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Other (Equivalent) Names

I Principal component analysis (PCA) (statistics)

I Empirical orthogonal function (EOF) analysis (climate science)

I Karhunen-Loève Transform (physics, continuous problems)

I Hotelling transform

I Proper orthogonal decomposition (POD) (turbulence).



Climate Studies Involve Large Amounts of Data

Consider a data set Ynm:

n : time step.

m : spatial structure parameter (usually grid point value).

In typical climate studies, m has over 10,000 values
(e.g., all elements in a 2.5◦ × 2.5◦ gridded map).

Also, n has 30-3000 values (e.g., annual means or seasonal means).

Space-time climate data can easily exceed one million numbers.



Data Compresion

y

c

How many numbers are needed to describe a propagating sine wave?

Infinity– sine wave is continuous

Is there a more efficient way to describe a propagating sine wave?

YES: y = A sin(kx − ωt); this requires 3 parameters: A, k, ω.
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General Space-Time Decomposition

Any propagating or standing pattern can be described by a sum of
fixed patterns with time-varying coefficients.

For a propagating sine wave:

sin(kx − ωt) = sin(kx) cos(ωt)− sin(ωt) cos(kx)

More generally:

y(x , y , z , t) = u1(t)v1(x , y , z)+u2(t)v2(x , y , z)+· · ·+uM(t)vM(x , y , z)



Decomposing Climate Data

We would like to reduce the number of numbers needed to
describe a data set.

We will do this by representing the data in the form

Ynm = s1u1
nv

1
m + s2u2

nv
2
m + . . . sKuK

n vK
m ,

using only a “small” value of K , where

ui
n defines time variability for the ith component

v i
m defines spatial structure for the ith component

s i defines the amplitude for the ith component

What is the most efficient set of functions u1
n, . . . , u

K
n , v

1
m, . . . , v

K
m

for approximating Ynm?



Principal Component Analysis

Principal component analysis is a procedure for determining the
most efficient approximation of the form

Ynm ≈ s1u1
nv

1
m + s2u2

nv
2
m + · · ·+ sKuK

n vK
m ,

where “efficient” is defined as minimizing the “distance” between
the data and the summed components:∑

n

∑
m

(
Ynm − s1u1

nv
1
m − s2u2

nv
2
m − · · · − sKuK

n vK
m

)2
.

If the data is exactly represented by K components, then this
procedure will find it (e.g., K = 2 for a propagating sine wave)



Subtract the Climatological Mean

We often are interested in variability about climatological mean.

Accordingly, we subtract out the climatological mean before
decomposing data:

Y ′nm = Ynm − Y c
nm,

where Y c
nm is climatological mean at the nth step and mth variable.

Y′ is often called anomaly data.

If data consists of monthly means, each column of Yc might be
the calendar month mean of the corresponding column of Y.

In long term climate studies, a more appropriate “climatology”
might be the mean during a reference “base period.”



Minimization Problem is Ill-Posed
We want to determine the functions u1

n, . . . , u
K
n , v

1
m, . . . , v

K
m that

minimizes the “distance” to Ynm.

The “distance” is measured by∑
n

∑
m

(
Ynm − s1u1

nv
1
m − s2u2

nv
2
m − · · · − sKuK

n vK
m

)2
.

Distance depends only on products of the form ui
nv

i
m. The same product

can be produced by very different values of ui
n and v i

m.

This fact implies that the components we seek are not unique.

For instance, ui
n and v i

m and be multiplied and divided, respectively, by
the same factor and still preserve the product.

Traditionally, this ill-posedness is removed (almost) by imposing that the
“lengths” of the components equal one; that is, imposing∑

n

(
ui

n

)2
= 1 and

∑
m

(
v i
m

)2
= 1



Matrix Statement of the Problem

The sum of components can be written in matrix form as

s1u1
nv

1
m + s2u2

nv
2
m + · · ·+ sKuK

n vK
m =⇒ USVT

where

U = [u1 u2 . . . uK ]

V = [v1 v2 . . . vK ]

S = diag [s1 s2 . . . sK ]

We seek the matrices U,V,S that best approximates Y:

Y ≈ USVT

such that (ui )T ui = 1 and (vi )T vi = 1 for all i .



