

2157-16

Workshop on Principles and Design of Strongly Correlated Electronic Systems

2 - 13 August 2010

Defects, Density of States and Differential Conductance in Heavy-Fermion Systems

Dirk K. MORR The University of Illinois at Chicago U.S.A. Defects, Density of States and Differential Conductance in Heavy-Fermion Materials

Dirk K. Morr

The University of Illinois at Chicago

Principles and Design of Strongly Correlated Electron Systems ICTP Trieste, 5 August 2010

Collaborators:

Theory: • J. Figgins (UIC)

Experiment: • H. Manoharan (Stanford) J.C. Davis (Cornell)

J. Figgins and D.K.M.: 1) PRL 104, 187202 (2010); 2) arXiv:1001.3875

The puzzle: a resistance minimum in metals

T [K] MacDonald *et al.,* Proc. Roy. Soc. **266**, 161 (1962)

spectroscopic signature: Kondo resonance in dl/dV

V. Madhavan *et al*, Science **280**, 567 (1998)

resistance minimum due scattering of electrons by magnetic impurities

screening of the impurity spin below $T_K = De^{-1/JN_0}$

J. Kondo: Prog. Theor. Phys. **32,** 37 (1964)

 $S_{tot} = 0$

Renormalization Group K.G. Wilson RMP 47, 773 (1975)

Large-N expansion Read and Newns J. Phys. C **16**, 3273 (1983)

The Conundrum of Heavy-Fermion Materials

Schroeder et al., Nature 407, 351 (2000)

Paschen et al., Nature 432, 811 (2004)

Non-Fermi-liquid properties at the quantum critical point

FL:
$$\frac{\Delta \rho \sim T^2}{\gamma = C/T = const.}$$
 NFL: $\frac{\Delta \rho \sim T^n}{\gamma \sim \ln(T_0/T)}$

Origin: quantum critical behavior, competition between AFM ordering and the Kondo screened phase,??? Coleman, Fulde, Kotliar, Norman, Pepin, Sachdev, Schofield, Senthil, Si, Vojta,....

The Conundrum of Heavy-Fermion Materials

Schroeder et al., Nature 407, 351 (2000)

Paschen et al., Nature 432, 811 (2004)

required:

detailed insight into the complex electronic and magnetic structure of heavy-fermion materials

defects as microscopic probes

Defects as Microscopic Probes in the Cuprates

• unconventional SC symmetry

A.Yazdani et al., PRL 83, 176 (1999)

SC gap structure

Hudson et al. Science **285**, 88 (1999)

probing

line nodes

Hudson et al. Nature **411**,

920 (2001)

SC gap structure & Fermi surface quasi-particle interference

Wang and Lee, PRB **67**, 020511(R) (2003) Capriotti et al., PRB **68**, 014508 (2003)

Defects: Unveiling Strong Correlations in Heavy-Fermion Materials

first STM experiments on heavy-fermions: URu₂Si₂ and YbRh₂Si₂

Schmidt *et al. Nature* **465**, 570 (2010)

first QPI analysis in heavy-fermions

FT-LDOS

Schmidt *et al. Nature* **465**, 570-576 (2010)

bandstructure

Questions:

- can defects provide insight into the complex structure of heavy-fermions?
- do defects discriminate between electronic and magnetic correlations?

defects are
created by
replacing a magnetic atom (Kondo hole)
replacing a magnetic atom by a non-magnetic one

How does one describe the removal of a correlated magnetic atom?

First attempts:

R. Sollie and P. Schlottmann, J. Appl. Phys. 69, 5478 (1991) R. Freytag and J. Keller, Z. Phys. B **80**, 241 (1990)

Recently: R.K. Kaul and M. Vojta, Phys. Rev. B **75**, 132407 (2007)

