
Introduction to Linear Regression

Timothy DelSole

George Mason University, Fairfax, Va and
Center for Ocean-Land-Atmosphere Studies, Calverton, MD

July 24, 2010



1801: The Discovery (and Loss and Re-Discovery) of Ceres

1

1/1801 Ceres discovered by Giuseppe Piazzi.

2/1801 Piazzi stopped tracking it due to illness.

9/1801 Piazzi published his observations.

10/1801 Ceres too close to the sun to observe.

11/1801 Gauss (24 years old) determined orbit statistically.

12/1801 von Zach found Ceres, where Gauss predicted it.

1figure from http://www.newuniverse.co.uk/Ceres 28dwarf planet29.html



The Method of Least Squares

Figure: Louis Legendre
Nouvelles methodes pour la
determination des orbites des
cometes (1805)

Figure: Carl Friedrich Gauss
Theoria Motus Corporum
Coelestium in Sectionibus Connicis
Solum Ambientium (1809)



Method of Least Squares (univariate)

I Consider data pairs (xn, yn) for n = 1, . . . ,N.

I Consider function f (x , β1, . . . , βM).

I Adjust β1, . . . , βM to “best” fit the data; y ≈ f (x , β1, . . . , βM)

Method of Least Squares: determine β1, . . . , βM that minimizes
the sum square difference∑

n

(yn − f (xn, β1, . . . , βM))2

Note: if there were a combination of parameters β1, . . . , βM that
fit the data exactly, this method would find it.



Method of Least Squares (Linear Case)

To fit y ≈ ax + b, find a and b that minimizes∑
n

ε2n =
∑
n

(yn − axn − b)2
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2figure http://www.palass.org/modules.php?name=palaeo math&page=7



Terminology

yn = a xn + b + ε
predictand slope predictor intercept noise

Regression Analysis: set of techniques (e.g., least squares method)
for modeling and analyzing variable relations.

Regression Model: a proposed equation relating two or more
variables (e.g., y = ax + b + ε).

Regression Parameters: unknown parameters in a model (e.g., a,
b, variance of ε) that are estimated from data.

Overdetermined System: more samples than regression parameters.

Underdetermines System: more parameters than samples



Multiple Least Squares

Method generalizes easily to multiple predictors:

yn = xn1β1 + xn2β2 + · · ·+ xnKβK + εn

Least squares estimates are the β1, β2, . . . , βK that minimize∑
n

ε2n =
∑
n

(yn − (xn1β1 + xn2β2 + · · ·+ xnKβK ))2



The Least Squares Solution

Calculus: Set derivative of sum square residual to zero and solve.

∂

∂βm

∑
n

(yn − f (xn, β1, . . . , βM))2 = 0



Least Squares Prediction

Is All-India Seasonal (JJAS) Monsoon Rainfall (ISMR)
related to JFM-NINO4 Index?
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Use Linear Regression To Find a Linear Relation

Least squares fit:

ISMR = −48 ∗ NINO4 + 855

Does this fit imply that NINO4 and ISMR are “really” related?



Suppose ISMR and NINO3.4 are Independent
Assuming ISMR and NINO3.4 are independent ⇒ “true” model is

ISMR = b + ε

where b is constant and ε is a random variable (NINO4 does not appear).

The most convenient hypothesis, owing to an extensive literature about
it, is that the random variable has a Gaussian distribution.

Histogram of jjas All−Indian Rainfall
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Figure: Histogram of JJAS All-India Rainfall. Red dashed line shows a
Gaussian distribution with mean 849cm and standard error 83cm.



Implications

If the model ISMR = b + ε were true, then fitting

ISMR = a ∗ NINO4 + b + noise

will yield random regression coefficients a and b that depend on
the particular realization of the random variable ISMR.

We can estimate the behavior of a by randomly generating ISMR
and fitting the above equation. Repeating this many times yields...



Fits to Random ISMR

ISMRran = a ∗ NINO4 + b



Slopes From The Null Hypothesis

slope
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Histogram of Least Squares Slopes Between
nino34 and 3000 Randomly Generated ISMR

The observed slope (i.e., -48) is within a range of plausible values
that would be obtained if ISMR were independent of NINO3.4.



Hypothesis Test

We never know the “real” relation (that’s like being God), so the
best we can do is to test a hypothesis about reality.

An hypothesis about reality introduced for the purpose of
disproving it is called a null hypothesis.

Our null hypothesis is “ISMR is not related to NINO3.4 in nature.”

Observed slope is similar to slopes expected from random ISMRs,
suggesting that observed slope is indistinguishable from zero.



Comments About Hypothesis Tests

I Above hypothesis test generates random samples from a fitted
Gaussian, but uncertainty in the fit itself was ignored.

I Instead of fitting two parameters (e.g., slope and intercept),
we could be interested in a model with many predictors.

yn = xn1β1 + xn2β2 + · · ·+ xnKβK + εn.

I How do you test the hypothesis β1 = β2 = · · · = βK = 0?

I How do you test the hypothesis β1 = 0?



