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Galaxy Formation



Formation of Gaseous Disks
• Suppose collapse timescale is shorter than star formation 

timescale, so that gas first collapses to form a gaseous object 
before forming stars. 

• Consider a gas cloud with some initial angular momentum, 
which collapses and dissipates energy effectively.

• Collapsed structure: a state in which energy is as low as 
possible, but with total angular momentum conserved. 

• Preferred end-state is a rotating disk, in which angular 
momenta of all mass elements point in the same direction.

• Why not an infinitesimal amount of gas (dM) orbiting a 
black-hole of mass M, keeping J=dM (G M R)^{1/2}? This 
requires a very effective transfer of angular  momentum from 
inside out, which is not achievable.
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Non-Self-Gravitating Disks in Isothermal 
Spheres

Assuming the disk mass is a fraction, md, of the halo mass,

Md ≈ 1.3×1011h−1M�
( md

0.05

)( Vvir

200km s−1

)3

Q−1(z) , Q(z) ≡
[
Δvir(z)

100

]1/2 [
H(z)

H0

]
.

Assuming an exponetial disk with surface density profile

Σ(R) = Σ0 exp(−R/Rd) ,

Rd: scalelength; Σ0: central surface density. Neglecting disk gravity, then

Jd = 2π

∫ ∞

0

VvirΣ(R)R2dR = 2MdRdVvir .

Assuming Jd = jdJ , then

Rd =
λGM3/2

2Vvir|E|1/2
(

jd
md

)
.
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Assuming all particles to be on circular orbits: E = −MV 2
vir

2 , one obtains

Rd =
1√
2

(
jd
md

)
λrvir ≈ 10h−1kpc

(
jd
md

)(
λ

0.05

)(
Vvir

200km s−1

)
Q−1(z) ;

Σ0 ≈ 207hM�pc−2
( md

0.05

)( jd
md

)−2(
λ

0.05

)−2(
Vvir

200km s−1

)
Q(z) .

For the Milky Way, Vrot ≈ 220km/s, Md ≈ 5 × 1010M�, and Rd ≈ 3.5kpc.
Assuming h = 0.7 and Vrot = Vvir we have md ∼ 0.01 and λ ∼ 0.011.

Disk evolution through Q(z): for a given Vvir disks are smaller and denser
at higher z.

Thursday, July 29, 2010



Self-Gravitating Disks in Halos with Realistic Profiles

Consider a halo with some unperturbed density profile

ρ(r) =
1

4πr2
dM(r)

dr
,

where M(r) is the halo mass within radius r. We can write

E = −MV 2
vir

2
FE ,

where FE is a factor depending on the form of ρ(r).
Assuming disk material to move on circular orbits,

Jd = 2MdRdVvirFR ; FR =
1

2

∫ rvir/Rd

0

u2e−uVc(uRd)

Vvir
du ,

where Vc(R) is the rotation curve. Using rvir � Rd, we have

Rd =
1√
2

(
jd
md

)
λrvirF

−1
R F

−1/2
E .

Computation of FR needs both Rd and Vc(r), the above set of equations has to
be solved iteratively.
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Disk effect on halo: adiabatic contraction  
Due to disk self-gravity, Vc(r) is the sum in quadrature of the contributions

from the disk and from the dark matter halo modified by the growth of the disk

V 2
c (r) = V 2

c,d(r) +
GMh,ac(r)

r
,

where the halo mass profile Mh,ac(r) is different from the original profile due to
disk gravity.

This effect is usually modeled with adiabatic contraction. Under adiabatic
evolution, the action defined through a canonical coordinate, qi, and its conju-
gate momentum, pi, Ji =

1
2π

∮
pi dqi , is a conserved quantity.

For a spherical halo with particles on circular orbits, J = r V (r). Thus,

rfMf(rf) = riMi(ri) .

The contracted profile can be obtained through combining the above equation
with

Mf(rf) = Md(rf) + (1−md)Mi(ri) ,

by solving for rf and Mf (rf ).
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Model predictions

Assuming NFW halos (Mo, Mao & White 1998)

Thursday, July 29, 2010



Disk Assembly

Consider a disk with surface density Σ(R, t) at t, embedded in a halo of
M(t). Suppose gas accretion rate Ṁd(t), and the newly accreted material has
a specific angular momentum distribution P (J , t)dJ . If gas settles conserving
angular momentum, then

2πΣ̇(R, t)RdR = Ṁd(t)P (J , t)dJ ,

where J = RVc(R, t) with Vc(R, t) the rotation curve at t. Thus

Σ̇(R, t) =
Ṁd(t)

2πR2
P (J , t)RVc(R, t)

[
1 +

∂ lnVc(R, t)

∂ lnR

]
.

