by an diffeomorphism of Σ isotopic to the identity.

Define the deformation space of isotopy classes of marked (G, X)-structures on
Σ as the quotient space

Def(G,X)(Σ) := Def(G,X)(Σ)/Diff0(Σ).

Clearly the diffeotopy group π0

(
Diff(Σ)

)
(which for compact surfaces Σ is the

mapping class group Mod(Σ) acts on the deformation space.

7. Representations of the fundamental group

The set of isomorphism classes of flat G-bundles over Σ identifies with the set
Hom

(
π1(Σ), G

)
/G of equivalence classes of representations π1(Σ) −→ G, where two

representations ρ, ρ′ are equivalent if and only if ∃g ∈ G such that ρ′ = Inn(g) ◦ ρ,
where Inn(g) : x �−→ gxg−1 is the inner automorphism associated to g ∈ G. Since
π1(Σ) is finitely generated, Hom

(
π1(Σ), G

)
has the structure of a real-analytic

subset in a Cartesian power GN , and this structure is independent of the choice of
generators. Give Hom

(
π1(Σ), G

)
the classical topology and note that it is stratified

into smooth submanifolds. Give Hom
(
π1(Σ), G

)
/G the quotient topology.

The space Hom
(
π1(Σ), G

)
/G may enjoy several pathologies:

• The analytic variety Hom
(
π1(Σ), G

)
may have singularities, and not be a

manifold;
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• G may not act freely, even on the smooth points, so the quotient map may be
nontrivially branched, and Hom

(
π1(Σ), G

)
/G may have orbifold singularities;

• G may not act properly, and the quotient space Hom
(
π1(Σ), G

)
/G may not

be Hausdorff.

All three pathologies may occur.
The automorphism group Aut

(
π1(Σ)

)
acts on Hom

(
π1(Σ), G

)
by right-composition.

The action of its subgroup Inn
(
π1(Σ)

)
is absorbed in the Inn(G)-action, and there-

fore the quotient group

Out
(
π1(Σ)

)
:= Aut

(
π1(Σ)

)
/Inn

(
π1(Σ)

)

acts on the quotient
Hom

(
π1(Σ), G

)
/G.

Associating to a marked (G, X)-structure the equivalence class of its holonomy
representation defines a continuous map

Def(G,X)(Σ) hol−−→ Hom
(
π1(Σ), G

)
/G (2)

which is evidently π0

(
Diff(Σ)

)
-equivariant, with respect to the homomorphism

π0

(
Diff(Σ)

) −→ Out
(
π1(Σ)

)
.

Theorem (Thurston). With respect to the above topologies, the holonomy map hol
in (2) is a local homeomorphism.

For hyperbolic structures on closed surfaces, which are special cases of (G, G)-
structures (or discrete embeddings in Lie groups as above), this result is due to
Weil [168, 169, 170]; see the very readable paper by Bergeron-Gelander [19]. This
result is due to Hejhal [103] for CP1-surfaces. The general theorem was first stated
explicitly by Thurston [158], and perhaps the first careful proof may be found in
Lok [125] and Canary-Epstein-Green [31]. Bergeron and Gelander refer to this
result as the “Ehresmann-Thurston theorem” since many of the ideas are implicit
in Ehresmann’s viewpoint [56].

The following proof was worked out in [74] with Hirsch, and was also known
to Haefliger. By the covering homotopy theorem and the local contractibility
of Hom

(
π1(Σ), G

)
, the isomorphism type of E as a G-bundle is constant. Thus

one may assume that E is a fixed G-bundle, although the flat structure (given
by the transverse foliation F) varies, as the representation varies. However it
varies continuously in the C1 topology. Thus a given F-transverse section Dev
remains transverse as F varies, and defines a geometric structure. This proves
local surjectivity of hol.

Conversely, if Dev′ is a transverse section sufficiently close to Dev in the C1-
topology, then it stays within a neighborhood of Dev(Σ). For a sufficiently small
neighborhood W of Dev(Σ), the foliation F|W identifies with a product foliation
of W ≈ Dev(Σ) ×X defined by the projection to X. For each m ∈ Σ, the leaf of
F|W through Dev(m) meets Dev′(Σ) in a unique point Dev′(m′) for m′ ∈ Σ. The
correspondence m �−→ m′ is the required isotopy, from which follows hol is locally
injective.
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8. Thurston’s geometrization of 3-manifolds

In 1976, Thurston proposed that every closed 3-manifold admits a canonical decom-
position into pieces, by cutting along surfaces of nonnegative Euler characteristic.
Each of these pieces has one of eight geometries, modeled on eight 3-dimensional
Riemannian homogeneous spaces:

• Elliptic geometry: Here X = S3 and G = O(3) its group of isometries.
Manifolds with these geometries are the Riemannian 3-manifolds of constant
positive curvature, that is, spherical space forms, and include lens spaces.

• S2 × R: The only closed 3-manifolds with this geometry are S2 × S1 and a
few quotients.