Solution: Singular Value Decomposition
Every matrix Y′ can be written in the form

Y′ = U S VT

[N ×M] [N × N] [N ×M] [M ×M]

where U and V are unitary, and S is a diagonal (not necessarily square)
matrix with non-negative diagonal elements.

This is called the singular value decomposition of Y. Unitary means

UT U = UUT = I VT V = VVT = I

columns of U: “left singular vectors”

columns of V: “right singular vectors”

diagonal elements of S: “singular values”

By convention, singular values are ordered in decreasing order.

The first K singular vectors minimize the “distance” to Y, in the sense

that no other K components can have a smaller distance to Y.



Singular Value Decomposition in R

y.svd = svd(y) ; # compute SVD of y

u = y.svd$u ; # extract left singular vectors of y
v = y.svd$v ; # extract right singular vectors of y
s = y.svd$d ; # extract singular values of y



Example: December-January-February 2m Temperature
dim(t2m) = c(nlon*nlat,ntime); # reshape data matrix

t2m.svd = svd(t(t2m)) ; # calculate svd of transposed matrix

v1 = t2m.svd$v[,1] ; # extract leading right singular vector

dim(v1)=c(nlon,nlat) ; # reshape vector for plotting

image.plot(v1,lon,lat,main="SVD of t2m DJF")
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Issues About “Naive” SVD

I Why is the pattern concentrated at the poles?
I Points at the pole are more closely spaced and hence highly

redundant compared to points near the equator.

I Why are amplitudes small compared to temperature?
I The singular vectors are normalized such that the sum square

equals 1. This means the elements tend to decrease with
increasing number of grid points (to preserve the sum square).



Minimize Generalized Distance
For global data, a more appropriate “distance” between two fields
is the area weighted sum square:∑

n

∑
m

wm

(
Ynm − s1u1

nv
1
m − s2u2

nv
2
m − · · · − sKuK

n vK
m

)2
.

where weight wm accounts for the area of the m spatial element.

Weight is approximately cosine of latitude wm = cos (θm).

Trick: define matrix Y ′′nm =
√

wmY ′nm, then compute SVD of Y′′.

The right singular vectors should divide out the weighting to
preserve decomposition: V ′′mi/

√
wm.

Let W be diagonal matrix with diagonal elements equal to w. Then

Y′ = U′′S′′V′′
T

W−1/2.



Area Weighted Principal Component Analysis
dim(t2m) = c(nlon*nlat,ntime); # reshape data matrix

weight.area = rep(sqrt(cos(pi*lat/180)),each=nlon); # define weighting

t2m.scaled = (t2m-rowMeans(t2m))*weight.area

t2m.svd = svd(t(t2m.scaled)); # svd of rescaled data

v1 = t2m.svd$v[,1]/weight.area; # extract 1st right singular vector

dim(v1)=c(nlon,nlat) ; # reshape vector for plotting

image.plot(v1,lon,lat)
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Graphical Display

Amplitudes of singular vectors scale with sample size and state
dimension, which is inconvenient for display.

More effective display is to normalize time series to unit variance:

fi =
√

Nui .

The vectors fi are called normalized principal components (PCs).
Looking at the product of the singular vectors:

siuiv
T
i W−1/2 =

1√
N

si fiv
T
i W−1/2 = fie

T
i

where

ei =
1√
N

siW
−1/2vi

The vectors ei are called empirical orthogonal functions (EOFs).



Normalized EOFs

v1 = t2m.svd$v[,1]/weight.area/sqrt(ntime)*data.svd$d[1]; # 1st EOF

dim(v1)=c(nlon,nlat) ; # reshape vector for plotting

image.plot(v1,lon,lat)
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Normalized EOFs

pc1 = t2m.svd$u[,1]*sqrt(ntime); # 1st PC

plot(year,pc1,type="b",col="blue",xlab="year",ylab="",pch=19)
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Explained Variance

The “total variance” of the data set can be defined as

1

N

∑
n

∑
m

(Y ′nm)2 =⇒ 1

N
tr[YYT ] =

1

N

∑
i

s2
i

This shows that total variance can be decomposed into a sum of
terms involving individual components, independent of cross terms

s2
i /N is the variance “explained” by the ith principal component.