For a given halo, Vc(R, t) can be obtained from Σ(R, t), and so disk growth is
determined once Ṁd(t) and P (J , t) are given. Ṁd(t) is set by Ṁ(t) and cooling
rate; modeling P (J , t) is more uncertain, but may be obtained from simulation.
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Disk star formation
Star formation not well understood; currently modeled with 
empirical prescription:

Kennicutt-Schmidt model:

Σ̇� = (2.5± 0.7)× 10−4

(
Σgas

M�pc−2

)1.4±0.15

M�yr−1kpc−2 ,

where Σgas = ΣHI +ΣH2 .

Silk model:
Σ̇� ≈ 0.017ΣgasΩ ,

with Ω the circular frequency.

Kennicutt Silk
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Local star formation law
Observation: star formation occurs in dense cores of molecular 
clouds. Locally star formation directly proportional to molecular 
gas density:  

Σ̇� = (7± 3)× 10−4

(
ΣH2

M� pc−2

)1.0±0.2

M�yr−1kpc−2 ,

Relation to Kennicutt law:

Σ� ∝ ΣN
gas , N =

d log Σ̇�

d logΣgas
= 1 +

d log fmol

d logΣgas
,
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Model of Krumholz, McKee & Tumlinson (2009):
(i) Molecular fraction fH2 determined by balance of dissociation by FUV

radiation and formation on dust grains surfaces;
(ii) Amount of star formation per free-fall time in a molecular cloud,

εff ∼ 0.01.

The KMT star formation prescription:

Σ̇� = fH2(Σgas, c, Z)
Σgas

2.6Gyr
×
{

(Σgas/[85M�pc−2])−0.33 (Σgas < 85M�pc−2)
(Σgas/[85M�pc−2])0.33 (Σgas > 85M�pc−2)

,

fH2
(Σgas, c, Z) ≈ 1−

[
1 +

(
3

4

s

1 + δ

)−5
]−1/5

,

with
s = ln(1 + 0.6χ)/(0.04Σc,1Z);
χ = 0.77(1 + 3.1Z0.365);
δ = 0.0712(0.1s−1 + 0.675)−2.8;
Σc,1 = Σc/(1M�pc−2).

Σc is the gas surface density smoothed on 100 pc scale, related to Σc = cΣgas,
with c the clumpiness factor of the disk.

The threshold density: Σgas ∼ 10M�pc−2, below which the gas is too thin to
shield dissociating photons and to form molecules.
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Supernova feedback effects

Assuming spherical, static flow, the fluid equations can be combined to give
two first order differential equations for the fluid velocity, v, and the adiabatic
sound speed of the gas, w:

r

v2
dv2

dr
=

−w2

2π(v2 − w2)

[
4π

(
2− V 2

c

w2

)
+

2

3
A−

(
4

3
+

w2
i

v2

)
B

]
,

r

w2

dw2

dr
=

−v2
6π(v2 − w2)

[
4π

(
2− V 2

c

v2

)
+

(
5

3
− w2

v2

)
A+

(
w2

v2
− 5w2

i

2v2
− 3w4

2v4
+

3w2
iw

2

2v4
− 5

6

)
B

]
,

where V 2
c ≡ r(dΦ/dr) specifies the shape of the gravitational potential well,

and the injected gas is assumed to have an initial isothermal sound speed,
wi ≡ (kBTi/μmp)

1/2, with Ti the initial temperature of the injected gas. The
quantities A and B are given by

A =
ṀΛ(T )n2

H

r(ρwv)2
, B =

ρ̇injṀ

r(ρw)2
, Ṁ = 4π

∫ r

0

ρ̇inj(r
′)r′2 dr′ ,

The sonic point at r1 (where v = w) separates the heating base (atr<r1) from
the supersonic wind at r > r1.
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The wind can reach a velocity
√
2.5w1 (Efstathiou 2000). If w1 > Vesc/

√
2.5,

wind escapes; otherwise a hot corona. If A(r1) � 1, the wind can cool. (cold
wind)

Gas temperature at the heating base specified by w1 is determined by the
the balance between supernova heating and radiative cooling. This defines a
critical value of Vc,

Vcrit ∼ 100km s−1 ,

so that gas removal occurs in halos with Vc < Vcrit.