• Euclidean geometry: Here X = R
3 and G its group of isometries. These

are the Riemannian manifolds of zero curvature, and are quotients by tor-
sionfree Euclidean crystallographic groups. In 1912, Bieberbach proved every
closed Euclidean manifold is a quotient of a flat torus by a finite group of
isometries. Furthermore he proved there are only finitely many topological
types of these manifolds, and that any homotopy-equivalence is homotopic
to an affine isomorphism.

• Nilgeometry: Here again X = R
3, regarded as the Heisenberg group with

a left-invariant metric and G its group of isometries. Manifolds with these
geometry are covered by nontrivial oriented S1-bundles over 2-tori.

• Solvgeometry: Once again X = R
3, regarded as a 3-dimensional expo-

nential solvable unimodular non-nilpotent Lie group and G the group of
isometries of a left-invariant metric. Hyperbolic torus bundles (suspensions
of Anosov diffeomorphisms of tori) have these structures.

• H2 × R: Products of hyperbolic surfaces with S1 have this geometry.

• Unit tangent bundle of H2: An equivalent model is PSL(2, R) with a
left-invariant metric. Nontrivial oriented S1-bundles of hyperbolic surfaces
(such as the unit tangent bundle) admit such structures.

• Hyperbolic geometry: Here X = H3 and G its group of isometries.

For a description of the eight homogeneous Riemannian geometries and their rela-
tionship to 3-manifolds, see the excellent surveys by Scott [147] and Bonahon [21].

9. Complete affine 3-manifolds

Manifolds modeled on Euclidean geometry are exactly the flat Riemannian mani-
folds. Compact Euclidean manifolds Mn are precisely the quotients R

n/Γ, where
Γ is a lattice of Euclidean isometries. By the work of Bieberbach (1912), such a
Γ is a finite extension of a lattice Λ of translations. Thus M is finitely covered by
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the torus R
n/Λ. Since all lattices Λ ⊂ R

n are affinely the homotopy type of M
determines its affine equivalence class. When M is noncompact, but geodesically
complete, then M is isometric to a flat orthogonal vector bundle over a compact
Euclidean manifold.

These theorems give at least a qualitative classification of manifolds with Eu-
clidean structures. The generalization to manifolds with affine structures is much
more mysterious and difficult. We begin by restricting to ones which are geodesi-
cally complete. In that case the manifolds are quotients R

n/Γ but Γ is only assumed
to consist of affine transformations. However, unlike Euclidean manifolds consid-
ered above, discreteness of Γ ⊂ Aff(Rn) does not generally imply the properness
of the action, and the quotient may not be Hausdorff. Characterizing which affine
representations define proper actions is a fundamental and challenging problem.

In the early 1960’s, L. Auslander announced that every compact complete affine
manifold has virtually polycyclic fundamental group, but his proof was flawed. In
this case, the manifold is finitely covered by an affine solvmanifold Γ\G where G
is a (necessarily solvable) Lie group with a left-invariant complete affine structure
and Γ ⊂ G is a lattice. Despite many partial results, ([64, 2, 3, 164, 87]) the
Auslander Conjecture remains open.

Milnor [134] asked whether the virtual polycyclicity of Γ might hold even if the
quotient R

n/Γ is noncompact. Using the Tits Alternative [162], he reduced this
question to whether a rank two free group could act properly by affine transforma-
tions on R

n. Margulis [128] showed, surprisingly, that such actions do exist when
n = 3.

For n = 3, Fried and Goldman [64] showed that either Γ is virtually polycyclic
(in which case all the structures are easily classified), or the linear holonomy ho-
momorphism Γ L−→ GL(3, R) maps Γ isomorphically onto a discrete subgroup of a
conjugate of O(2, 1) ⊂ GL(3, R). Since L−1O(2, 1) preserves a flat Lorentz metric
on R

3, the geometric structure on M refines to a flat Lorentz structure, mod-
eled on E

3
1, which is R

3 with the corresponding flat Lorentz metric. In particular
M3 = E

3
1/Γ is a complete flat Lorentz 3-manifold and Σ := H2/L(Γ) is a complete

hyperbolic surface. This establishes the Auslander Conjecture in dimension 3: the
cohomological dimension of Γ ∼= π1(M3) equals 3 since M is aspherical, but the
cohomological dimension Γ ∼= π1(Σ) is at most 2. In 1990, Mess [131] proved that
the surface Σ is noncompact, and therefore Γ must be a free group. (Compare also
Goldman-Margulis [90] and Labourie [119] for other proofs.)

Drumm [51, 52] (see also [39] ) gave a geometric construction of these quotient
manifolds using polyhedra in Minkowski space R

3
1 now called crooked planes. Using

crooked planes, he showed that every noncompact complete hyperbolic surface Σ
arises from a complete flat Lorentz 3-manifold; that is, he showed that every non-
cocompact Fuchsian group L(Γ) ⊂ O(2, 1) admits a proper affine deformation Γ.