Sum Square Error (SSE): Measure of “Goodness of Fit”

To fit y ≈ ax + b, find a and b that minimizes

SSE =
∑
n

ε2n =
∑
n

(yn − axn − b)2

3

3figure http://www.palass.org/modules.php?name=palaeo math&page=7



Hypothesis Test as a Comparison of Two Models

Consider the linear model

yn = axn + b + εn.

Testing the hypothesis a = 0 is equivalent to comparing the models

Full yn = axn + b + εn

Restricted yn = b + εn

Note: the “restricted” model is a special case of the “full” model.



Compare SSEs of Two Models

Full SSEF =
∑
n

(
yn − âxn − b̂

)2

Restricted SSER =
∑
n

(
yn − b̂′

)2

I If difference between SSEF and SSER is small, then we prefer
the restricted model because it is more parsimonious (i.e., it is
the least complex model to explain the variability).

I If full model fits data “better,” then we prefer the full model.

I This suggests that a comparison of models can be based on

SSER − SSEF .



Compare SSEs

I If SSER − SSEF is small, then the two models have similar
errors and we prefer the restricted model.

I If SSER − SSEF is large, then the full model has smaller errors
than the restricted, so we prefer the full model.

I But what determines “small” or “large?”

I Normalize by the SSE of one of the models:

SSER − SSEF

SSEF



A Fundamental Theorem in Linear Regression
Consider the models

Full y = x1β1 + · · ·+ xMR
βMR

+ · · ·+ xMF
βMF

+ ε

Reduced y = x1β1 + · · ·+ xMR
βMR

+ ε

where all vectors are N-dimensional, and the elements of ε are
independent Gaussian variables with zero mean and variance σ2.

XF : predictors of the full model {x1, . . . , xMF
}.

XR : predictors of the reduced model {x1, . . . , xMR
}.

MF : Number of predictors in full model.

MR : Number of predictors in reduced model.

N: Sample size.

If βMR+1 = · · · = βMF
= 0, then

SSER − SSEF

SSEF

N −M

(N −MR)− (N −MF )
∼ FM−MR ,N−MF



Example F-Test
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Formal Hypothesis Test

Figure: Ronald Fischer

In considering the appropriateness of any proposed experimental design,

it is always needful to forecast all possible results of the experiment, and

to have decided without ambiguity what interpretation shall be placed

upon each one of them. Ronald Fisher



Formal Hypothesis Test Procedure

Decision rule– a rule that completely describes our decision to
accept or reject the null hypothesis for every possible observation.



Acceptance and Rejection Regions
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Significance Level

The probability of rejecting the null hypothesis when it is true is
called the significance level. Above, the significance level is 5%.



Errors in Hypothesis Testing
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Properties of the Decision Rule

I Reject null hypothesis when it is true: 5% error rate

I Accept null hypothesis when it is false: 12% error rate

In general, it is not possible to reduce both errors simultaneously.



General Hypothesis Test

Assessing whether x and y are related can be interpreting as
testing two hypotheses of the model

y = ax + b + ε

H0: Null Hypothesis: a = 0

H1: Alternative Hypothesis: a 6= 0

For two hypotheses, there are two types of errors:

“False Alarm”: Decide H1 when H0 is true (prob = significance)

“Miss”: Decide H0 when H1 is true. (prob = 1 - power)

In general, it is not possible to reduce both errors simultaneously.
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The fundamental theorem of linear regression gives
the most powerful decision rule for given

significance level.

Consider the model

y = x1β1 + · · ·+ xMR
βMR

+ · · ·+ xMF
βMF

+ ε

To test hypothesis βMR+1 = · · · = βMF
= 0, use the statistic

SSER − SSEF

SSEF

N −M

(N −MR)− (N −MF )
∼ FM−MR ,N−MF



Practical Advice About Testing Hypotheses

I used to do all statistical analyses with FORTRAN– using codes
that I wrote myself.

Vast majority of statistical researchers use numerical packages,
e.g., MATLAB, R, S, SAS.

Important life lesson: I have wasted more time trying to do
statistics in FORTRAN than I spent learning a new statistical
package. Numerical packages simplify statistical analysis so much
that the time needed to learn them is well worth the time.



What is R?

R is a free, interactive statistical computing package.

I R is a language: you can program your own methods.

I R is free, in contrast to MATLAB or SAS.

I R is interactive, in contrast to FORTRAN.

I R is popular among researchers. Every major statistical
computation is available in packages.

I R has an extensive website (www.r-project.org).

I R has an extensive development community.

But, there are some downsides:

I R requires some time and effort to learn.

I Maps are harder to plot than in other packages (e.g., GrADS).



Manuals and Documentation

I Documentation of an R command, e.g., ”mean”, can be
obtained by typing ”help(mean)” or ”?mean” .

I Important manuals downloaded free at www.r-project.org

I Introduction to R is very good and painless. The first 7
chapters (32 pages) are essential. Download from
http://cran.r-project.org/manuals.html

I The appendix of Introduction to R has an example session
that is very useful for first timers.

