

2157-20

Workshop on Principles and Design of Strongly Correlated Electronic Systems

2 - 13 August 2010

Imaging the Fano Lattice to "Hidden Order" Transition in URu2Si2

Mohammad HAMIDIAN

J.C. Davis Group, A03 Clark Hall Cornell University Ithaca NY 14853 U.S.A.

Imaging the Fano Lattice to 'Hidden Order' Transition in URu₂Si₂

BROOKHAVEN NATIONAL LABORATORY

Collaboration

Dr. Andy Schmidt Cornell /BNL

Mohammad Hamidian Cornell/BNL

Dr. Peter Wahl Cornell/ MPI Stuttgart

Dr. Focko Meier Cornell/BNL

Dr. A.V. Balatsky Los Alamos

Prof. Graeme Luke McMaster

Travis Williams McMaster

Dr. J .D. Garrett (Brockhouse Institute)

Prof. J.C. Davis Cornell

- Heavy Fermions, Kondo Effect / Kondo Lattice & Tunneling
- URu₂Si₂: Introduction
- Spectroscopic Imaging STM & Heavy Fermion QPI
- URu₂Si₂: Fano Lattice Imaging T>T₀
- URu₂Si₂: Heavy Fermion QPI Imaging T<T₀
- New Perspectives from QPI on URu₂Si₂ 'Hidden Order'
- Conclusions & Future Work

Heavy Fermions, Kondo Effect / Kondo Lattice & Tunneling

Heavy Fermions – Basics

- Electronic density of states up to 1000 times higher than copper at low temperatures
 - Seen in specific heat and magnetic susceptibility measurements
 - Heavy effective mass m* INFERRED
- Partially filled *f-shell*
 - Matrix of localized magnetic moments immersed in a sea of conduction electrons

Fano Lineshape

V. Madhavan et al, Science 280, 567 (1998)

Fano Lineshape

O. Újsághy, J. Kroha, L. Szunyogh und A. Zawadowski, Phys. Rev. Lett. 85, 2557 (2000)

P. Coleman in Handbook of Magnetism and Advanced Magnetic Materials (2007)

Path to Heaviness

Lieke, W. et al., J. Appl. Phys. 53, 2111 (1982).

URu_2Si_2

Specific heat coefficient $\gamma = 65 \text{mJ/mol/K}^2$ Effective mass m* = $25 \text{m}_e - 50 \text{m}_e$ HF Coherence Temperature T* ~ 55K 'Hidden Order' transition $T_N = 17.5$ K Superconducting transition $T_C = 1.5$ K

a=4.124Å c=9.582Å

Palstra *et. al. PRL* **55**, 2727 (1985) Maple *et. al. PRL* **56**, 185 (1986)

'Hidden Order' in URu₂Si₂

Energy-Gap ~11mV (optical & specific heat)

- Palstra, T.T.M., Menovsky, A.A., & Mydosh, J.A.
 Superconducting and magnetic transitions in the heavy-fermion system URu₂Si₂. *Phys. Rev. Lett.* 55, 2727-2730 (1985).
- Broholm, C. *et al.* Magnetic excitations and order in the heavy-electron superconductor URu₂Si₂. *Phys. Rev. Lett.* 58, 1467-1470 (1987).
- Bonn, D.A. *et al.* Far-infrared properties of URu₂Si₂.
 Phys. Rev. Lett. **61**, 1305-1308 (1988).
- Wiebe, C.R. *et al*. Gapped Itinerant spin excitations account for missing entropy in the hidden order state of URu₂Si₂. *Nature Phys.* **3**, 96-99 (2007).
- Santander-Syro, A.F. *et al.* Fermi-surface instability at the 'hidden-order' transition of URu₂Si₂. *Nature Phys.* 5, 637-641 (2009).