The conjectural picture of these manifolds is as follows.
The space of equivalence classes of affine deformations of Γ is the vector space

H1(Γ, R3
1), and the proper affine deformations define an open convex cone in

this vector space. Goldman-Labourie-Margulis [89] have proved this when Γ is
finitely generated and contains no parabolic elements. Furthermore a finite-index
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subgroup of Γ should have a fundamental domain which is bounded by crooked
planes, and M3 should be homeomorphic to a solid handlebody. Charette-Drumm-
Goldman [37] have proved this when Σ is homeomorphic to a 3-holed sphere.

Translational conjugacy classes of affine deformations of a Fuchsian group
Γ0 ⊂ O(2, 1) comprise the cohomology group H1(Γ0; R3

1). As the O(2, 1)-module
R

3
1 identifies with the Lie algebra of O(2, 1) with the adjoint representation, this

cohomology group identifies with the space of infinitesimal deformations of the
hyperbolic surface Σ = H2/Γ0. (Compare Goldman-Margulis [90] and [80].)

When Σ has no cusps, [89] provides a criterion for properness of an affine
deformation corresponding to a deformation σ of the hyperbolic surface Σ. The
affine deformation Γσ acts properly on E

3
1 if and only if every probability measure

on UΣ invariant under the geodesic flow infinitesimally lengthens (respectively
infinitesimally shortens under σ. (We conjecture a similar statement in general.)
Using ideas based on Thurston [161], one can reduce this to probability measures
arising from measured geodesic laminations. When Σ is a three-holed sphere, [37]
implies the proper affine deformations are precisely the ones for which the three
components of ∂Σ either all infinitesimally lengthen or all infinitesimally shorten.

Other examples of conformally flat Lorentzian manifolds have recently been
studied by Frances [61], Zeghib [176], and Bonsante-Schlenker [22], also closely
relating to hyperbolic geometry.

10. Affine structures on closed manifolds

The question of which closed manifolds admit affine structures seems quite diffi-
cult. Even for complete structures, the pattern is mysterious. Milnor [134] asked
whether every virtually polycyclic group arises as the fundamental group of a
compact complete affine manifold. Benoist [9, 10] found 11-dimensional nilpo-
tent counterexamples. However by replacing R

n by a simply connected nilpotent
Lie group, one obtains more general structures. Dekimpe [48] showed that every
virtually polycyclic group arises as the fundamental group of such a NIL-affine
manifold.

For incomplete structures, the picture is even more unclear. The Markus con-
jecture, first stated by L. Markus as a homework exercise in unpublished lecture
notes at the University of Minnesota in 1960 asserts that, for closed affine mani-
folds, geodesic completeness is equivalent to parallel volume (linear holonomy in
SL(n, R). That this conjecture remains open testifies to our current ignorance.

An important partial result is Carrière’s result [32] that a closed flat Lorentzian
manifold is geodesically complete. This has been generalized in a different direction
by Klingler [112] to all closed Lorentzian manifolds with constant curvature.

Using parallel volume forms, Smillie [153] showed that the holonomy of a com-
pact affine manifold cannot factor through a free product of finite groups; his
methods were extended by Goldman-Hirsch [85, 86] to prove nonexistence results
for affine structures on closed manifolds with certain conditions on the holonomy.
Using these results, Carrière, Dal’bo and Meigniez [33] showed that certain Seifert
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3-manifolds with hyperbolic base admit no affine structures.
Perhaps the most famous conjecture about affine structures on closed mani-

folds is Chern’s conjecture that a closed affine manifold must have Euler charac-
teristic zero. For flat pseudo-Riemannian manifolds or complex affine manifolds,
this follows from Chern-Gauss-Bonnet. Using an elegant argument, Kostant and
Sullivan [114] proved this conjecture for complete affine manifolds. (This would
follow immediately from the Auslander Conjecture.)

In a different direction, Smillie [151] found simple examples of closed manifolds
with flat tangent bundles (these would have affine connections with zero curvature,
but possibly nonzero torsion). Recent results in this direction have been obtained
by Bucher-Gelander [26].

11. Hyperbolic geometry on 2-manifolds

The prototype of geometric structures, and historically one of the basic examples,
are hyperbolic structures on surfaces Σ with χ(Σ) < 0. Here X is the hyperbolic
plane and G ∼= PGL(2, R). Fricke and Klein [62] studied the deformation space of
hyperbolic structures on Σ as well as on 2-dimensional orbifolds. The deformation
space F(Σ) of marked hyperbolic structures on Σ (sometimes called Fricke Space
([20]) can also be described as the space of equivalence classes of discrete embed-
dings π1(Σ) −→ G. The Poincaré-Klein-Koebe Uniformization Theorem relates
hyperbolic structures and complex structures, so the Fricke space identifies with
the Teichmüller space of Σ, which parametrizes Riemann surfaces homeomorphic
to Σ. For this reason, although Teichmüller himself never studied hyperbolic geom-
etry, the deformation theory of hyperbolic structures on surfaces is often referred
to as Teichmüller theory.