I Other important sites:
I www.r-project.org/search.html.
I wiki.r-project.org
I tolstoy.newcastle.edu.au/R/
I cran.r-project.org
I www.dangoldstein.com/search r.html



Testing Independence of ISMR and AMJ-NINO3.4 in “R”

> lmodel.out = lm(ismr ~ nino34)

> summary(lmodel.out)

Call:

lm(formula = ISMR ~ NINO34)

Residuals:

Min 1Q Median 3Q Max

-168.201 -51.544 7.734 49.975 180.565

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 855.00 15.66 54.609 <2e-16 ***

nino34 -48.34 29.19 -1.656 0.108

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 86.91 on 29 degrees of freedom

Multiple R-squared: 0.0864, Adjusted R-squared: 0.0549

F-statistic: 2.743 on 1 and 29 DF, p-value: 0.1085



Interpretation of the Summary of lm

Residuals: Useful for checking “outliers.”

Coefficients: Estimates of the regression parameters β, their standard
errors, t-value and p-value for significance. Statistically
significant coefficients (pval < 0.05) are indicated by
asterisks symbols.

Residual standard error: Standard error of regression equation, equal to
sqrt(deviance(lmodel.out)/df.residual(lmodel.out))

Multiple R-Squared: Means that 8.6% of the total variability is due to
the linear association between the variables.

F-statistic p-value: P-value for the test of this model versus the model
with only the intercept.



Conclusion Regarding Indian Monsoon Rainfall and ENSO

I “P(> |t|)” summarizes F-test that ENSO coefficient vanishes.

I This column shows that p(F > 2.743) = 10.8%.

I In general, probability should be less than 5% to be rejected.

I Thus, we cannot reject hypothesis ENSO coefficient vanishes.

We conclude that the ENSO coefficient for fitting

ISMR = a ∗ ENSO + b + ε

is not large enough to decide that ENSO and ISMR are related.

There is no detectable ENSO-ISMR relation.



Correlation Coefficient

Another way to quantify the degree to which two variables are
related is to consider the alternative statistic

ρ2 =
SSER − SSEF

SSER

Since SSER ≥ SSEF , this ratio is always between 0-1.

If extra predictors are independent, ρ = 0. If the extra predictors
completely fit the data, then ρ = 1.

This ratio is called the squared correlation coefficient.



Testing Significance of a Correlation Coefficient in “R”

> cor.test(ISMR , NINO34)

Pearson’s product-moment correlation

data: ismr and nino34

t = -1.6561, df = 29, p-value = 0.1085

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

-0.58713156 0.06741702

sample estimates:

cor

-0.293945



Equivalent Hypothesis Tests

Note that F and ρ2 depend only on the ratio

SSER/SSEF

so testing whether a predictor has vanishing coefficient is
equivalent to testing whether the correlation coefficient vanishes.



Multiple Correlation Coefficient

We now consider a more complicated question: is y independent of
the joint set x1, x2, . . . , xK .

This problem is not fundamentally different than testing the simple
correlation. In fact, all we do is consider the two models

Full y = x1β1 + · · ·+ xKβK + b + ε

Reduced y = b′ + ε

And then evaluate the statistic in the fundamental theorem.
Moreover, we can define the quantity

R2 =
SSER − SSEF

SSER

for this model, which is called the multiple correlation coefficient.
R2 is a natural generalization of correlation to multiple variables.
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Figure: Correlation between JJAS All-India Monsoon Rainfall and various
indices of seasonal variability. The 5% significance level for pair-wise
comparison also is shown as the red dashed line.



Test Hypothesis That All Coefficients Vanish

Estimate Std. Error t value Pr(>|t|)

(Intercept) -16671.897 8192.566 -2.035 0.0612 .

xyear 8.804 4.121 2.137 0.0508 .

xNAO -15.351 29.796 -0.515 0.6145

xEA -37.655 30.900 -1.219 0.2431

xWP 56.643 44.861 1.263 0.2273

xEP.NP -93.421 55.628 -1.679 0.1152

xPNA 18.757 34.156 0.549 0.5915

xEA.WR -4.303 39.243 -0.110 0.9142

xSCA 28.581 37.915 0.754 0.4634

xNINO3.4 -77.229 38.748 -1.993 0.0661 .

xNATL -70.167 67.269 -1.043 0.3146

xSATL -106.613 72.611 -1.468 0.1641

xEPAC850 15.575 27.111 0.574 0.5748

xqbo30 10.908 19.580 0.557 0.5863

xz500t 23.150 19.478 1.189 0.2544

xpdo 41.566 25.116 1.655 0.1202

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 77.64 on 14 degrees of freedom

Multiple R-squared: 0.5292, Adjusted R-squared: 0.0248

F-statistic: 1.049 on 15 and 14 DF, p-value: 0.4667



Conclusion Based on Multiple Regression

I “P(> |t|)” tests whether the individual coefficient vanishes.

I None of the column entries is less than 5%.

No detectable relation between ISMR and the other variables.