Reorganization of band-structure and magnetic excitation spectrum

Hypotheses for Identity of OP

Susceptibility of FL/FS Momentum Space

- Broholm, C. *et al.* Magnetic excitations in the heavy-fermion superconductor URu₂Si₂. *Phys. Rev. B.* 43, 809-822 (1991).
- Ikeda, H. & Ohashi, Y. Theory of unconventional spin density wave: a possible mechanism Ubased heavy fermion compounds. *Phys. Rev. Lett.* 81, 3723-3726 (1998).
- Chandra, P. *et al.* Hidden orbital order in the heavy fermion metal URu₂Si₂. *Nature* **417**, 831-834 (2002).
- Varma, C.M. & Lijun, Z. Helicity order: Hidden order parameter in URu₂Si₂. *Phys. Rev. Lett.* 96, 036405-1-036405-4 (2006).
- Balatsky, A.V. *et al.* Incommensurate spin resonance in URu₂Si₂. *Phys. Rev. B.* **79**, 214413 (2009).

<u>'Altered' Kondo Effect / Real Space</u>

- Santini, P. Crystal field model of the mag properties of URu₂Si₂. *Phys. Rev. Lett.* 73, 1027-1030 (1994).
- Barzykin, V. & Gor'kov, L.P. Singlet magnetism in heavy fermions. *Phys. Rev. Lett.* 74, 4301-4304 (1995).
- Haule K. & Kotliar G. Arrested Kondo effect and hidden order in URu₂Si₂. *Nature Phys.* 5, 796-799 (2009).
- Harima H., Miyake K., Flouquet J. Why the hidden order in URu2Si2 is still hidden - one simple answer. arXiv:1001.2369

- What is the relationship between the initial Kondo Lattice and the 'Hidden Order' state?
- What are the alterations to real- and momentum-space electronic structure due to the onset of the 'Hidden Order'?
- Can one distinguish between FS/FL susceptibility and local mechanisms?

Spectroscopic Imaging Scanning Tunneling Microscopy (SI-STM)

Our SI-STM Facilities

STM1 (9T/250mK)

Cornell

STM3 (4K→100K)

Brookhaven

STM2(9T/10mK)

Cornell

Spectroscopic Imaging

Example: Bi-2212

g (r,V)

Topographic Image

Nature doi:10.1038/nature09169 (2010)

g (q,V)

Topographic Image

Nature doi:10.1038/nature09169 (2010)

Example: Ca-122

Topography

Topographic Image

g (r,V)

Science **327**, 181 (2010)

Topography

Topographic Image

g (q,V)

Science **327**, 181 (2010)

Example: SrRu0-327

Topographic Image

g (r,V)

Nature Physics 5, 800 (2009)

QPI Infrastructure

Ultra low vibration lab.

QPI Infrastructure

How/Why Heavy Fermion QPI?

- Heavy Fermion many body state and bands are above E_F
- Heavy Fermion bands are extremely flat requiring ~100 μV energy resolution or better
- → Sub-kelvin temperatures, low vib. & EM noise, plus high electronic sensitivity

$$E_k^{\pm} = \frac{\tilde{\varepsilon}_k^f + E_k \pm \sqrt{\left(\tilde{\varepsilon}_k^f - E_k\right)^2 + 4\left|\tilde{V}_k\right|^2}}{2}$$

URu₂Si₂: Fano Lattice

a=4.124Å; c=9.582Å (PRL65-3189)

Fano Lineshape

$$dI / dV(V) \propto \frac{\zeta + \varepsilon'^{2}}{\varepsilon'^{2} + 1}, \varepsilon' = \frac{(\varepsilon - \varepsilon_{0})}{\Gamma/2}$$

$$\downarrow^{10}$$

$$\downarrow^{10}$$

$$\downarrow^{\zeta = 3}$$

$$\downarrow^{\zeta = 2}$$

- $\boldsymbol{\epsilon}_0$ energy of resonant state
 - width of resonance
- $\boldsymbol{\zeta}$ coupling ratio

V. Madhavan *et al,* Science 280, 567 (1998)

M. Plihal und J.W. Gadzuk, Phys. Rev. B 63, 085404 (2001)

O. Újsághy, J. Kroha, L. Szunyogh und A. Zawadowski, Phys. Rev. Lett. 85, 2557 (2000)

dI/dV Spectroscopy

Topography

19K > T_{HO}

 $\Gamma(\mathbf{r})$

19K > T_{HO}

A. Schmidt & M. Hamidian et al. *Nature* **465**, 570 (2010) P. Aynajian *et al. PNAS* **107**, 10383 (2010)

URu₂Si₂: DOS

Haule, K. & Kotliar, G. Nature Phys. 6, 769 (2009)