Representations of surface groups in G = PSL(2, R) closely relate to geometric
structures. A representation π1(Σ)

ρ−→ G determines an oriented flat H2-bundle
over Σ. Oriented flat H2-bundles are classified by their Euler class, which lives in
H2(Σ; Z) ∼= Z when Σ is closed and oriented. The Euler number of a flat oriented
H2-bundle satisfies

|Euler(ρ)| ≤ −χ(Σ) (3)

as proved by Wood[175], following earlier work of Milnor[134].

Theorem 1. Equality holds in (3) if and only if ρ is a discrete embedding.

This theorem was first proved in [69], using Ehresmann’s viewpoint. Namely,
the condition that Euler(ρ) = ±χ(Σ) means that the associated flat H2-bundle Eρ

with holonomy homomorphism ρ is isomorphic (up to changing orientation) to the
tangent bundle of Σ (as a topological disc bundle, or equivalently a microbundle
over Σ). If ρ is the holonomy of a hyperbolic surface M ≈ Σ, then E(M) = Eρ ≈
TΣ. Theorem 1 is a converse: if the flat bundle “is isomorphic to the tangent
bundle (as a (G, X)-bundle)”, then the flat (G, X)-bundle arises from a (G, X)-
structure on Σ.
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In the case the representation ρ has discrete torsionfree cocompact image, The-
orem 1 reduces to a classical result of Kneser [113]. In 1930 Kneser proved that if

Σ
f−→ Σ′ is a continuous map of degree d, then

d|χ(Σ′)| ≤ |χ(Σ)|

with equality ⇐⇒ f is homotopic to a covering space. (In this case Σ′ is the
hyperbolic surface obtained as the quotient by the image of ρ, and Euler(ρ) =
dχ(Σ′). Kneser’s theorem is thus a discrete version of Theorem 1.

By now Theorem 1 has many proofs and extensions. One proof, using harmonic
maps, begins by choosing a Riemann surface M ≈ Σ. Then, by Corlette [47] and
Donaldson [50], either the image of ρ is solvable (in which case Euler(ρ) = 0) or
the image is reductive, and there exists a ρ-equivariant harmonic map M̃

h−→ X.
By an adaptation of Eels-Wood [54], Euler(ρ) can be computed as the sum of local
indices of the critical points of h. In particular, the assumption of maximality:
Euler(ρ) = ±χ(M) implies that h must be holomorphic (or anti-holomorphic),
and using the arguments of Schoen-Yau [142], h must be a diffeomorphism. In
particular ρ must be a discrete embedding.

Shortly after [69], another proof was given by Matsumoto [129] (compare also
Mess [131]), related to ideas of bounded cohomology. This led to the work of
Ghys [67], who proved that the Euler class of an orientation-preserving action of
π1(Σ) on S1 is a bounded class, and its class in bounded cohomology determines the
action up to topological semi-conjugacy. In particular maximality in the Milnor-
Wood inequality (3) implies the topological action is conjugate to the projective
action arising from (any) discrete embedding in PSL(2, R).

The Euler number classifies components of Hom
(
π1(Σ), PSL(2, R)). That is, if

Σ is closed, oriented, of genus g > 1, the 4g − 3 connected components are the
inverse images Euler−1(j) where

j = 2− 2g, 3− 2g, . . . , 2g − 2

(Goldman [76]). Independently, Hitchin [104] gave a much different proof, using
Higgs bundles. Moreover he identified the Euler class 2−2g +k component with a
vector bundle over the k-th symmetric power of Σ (compare the expository article
[84])

When G is a semisimple compact or complex Lie group, components of the
representation space bijectively correspond to π1(G). In particular in these ba-
sic cases, the number of components is independent of the genus. (See Li [124]
and Rapinchuk–Benyash-Krivetz–Chernousov[141].) Recently Florentino and Law-
ton [58] have determined the homotopy type of Hom(Γ, G)//G when Γ is free and
G is a complex reductive group.

This simple picture becomes much more intricate and fascinating for higher di-
mensional noncompact real Lie groups; the most effective technique so far has been
the interpretation in terms of Higgs bundles and the use of infinite-dimensional
Morse theory; see Bradlow-Garcia-Prada-Gothen [23] for a survey of some recent
results on the components when G is a simple real Lie group.



Locally homogeneous geometric manifolds 13

Theorem 1 leads to rigidity theorems for surface group representations as well.
When G is the automorphism group of a Hermitian symmetric space X, integrat-
ing a G-invariant Kähler form on X over a smooth section of a flat (G, X)-bundle
induces a characteristic class τ(ρ) first defined by Turaev [165] and Toledo [163].
This characteristic class satisfies an inequality similar to (3). The maximal rep-
resentations, (when equality is attained) have very special properties. When X

is complex hyperbolic space, a representation π1(Σ)
ρ−→ PU(n, 1) is maximal if

and only if it stabilizes a totally geodesic holomorphic curve, and its restriction is
Fuchsian (Toledo [163]).