If the energy input from star formation is equal to the binding energy of the
cold gas, then

E0Ṁ� = (Ṁg − Ṁ�)V
2
c /2 ; Ṁ� =

Ṁg

1 + (V0/Vc)2
,

where E0 is the energy feedback per unit mass of formed stars, and V0 ∼ Vcrit.
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Galaxy interaction and transformation

In hierarchical model, dark halos 
merge constantly, bringing their 
galaxies in a common halo; galaxies 
in a common halo can interact with 
each other or merge, transforming a 
new galaxy
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Merger Criterion

(i) Orbits in the upper-left region are forbidden: for a 
given orbital energy the largest possible angular 
momentum is that of circular orbit. 
(ii) Encounters with too high orbital energy and too high 
orbital angular momentum cannot lead to merger.
(iii) Mildly hyperbolic orbits can lead to a merger if the 
orbital angular momentum is sufficiently low

 Conclusion 1: Galaxies can merge quickly if they are in 
systems with velocity dispersion comparable to the 
internal velocity dispersion of the individual galaxies.
Conclusion 2: Massive, extended halos can merger more 
easily than  their central galaxies

Consider a simple case: two identical spherical galaxies of mass M and
median radius rmed. The internal mean-square velocity is 〈v2〉 ≈ 0.4GM/rmed.
Encounter is specified by Eorb (the specific orbital energy) and L (the specific
angular momentum) in units derived from 〈v2〉 and rmed:

Ê ≡ Eorb

(1/2)〈v2〉 and L̂ ≡ L

〈v2〉1/2rmed
.

Each encounter is then associated with a point in the (Ê, L̂) plane which can
be divided into different regions

Merger needs low Ê ( Eorb < 〈v2〉/2 or σ2 < 〈v2〉/2) and low L̂ (large rmed)
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Dynamical friction

As an object moves through a sea of 
particles, it accelerates the surrounding 
particles, the number density of particles  
down-stream is higher than up-stream, 
experiencing a net drag force (dynamic 
friction).

t1

t2

t3

t4

A satellite galaxy in a halo 
experiences dynamical friction of 
dark  matter particles that causes its 
orbit to decay, leading to merger a 
the halo center   
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Chandrasekhar dynamical friction formula

Consider the encounter of an object of mass M with a particle with mass m
(the standard gravitational scattering problem). The total change in velocity is
given by

δVM = δVM || + δVM⊥.

If ‘M’ goes through a homogeneous sea of particles,
∑

δVM⊥ = 0. For each
scattering with impact parameter b and velocity V0, we have

δVM || =
2mV0

m+M

[
1 +

b2V 4
0

G2(M +m)2

]−1

.

If the number density of particles with velocity vm is f(vm) d
3vm, the rate

of encounters of ‘M’ with such particles and with impact parameters in the
range b→ b+ db is 2πb db× v0 × f(vm) d

3vm. The rate of change in vM due to
encounters with these particles is then(

dvM

dt

)
vm

d3vm = V0f(vm) d
3vm

∫ bmax

0

|ΔvM⊥| · 2πb db

= 2π ln
(
1 + Λ2

)
G2m(m+M)f(vm) d

3vm
(vm − vM)

|vm − vM|3 ,

where Λ ≡ bmaxv
2
0

G(M+m) , bmax is the largest impact parameter to be considered.
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Assuming isotropic velocity distribution, the rate of change in vM can be
obtained by integrating over vm. This is equivalent to finding the ‘gravita-
tional field’ at ‘position’ vM generated by the ‘mass density’ 4π ln(Λ)G2m(m+
M)f(vm). Thus

dvM

dt
= −16π2 ln ΛG2m(m+M)

vM

v3M

∫
f(vm)v

2
m dvm .

This is the Chandrasekhar dynamical friction formula.

If f(vm) is Maxwellian, then

dvM

dt
= −4π ln ΛG2(m+M)ρ

v3M

[
erf(X)− 2X√

π
e−X2

]
vM ,

with X ≡ vM/(
√
2σ) and σ the velocity dispersion.
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Application to galaxies in dark matter 

Consider a satellite on circular orbit in an isothermal halo with ρ0(r) =
V 2
c /(4πGr2); σ = Vc/

√
2 and so X = 1. Assuming M � m the friction force

experienced by the satellite at radius r is

F = −0.428 lnΛGM2

r2
.