Theory (Large-N)

Maltseva M. et al PRL 103, 206402 (2009)

BROOKHAVEN NATIONAL LABORATORY

Temp. dependence of Fano Spectra

17.5K Hidden Order Transition

Temp. dependence of Fano Spectra

17.5K Hidden Order Transition

Temp. dependence of Fano Spectra

17.5K Hidden Order Transition

Consistent Spectroscopic Gap

Maple, B. *et. al. PRL* **56**, 185 (1986) Bonn, D.A. *et al. PRL* **61**, 1305 (1988).

Comparison: Kondo Lattice Theory

Maltseva M. et al PRL **103**, 206402 (2009)

Thorium doped URu₂Si₂: for Quasiparticle Interference Imaging

U_{0.99}Th_{0.01}Ru₂Si₂: U surface

U_{0.99}Th_{0.01}Ru₂Si₂: U surface

19K

16K Hidden Order Transition (drops with Th)

15K

10K

6K

1.9K

Transition within 1K of bulk value

BROOKHAVEN

NATIONAL LABORATORY

16K Hidden Order Transition (drops with Th)

15K

15 -5

0

Bias (mV)

5

A. Lopez de la Torre et al Physica B 179, 208 (1992)

T(K)

URu₂Si₂: Temperature Dependent Quasiparticle Interference Imaging

 ${\rm U}_{0.99}{\rm Th}_{0.01}{\rm Ru}_{2}{\rm Si}_{2}$

BROOKHAVEN NATIONAL LABORATORY

55nm

 $U_{0.99}$ Th_{0.01}Ru₂Si₂

HO Transition in QPI g(q,E)

T>T_o (19K)

 $T < < T_{o} (2K)$

Tracking Heavy QPI

Heavy QPI $9.7K < T_{HO}$

0.30

q (2π/a₀)

0.45

HO: Two New Heavy Bands

- Thermodynamics, ARPES, SI-STM are consistent with each other in HO phase
- No fixed Q modulations, gap-edge state different *k*-space locations below and above E_F, indirect gap does not cross E_F.
- DOS(E) emerging below T₀ looks quite like predicted gap for Kondo Lattice (!)

New Perspectives from QPI on HO

- Thermodynamics, ARPES, SI-STM are consistent with each other in HO phase
- No fixed Q modulations, gap-edge state different *k*-space locations below and above E_F, indirect gap does not cross E_F.
- DOS(E) emerging below T₀ looks quite like predicted gap for Kondo Lattice (!)
- A single light band is split into two new heavy bands below T₀
- These new bands appear remarkably like expectations for a Kondo Lattice (!)

New Perspectives from QPI on HO

- Thermodynamics, ARPES, SI-STM are consistent with each other in HO phase
- No fixed Q modulations, gap-edge state different *k*-space locations below and above E_F, indirect gap does not cross E_F.
- DOS(E) emerging below T₀ looks quite like predicted gap for Kondo Lattice (!)
- A single light band is split into two new heavy bands below T₀
- These new bands appear remarkably like expectations for a Kondo Lattice (!)
- BUT... Mean-field-like, second order transition

Future

0.5 8 meV

Nature 465, 570 (2010)

- SI-STM and QPI opens a new window onto the heavy fermion problem
 - Visualization Kondo Lattice formation/deformation
 - QPI carries symmetries of the Kondo interactions and allows the intricacies of the heavy bands to be measured
 - QPI of heavy f-electron superconductivity
 - The symmetry of URu2Si2 'hidden order' within reach (?)

Collaboration

Dr. Andy Schmidt Cornell /BNL

Mohammad Hamidian Cornell/BNL

Dr. Peter Wahl Cornell/ MPI Stuttgart

Dr. Focko Meier Cornell/BNL

Dr. A.V. Balatsky Los Alamos

Prof. Graeme Luke McMaster

Travis Williams McMaster

Dr. J .D. Garrett (Brockhouse Institute)

Prof. J.C. Davis Cornell

Thank You