In higher rank the situation is much more interesting and complicated. Burger-
Iozzi-Wienhard [28] showed that maximal representations are discrete embeddings,
with reductive Zariski closures. With Labourie, they proved [27] in the case
of Sp(2n, R), that these representations quasi-isometrically embed π1(Σ) in G.
Many of these properties follow from the fact that maximal representations are
Anosov representations in the sense of Labourie [120]. Using Higgs bundle theory,
Bradlow-Garcia-Prada-Gothen [23] have counted components of maximal repre-
sentations. Guichard-Wienhard [101] have found components of maximal repre-
sentations in Sp(2n, R), all of whose elements have Zariski dense image (in contrast
to PU(n, 1) discussed above). For a good survey of these results, see Burger-Iozzi-
Wienhard [29].

12. Complex projective 1-manifolds, flat conformal
structures and spherical CR structures

When X is enlarged to CP1 and G to PSL(2, C), the resulting deformation theory
of CP1-structures is quite rich. A manifold modeled on this geometry is naturally
a Riemann surface, and thus the deformation space fibers over the Teichmüller
space of marked Riemann surfaces:

Def(G,X)(Σ) −→ T(Σ). (4)

The classical theory of the Schwarzian derivative identifies this fibration with a
holomorphic affine bundle, where the fiber over a point in T(Σ) corresponding to a
marked Riemann surface Σ ≈−→ M is an affine space with underlying vector space
H0(M ; κ2

M ) consisting of holomorphic quadratic differentials on M .
In the late 1970’s, Thurston (unpublished) showed that Def(G,X)(Σ) admits an

alternate description as F(Σ)×ML(Σ) where ML(Σ) is the space of equivalence
classes of measured geodesic laminations on Σ. (Compare Kamishima-Tan [108].)
[73] gives the topological classification of CP1-structures whose holonomy represen-
tation is a quasi-Fuchsian embedding. Gallo-Kapovich-Marden [65] showed that
the image of the holonomy map hol consists of representations into PSL(2, C) which
lift to an irreducible and unbounded representation into SL(2, C).

For an excellent survey of this subject, see Dumas [53].
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These structures generalize to higher dimensions in several ways. For exam-
ple PSL(2, C) is the group of orientation-preserving conformal automorphisms of
CP1 ≈ S2. A flat conformal structure is a geometric structure locally modeled on
Sn with its group of conformal automorphisms. This structure is equivalent to a
conformal class of Riemannian metrics, which are locally conformally equivalent to
Euclidean metrics. (Compare Matsumoto [130].) In the 1970’s it seemed tempting
to try to prove the Poincaré conjecture by showing that every closed 3-manifold
admits such a structure. This was supported by the fact that these structures
are closed under connected sums (Kulkarni [117]). This approach was further pro-
moted by the fact that such structures arise as critical points of the Chern-Simons
functional [42], and one could try to reach critical points by following the gradient
flow of the Chern-Simons functional. However, closed 3-manifolds with nilgeometry
or solvgeometry admit no flat conformal structures whatsoever [71]).

As Hn−1×R embeds in Sn as the complement of a codimension-two subsphere,
the conformal geometry of Sn contains Hn−1 × R-geometry. Thus products of
closed surfaces with S1 do admit flat conformal structures, and Kapovich [109]
and Gromov-Lawson-Thurston [97] showed that even some nontrivial S1-bundles
over closed surfaces admit flat conformal structures, although T1(H2)-geometry
admits no conformal model in S3.

Kulkarni-Pinkall [118] have extended Thurston’s correspondence

Def(G,X)(Σ) ←→ F(Σ)×ML(Σ)

to associate to a flat conformal structure on a manifold (satisfying a generic condi-
tion of “hyperbolic type”) a hyperbolic metric with some extrinsic (bending) data.
b

A similar class of structures are the spherical CR-structures, modeled on S2n−1

as the boundary of complex hyperbolic n-space, in the same way that Sn−1 with
its conformal structure bounds real hyperbolic n-space. Some of the first examples
were given by Burns-Shnider [30]. 3-manifolds with nilgeometry naturally admits
such structures, but by [71], closed 3-manifolds with Euclidean and solvgeometry
do not admit such structures. Twisted S1-bundles admit many such structures (see
for example [88]), but recently Ananin, Grossi and Gusevskii [4, 5] have constructed
surprising examples of spherical CR-structures on products of closed hyperbolic
surfaces with S1. Other interesting examples of spherical CR-structures on 3-
manifolds have been constructed by Schwartz [144, 145, 146], Falbel [57], Gusevskii,
Parker [137], Parker-Platis [138].

When X = RPn and G = PGL(n + 1, R), then a (G, X)-structure is a flat
projective connection.