This force is tangential, and the rate of change in the angular momentum L is
dL
dt = Fr

M . Using L = rVc, then

r
dr

dt
= −0.428GM

Vc
ln Λ .

For an initial orbit with radius ri, the time for ‘M’ to sink to the halo center is

tdf =
1.17

lnΛ

r2i Vc

GM
=

1.17

lnΛ

(
ri
Rh

)2(
Mh

M

)
Rh

Vc
.

If ri ∼ Rh,

tdf ≈ 1.17

ln(Mh/M)

(
Mh

M

)
1

10H(z)
,

where we have used Rh/Vc = 1/10H(z). Thus, the dynamical friction timescale
is longer than the age of the universe for M/Mh < 30.
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Tidal stripping
Tidal radius.

Consider a subject mass m (satellite) orbiting in the potential well of M . Let
R be the distance between the centers of m and M during pericentric passage.
The subject mass experiences an acceleration

R̈ = − dΦh

dR

∣∣∣∣
R0

+R0Ω
2 ,

R0: pericentric distance; Ω: angular speed; Φh: gravitational potential of the
host. Consider a particle ‘p’ in the subject mass at Rp from the host center
along the line connecting m and M . This particle’s acceleration is

R̈p = − dΦh

dR

∣∣∣∣
Rp

− dΦS

dr

∣∣∣∣
r

+RpΩ
2 ,

where r = |Rp − R| is the distance of p from the center of m, and ΦS is the
gravitational potential of the subject mass. The relative acceleration of p with
respect to the center of m can be approximated as

r̈ =

(
− d2Φh

dR2

∣∣∣∣
R0

− 1

r

dΦS

dr

∣∣∣∣
r

+Ω2

)
r .

Using dΦi/dr = GMi(r)/r
2 (i =h or S) and solving r̈ = 0 for the tidal radius

rt:

rt =

⎡
⎣ m(rt)/M(R0)

2 +
Ω2R3

0

GM(R0)
− d lnM

d lnR

∣∣
R0

⎤
⎦
1/3

R0 .
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Tidal tails and streams

E ≡ V 2
esc(2Rd)

V 2
c (2Rd)

characterizes the ability of producing
extended tidal tails (Mo, Mao, White 1998;
Springel & White 1999; Dubinski et al. 1999).

Prominent tidal tails are produced for E < 6
(assuming prograde merger).
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Tidal streams

The Sagittarius Dwarf Tidal Stream
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Formation of elliptical galaxies

• Monolithic collapse scenario: not based on 
any model of structure formation.

• Merger scenario: well motivated in 
hierarchical models of structure formation 
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Major mergers can make elliptical-like objects
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Merger remnants

• Major mergers of galaxies are expected to be accompanied by 
violent changes in the gravitational potential of the system.

• Because of violent relaxation, the merged system generally 
relax to form a smooth object near the center of the system, 
with some irregular structure at large radii. 

Simulation results

Major mergers of galaxies generally 
lead to elliptical-like remnants, with 
some irregular structures in  the 
outer regions. 

The final density profiles of merger 
remnants in projection are well 
fitted by the R-quarter profiles over 
a large radial interval.
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The remnant of a major merger generally rotates slowly in the inner region, 
because dynamic friction transfer angular momentum from particles with 
high binding energy to the ones with low binding energy. The effective 
transfer of angular momentum from the merging galaxies to dark matter leads 
to slowly-rotating remnants, and the inner part of such a remnant is supported 
by velocity dispersion.

� �

dissipationless dissipational

ellipticity ellipticity

/
mv

/
mv

Major merger remnants have properties similar 
to elliptical galaxies
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Summary of simulation results
• Mergers of two stellar disks: need massive halos to reduce 

angular momentum to produce slowly rotating remnants. 
Such mergers produce too large ellipticity;

• Multiple mergers of stellar disks produce rounder 
remnants but too extended cores;

• Mergers of disk galaxies containing cold gas can produce 
relatively round and more centrally concentrated remnants 
like intermediate mass elliptical, but cannot produce giant 
ellipticals that have boxy orbits;

• Mergers of elliptical progenitors (dry mergers) can produce 
boxy elliptical galaxies.       

Can CDM model generate the right conditions to produce the right numbers 
of  wet/dry mergers?  Yes, if some processes can suppress cold gas accretion by 

massive galaxies (AGN feedback?)   
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