The fraction of variance explained by the ith component is

FEV =
s2
i

s2
1 + s2

2 + · · ·+ s2
R

.



Percent of Explained Variance

t2m.svd = svd(t2m.scaled); # svd of rescaled data

pev = t2m.svd$d^2/sum(t2m.svd$d^2)*100

plot(pev,type="b",col="red",pch=19,lwd=3)
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Important Properties of Normalized EOFs and PCs

I The PCs and EOFs are defined as

F =
√

NU and E =
1√
N

W−1/2VST

I The PCs (columns of F) have unit variance and are uncorrelated:

1

N
FT F = I.

I EOFs are orthogonal with respect to generalized distance measure:

ET WE =
1

N
ST S (diagonal)

I The original (anomaly) data can be recovered as

Y′ = FET .



Fine Details About Principal Components

I The total number of non-trivial components cannot exceed the
minimum of N and M.

I If data is centered, then PCs also are centered.

I If the PCs are known, EOFs can be recovered by projection:

Y′
T

F = E.

I If the EOFs are known, PCs can be recovered by projection:

Y′Ei = F where Ei = NWĖṠ−2

where “dots” indicate truncated, full rank matrices.

I Ei is the “pseudo-inverse of E and satisfies ET Ei = I.

I EOF vectors ei “explain the most variance,” in that they maximize

var[Y′W−1/2ei ] subject to eT
i Wei = 1



Relation to Covariance Matrix

Most texts define principal components as eigenvectors of the
covariance matrix.

The connection can be seen from properties of SVD:

Σ̂Y =
1

N
YT Y =

1

N
VST SVT

This shows that the right singular vectors V also are the
eigenvectors of the sample covariance matrix Σ̂Y .

Moreover, the ith eigenvalue λi is related to the singular values as

λi =
1

N
s2
i



North et al.’s “Rule of Thumb”

North et al. (1982) propose a “rule of thumb” for deciding
whether an EOF is likely subject to large sampling fluctuations.

For large sample size N, an approximate 95% confidence interval
for the eigenvalue of the sample covariance matrix is

Confidence Interval = λi ± 1.96λi

√
2/N.

Rule: if the confidence interval is comparable to the spacing
between neighboring eigenvalues, then the corresponding
eigenvalues will be strongly affected by sampling fluctuations.

Since the confidence interval scales with λ, the CIs will be equally
spaced on a log scale.



Application of North et al.’s Rule of Thumb
pev = s.val^2/sum(s.val^2)*100; #define percent variance explained

lambda.top = pev*(1+sqrt(2/ntime)); # upper limit of confidence interval

lambda.bot = pev*(1-sqrt(2/ntime)); # lower limit of confidence interval

yrange = range(lambda.top,lambda.bot)

plot(pev,type="p",col="red",pch=19,lwd=3,

main="Percent of Variance Explained",log="y",ylim=yrange)

arrows(1:mtot,lambda.top,1:mtot,lambda.bot,

angle=90,code=3,length=0.1,col="red",lwd=2)
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Are EOFs “Dynamical Modes”?

I EOFs are orthogonal, whereas linear modes often are not
(especially if derived by linearizing about realistic states).

I “Dynamical Mode” difficult to define for nonlinear systems.

I Linear models generally have neutral modes, which are unrealistic.

I Most realistic linear models are damped and stochastically forced.

I There is only one class of stochastic models whose EOFs correspond
to eigenmodes: a linear system with orthogonal eigenmodes driven
by noise that is white in space and time.

I Despite these problems, the leading EOF often resembles the least
damped mode in linear stochastic models.



Cautionary Note From Dommenget and Latif (2002)



Is There SOME Procedure That Can Find Modes?
Procedures based only on the covariance matrix generally cannot
find modes.

Suppose the modes are the columns of M, and these modes
fluctuation with time series T. Then the data is

Y = TMT .

and the covariance matrix is

Σ̂Y =
1

N
YT Y =

1

N
MTT TMT .

Unless there are constraints on the time series T, there is no
unique M that yields the covariance matrix Σ̂Y .

For a damped, stochastically forced linear system, modes can be
obtained using principal oscillation pattern (POP) analysis, which
requires time-lagged information.