In dimension 3, the only closed manifold known not to admit an RP3-structure
is the connected sum RP3#RP3 (Cooper-Goldman [46]). Many diverse examples
of RP3-structures on twisted S1-bundles over closed hyperbolic surfaces arise from
maximal representations of surface groups into Sp(4, R) by Guichard-Wienhard [101].
All eight of the Thurston geometries have models in RP3 [136].

The 2-dimensional theory is relatively mature. The most important examples
are the convex structures, namely those which arise as quotients Ω/Γ where Ω is a
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convex domain in RP2 and Γ is a group of collineations preserving Ω. Kuiper [115]
showed that all convex structures on 2-tori are affine structures, and classified them.
They are all quotients of the plane, a half-plane or a quadrant. In higher genus,
he showed [116] that either ∂Ω is a conic (in which case the projective structure is
a hyperbolic structure) or it fails to be C2. Benzecri [18] showed that in the latter
case, it is C1 and is strictly convex. Using the analog of Fenchel-Nielsen coordi-
nates, Goldman [77] showed that the deformation space C(Σ) is a cell of dimension
−8χ(Σ). (Kim [111] showed these coordinates are global Darboux coordinates for
the symplectic structure, extending a result of Wolpert [174] for F(Σ).) In his
doctoral thesis, Choi showed that every structure on a closed surface canonically
decomposes into convex structures with geodesic boundary, glued together along
boundary components. Combining these two results, one identifies the deformation
space precisely as a countable disjoint union of open −8χ(Σ)-cells [44].

Using analytic techniques, Labourie [122] and Loftin [126], independently, de-
scribed C(Σ) as a cell in a quite different way. Associated to a convex RP2-structure
M is a natural Riemannian metric arising from representing M as a convex sur-
face in R

3, which is a hyperbolic affine sphere. The underlying conformal structure
defines a point in T(Σ) associated to the convex RP2-manifold M . Its extrinsic
geometry is described by a holomorphic cubic differential on the corresponding
Riemann surface. In this way C(Σ) identifies with the bundle over T(Σ) whose
fiber over a marked Riemann surface is the vector space of holomorphic cubic
differentials on that Riemann surface. Loftin [127] relates the geometry of these
structures to the asymptotics of this deformation space.

These results generalize in several directions. In a series of beautiful papers,
Benoist [11, 12, 13, 14, 15, 16] studied convex projective structures Ω/Γ on compact
manifolds. The natural Hilbert metric on Ω determines a (Finsler) metric on M ,
and if Ω is strictly convex, then this natural metric has negative curvature and Γ
is a hyperbolic group. The corresponding geodesic flow is an Anosov flow, which if
M admits a hyperbolic structure, is topologically conjugate to the geodesic flow of
the hyperbolic metric. Furthermore, as in [43], the corresponding representations
Γ −→ PGL(n + 1, R) form a connected component of the space of representations.
For compact quotients Ω/Gamma, Benoist showed that the hyperbolicity of the
group Γ is equivalent to the strict convexity of ∂Ω. He constructed 3-dimensional
examples of convex structures on 3-manifolds with incompressible tori and hyper-
bolic components, where ∂Ω is the closure of a disjoint countable union of triangles.
In a different direction, Kapovich [110] constructed convex projective structures
with ∂Ω strictly convex but Ω/Γ has no locally symmetric structure.

When G is a split real form of a complex semisimple Lie group, Hitchin [105]
showed that Hom

(
π1(Σ), G

)
/G contains components homeomorphic to open cells.

Specifically, these are the components containing Fuchsian representations into
SL(2, R) composed with the Kostant principal representation SL(2, R) −→ G.
When G = SL(3, R), then hol maps C(Σ) diffeomorphically to Hitchin’s component
(Choi-Goldman [43]). Guichard and Wienhard [100] have found interpretations of
Hitchin components in SL(4, R) in terms of geometric structures. Recently [102]
they have also shown that a very wide class of Anosov representations as defined
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by Labourie [120], correspond to geometric structures on closed manifolds. (A
much different class of Anosov representations of surface groups has recently been
studied by Barbot [6, 7].

The properness of the action of Mod(Σ) on F(Σ) is generally attributed to
Fricke. Many cases are known of components of deformation spaces when Mod(Σ)
acts properly [94, 171, 27]. In many of these cases, these components consist of
holonomy representations of uniformizable Ehresmann structures.

13. Surface groups: symplectic geometry and map-
ping class group

Clearly the classification of geometric structures in low dimensions closely interacts
with the space of surface group representations. Many examples have already been
discussed here. By the Ehresmann-Weil-Thurston holonomy theorem, the local
geometry of Hom

(
π1(Σ), G

)
/G is the same local geometry of Def(G,X)(Σ). When

Σ is a compact surface, this space itself admits rich geometric structures.
Associated to an orientation on Σ and an Ad(G)-invariant nondegenerate sym-

metric bilinear form B on the Lie algebra of G is a natural symplectic structure
on the deformation space. (When ∂Σ 
= ∅, one obtains a Poisson structure whose
symplectic leaves correspond to fixing the conjugacy classes of the holonomy along
boundary components.) This extends the cup-product symplectic structure on
H1(Σ, R) (when G = R), the Kähler form on the Jacobian of a Riemann surface
M ≈ Σ, (when G = U(1)), and the Weil-Petersson Kähler form on T(Σ) (when
G = PSL(2, R)). Compare [72].