Defects in Heavy Fermion Materials

J. Figgins, D.K.M., arXiv:1001.3875

$$H = -\sum_{i,j,\sigma} t_{ij} c_{i,\sigma}^{+} c_{j,\sigma}$$

+ $J \sum_{i} \mathbf{S}_{imp}(\mathbf{R}_{i}) \cdot \mathbf{s}_{e}(\mathbf{R}_{i})$
+ $I \sum_{i,j} \mathbf{S}_{imp}(\mathbf{R}_{i}) \cdot \mathbf{S}_{imp}(\mathbf{R}_{j})$
+ $U_{0} n_{e}(\mathbf{R}_{0})$

conduction electrons

Kondo coupling

magnetic interaction

non-magnetic impurity

SU(N) spin representation via fermions

decoupling of the Hamiltonian via (non-) local mean-fields

hybridization electronic correlations

magnetic bond variable magnetic correlations

local constraint

valence fluctuations are forbidden

We can now study a variety of systems:

- defects in Kondo lattices
 disordered Kondo lattices
 - Kondo systems with different magnetic atoms
- effects of dissipation

Kondo droplets

What do STM experiments measure in Heavy-Fermion Materials?

J. Figgins and D.K.M., PRL **104**, 187202 (2010)

Let us first consider a single magnetic (Kondo) atom

U. Fano, PR **124**, 1866 (1961).
V. Madhavan *et al.*, Science **280**, 567 (1998).
J. Li, *et al.*, PRL **80**, 2893 (1998).
O. Ujsaghy *et al.*, PRL **85**, 2557 (2000).
N. Knorr *et al.*, PRL **88**, 096804 (2002).
V. Madhavan *et al.*, PRB **64**, 165412 (2001).
A. A. Aligia and A.M.Lobos, J.PCM **17**, S1095 (2005).

$$\frac{dI}{dV} = \frac{2\pi e}{\hbar} N_t \left[t_c^2 N_c(r, V) + t_f^2 N_f(R, V) + 2t_c t_f N_{cf}(r, R, V) \right]$$

quantum interference

How does Quantum Interference determine the dl/dV-Lineshape?

 $t_{f}/t_{c} = 0.03$

[10⁻⁵ e/h] 0.0 -0.02 0.00 -0.04 0.02 0.04 Frequency [E₀]

quantum interference effects are crucial in understanding the asymmetry of dl/dV

How does Quantum Interference determine the dI/dV-Lineshape?

[10⁻⁵ e/h]

NP/IP 0.4

0.0

-0.04

-0.02

0.00

Frequency [E₀]

 $t_{f}/t_{c} = 0.03$

0.02

0.04

quantum interference effects are crucial in understanding the asymmetry of dl/dV

...as well as the bandstructure

Microscopic explanation of the experimental STM data

dl/dV in Heavy-Fermion Materials

J. Figgins, D.K.M. PRL **104**, 187202 (2010) M. Maltseva et al., PRL **103**, 206402 (2009)

magnetic interactions significantly affect the form of the differential conductance

insight into the strength of magnetic correlations

weak magnetic coupling strong magnetic coupling I/J=0.001 I/J=0.015

dl/dV in Heavy-Fermion Materials

J. Figgins, D.K.M. PRL **104**, 187202 (2010) M. Maltseva et al., PRL **103**, 206402 (2009)

Schmidt *et al. Nature* **465**, 570 (2010)

weak magnetic coupling strong magnetic coupling I/J=0.001 I/J=0.015

Defects in Heavy Fermion Systems

The Kondo Hole in the Kondo Lattice

J.Figgins, and D.K.M., arXiv:1001.3875

perturbations in the electronic correlations

screening increases the local conduction electron density

perturbations in the magnetic correlations

perturbations grow in real space with increasing magnetic interactions

Spectroscopic Signatures

at T=0
$$n_c(r) = \int_{-\infty}^{0} d\omega N_c(r, \omega)$$

LDOS reflects the spatial form of electronic correlations

spin susceptibility reflects the spatial magnetic correlations

Effects of Non-Magnetic Impurities

non-magnetic impurities can induce states inside the hybridization gap

if $U_0 < 0$ and $|U_0| > U_c$

bound state possesses f-electron character

Phase Transition in Kondo Hole Arrays

first order phase transition driven by quantum interference effects

transition to a highly inhomogeneous ground state

Open Questions

 Can defects discriminate between electronic and magnetic correlations in real space?

Can defects provide insight into the competition between Kondo screening and AFM ordering?

Do the effects of defects/disorder grow with increasing magnetic interactions (as one approaches the QCP)?

Quantum interference driven phase transitions?