The symplectic geometry extends over the singularities of the deformation space
as well. In joint work with Millson [93, 132], inspired by a letter of Deligne [49],
it is shown that the germ at a reductive representation ρ, the analytic variety
Hom(π1(Σ), G)/G is locally equivalent to a cone defined by a system of homo-
geneous quadratic equations. Explicitly, this quadratic cone is defined by the
cup-product

Z1(Σ, gAdρ)× Z1(Σ, gAdρ)
[,]∗∪−−−→ H2Σ, gAdρ)

using Weil’s identification of the Zariski tangent space of Hom(π1(Σ), G)/G at ρ
with Z1(Σ, gAdρ). This quadratic singularity theorem extends to higher-dimensional
Kähler manifolds [149] and relates to the stratified symplectic spaces considered
by Sjamaar-Lerman [150].

The symplectic/Poisson geometry of the deformation spaces Hom
(
π1(Σ), G

)
/G

and Def(G,X)(Σ) associate vector fields to functions in the following way (see [75]).
A natural class of functions fα on Hom

(
π1(Σ), G

)
/G arise from Inn(G)-invariant

functions G
f−→ R and elements α ∈ π(Σ) by composition:

[ρ]
fα−→ f

(
ρ(α)

)
.
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For example, when � is the geodesic length function on PSL(2, R), this construction
yields the geodesic length functions �α on T(Σ).

When α arises from a simple closed curve on Σ then the Hamiltonian flow
associated to the vector field Ham(fα) admits a simple description as a generalized
twist flow. Such a flow is “supported on α” in the sense that pulled back to
the complement Σ \ α the flow is a trivial deformation. This extends the results
of Wolpert [172, 173] for the Weil-Petersson symplectic form on T(Σ), Fenchel-
Nielsen twist flow (or earthquake) along α is Ham(�α). For the case of G = SU(2),
Jeffrey and Weitsman [106] used these flows to define an “almost toric” structure
on Hom

(
π1(Σ), G

)
/G from which they deduced the Verlinde formulas.

The Poisson brackets of the functions fα may be computed in terms of oriented
intersections on Σ. For G = GL(n), and f = tr, one obtains a topologically defined
Lie algebra based on homotopy classes of curves on Σ with a representation in the
Poisson algebra of functions on Hom

(
π1(Σ), G

)
/G. Turaev[167] showed this Lie

algebra extends to a Lie bialgebra and found several quantizations. Recently Moira
Chas [40] has discovered algebraic properties of this Lie algebra; in particular she
proved that the �1 norm of a bracket [α, β] of two unoriented simple closed curves
equals the geometric intersection number i(α, β).

These algebraic structures extend in higher dimensions to the string topology
of Chas-Sullivan [41].

The symplectic geometry is Mod(Σ)-invariant and in particular defines an in-
variant measure on the deformation space. Unlike the many cases in which Mod(Σ)
acts properly discussed above, when G is compact, this measure-preserving ac-
tion is ergodic on each connected component (Goldman [78], Pickrell-Xia [139],
Goldman-Xia [96]). When G is noncompact, invariant open subsets of the de-
formation space exist where the action is proper (such as the subset of Anosov
representations), but in general Mod(Σ) can act properly on open subsets contain-
ing non-discrete representations, even for PSL(2, R) ([81, 91, 156]).

Similar questions for the action of the outer automorphism group Out(Fn) of
a free group Fn on Hom(Fn, G)/G have recently been studied [83]. In particular
Gelander has proved that the action of Out(Fn) is ergodic whenever G is a compact
connected Lie group. For G = SL(2, C), Minsky [135] has recently found open
subsets of Hom(Fn, G)/G strictly containing the subset of Schottky embeddings
for which the action is proper.
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[23] Bradlow, S., Garćıa-Prada, O. and Gothen, P., Surface group representations and
U(p, q)-Higgs bundles, J. Diff. Geo. 64 (2003), no. 1, 111–170;



Locally homogeneous geometric manifolds 19

[24] , , and , Maximal surface group representations in isometry
groups of classical Hermitian symmetric spaces, Geom. Ded. 122 (2006), 185–213.

[25] , , and , What is a Higgs bundle? Notices Amer. Math. Soc.
54 no. 8, (2007), 980–981.

[26] Bucher, M. and Gelander, T., Milnor-Wood inequalities for manifolds locally isomet-
ric to a product of hyperbolic planes, C. R. Acad. Sci. Paris 346 (2008), no. 11-12,
661–666.

[27] M. Burger, A. Iozzi, Labourie, F., and Wienhard, A., Maximal representations of
surface groups: Symplectic Anosov structures, Pure and Applied Mathematics Quar-
terly, Special Issue: In Memory of Armand Borel Part 2 of 3, 1 (2005), no. 3, 555–601.

[28] Burger, M., Iozzi, A. and Wienhard, A., Surface group representations with maximal
Toledo invariant, C. R. Acad. Sci. Paris , Sér. I 336 (2003), 387–390; Representations
of surface groups with maximal Toledo invariant, Preprint math.DG/0605656. Ann.
Math. (to appear).

[29] , , and , Higher Teichmüller spaces from SL(2, R) to other Lie
groups, Handbook of Teichmüller theory, vol. III (A. Papadopoulos, ed.), IRMA Lec-
tures in Mathematics and Theoretical Physics European Mathematical Society (to
appear).

[30] Burns, D., Jr. and Shnider, S., Spherical hypersurfaces in complex manifolds, Inv.
Math. 33 (1976), no. 3, 223–246.

[31] Canary, R. D.; Epstein, D. B. A.; Green, P. Notes on notes of Thurston, in Analytical
and geometric aspects of hyperbolic space (Coventry/Durham, 1984), 3–92, London
Math. Soc. Lecture Note Ser., 111 Cambridge Univ. Press, Cambridge (1987).

[32] Carrière, Y., Autour de la conjecture de L. Markus sur les variétés affines, Inv. Math.
95 (1989), no. 3, 615–628.

[33] , Dal’bo, F. and Meigniez, G., Inexistence de structures affines sur les fibrés
de Seifert, Math. Ann. 296 (1993), no. 4, 743–753.

[34] Charette, V., Proper Actions of Discrete Groups on 2 + 1 Spacetime, Doctoral Dis-
sertation, University of Maryland 2000.

[35] and Drumm, T., The Margulis invariant for parabolic transformations, Proc.
Amer. Math. Soc. 133 (2005), no. 8, 2439–2447.

[36] and , Strong marked isospectrality of affine Lorentzian groups, J. Diff.
Geo. 66 (2004), no. 3, 437–452.

[37] , and Goldman, W. Affine deformations of the three-holed sphere,
Geom. Topol. (to appear) arXiv:0907.0690

[38] , , , and Morrill, M., Complete flat affine and Lorentzian man-
ifolds, Geom. Ded. 97 (2003), 187–198.

[39] Charette, V. and Goldman, W., Affine Schottky groups and crooked tilings, Contemp.
Math. 262, (2000), 69–98.

[40] Chas, M., Minimal intersection of curves on surfaces, Geom. Ded. 144 (2010), 25-60.

[41] and Sullivan, D., String Topology, Ann. Math. (to appear)

[42] Chern, S. and Simons, J., Characteristic forms and geometric invariants, Ann. Math.
99 (2), (1974), 48–69.



20 W. Goldman

[43] Choi, S., and Goldman, W., Convex real projective structures on closed surfaces are
closed, Proc. Amer. Math. Soc. 118 (2) (1993), 657–661.

[44] , and , The classification of real projective structures on compact
surfaces, Bull. Amer. Math. Soc. 34 (1997), 161–171.

[45] , and , The deformation spaces of convex RP 2-structures on 2-
orbifolds. Amer. J. Math. 127 No. 5, (2005) 1019–1102

[46] Cooper, D., and Goldman, W., A 3-manifold without a projective structure, (in
preparation).

[47] Corlette, K., Flat G-bundles with canonical metrics, J. Diff. Geo. 28 (1988), 361–382.

[48] Dekimpe, K., Any virtually polycyclic group admits a NIL-affine crystallographic
action, Topology 42 (2003), no. 4, 821–832.

[49] Deligne, P., letter to W. Goldman and J. Millson (1986)

[50] Donaldson, S., Twisted harmonic maps and the self-duality equations, Proc. London
Math. Soc. (3) 55 (1987), no. 1, 127–131.

[51] Drumm, T., Fundamental polyhedra for Margulis spacetimes, Doctoral Dissertation,
University of Maryland 1990; Topology 31 (4) (1992), 677-683;

[52] , Linear holonomy of Margulis space-times, J. Diff. Geo. 38 (1993), 679–691.

[53] Dumas, D., Complex Projective Structures, Chapter 12, pp. 455–508, of “Handbook
of Teichmüller theory, vol. II”, (A. Papadopoulos, ed.), IRMA Lectures in Mathemat-
ics and Theoretical Physics volume 13, European Mathematical Society (2008).

[54] Eels, J., and Wood, J. C., Restrictions on harmonic maps of surfaces, Topology 15
(1976), no. 3, 263–266.

[55] Ehresmann, C., Sur les espaces localement homogenes, L’ens. Math. 35 (1936), 317–
333

[56] , Les connexions infinitésimales dans un espace fibré différentiable, in “Col-
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