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What is a Regression Pattern?

A regression pattern is the set of regression coefficients between a
pre-specified time series and each variable in the data set.

Fit y = ax + b + ε. The “regression coefficient” is the slope.
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Example of Regression Pattern: Trend Maps

Figure: Linear trend of annual temperatures. Trends significant at 5%
level indicated by white + marks. Grey areas have insufficient data to
estimate reliable trends. IPCC-AR4, fig. 3.9



Example of Regression Pattern: ENSO and SLP

tween pressure p and N34, and rp is the observed standard
deviation of p. By construction gðtÞ ¼ ½pðtÞ % rN34ðtÞ&=ðrpffiffiffiffiffiffiffiffiffiffiffiffiffi
1% c2

p
Þ is that part of p that is unrelated to ENSO, i.e.,

corr(N34, g) = 0. It has zero mean and unit standard
deviation.

We now consider sub-periods PWðtÞ ¼ ½t %W=2;
t þW=2& ( ½0; T& of lengthW of the whole period of length
T. Following Van Oldenborgh and Burgers (2005) we use a

length of W = 25 years throughout this paper. This is long

enough to resolve ENSO and short enough not to be
influenced by low-frequency (decadal and longer) varia-

tions. For notational convenience we drop the subscript W
in what follows. A tilde is used to denote time series re-
stricted to a sub-period, e.g., ~pt0ðtÞ ¼ ~pðtÞ ¼ pðtjt 2 Pðt0ÞÞ;
where the subscript t¢ has been dropped for convenience.

Using (Eq. 6) the regression of ~p on ~N34 then reads

~rðtÞ ¼ regrð ~N34; ~pÞ ¼ r þ rp
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1% c2

p
~rgðtÞ; ð2Þ

where ~rgðtÞ ¼ regrð~N34; ~gÞ: Apart from the factor
rp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1% c2

p
this quantity is the deviation of the regression

during P(t) from its long-term mean value r. Obviously,
~rgðtÞ ! 0 in the limit W fi T, but ~rgðtÞ can be non-zero
if the sub-period is so short that it is not influenced by low-

frequency variations in the background state. If ~rgðtÞ is

distributed around zero the long-term mean regression r is
a good approximation of ~rgðtÞ 8t:

The statement ‘‘the strength of the teleconnection does

not change significantly with time’’ means that the varia-

tions of ~rðtÞ are small in the sense that they are explainable
by chance—~rgðtÞ will vary even for a purely stochastic g(t).
To test this we use a Monte Carlo approach. We replace

g(t) in (Eq. 1) by a Gaussian process (random number
generator from Numerical Recipes; Press et al. 1992) with
the same statistical properties (zero mean, unit standard

deviation) and simulate the probability density function
(PDF) of ~rðtÞ by using a large number (1,000, say) of

stochastic series of g. If the observed values of ~rðtÞ lie

within the PDF they are ‘‘small’’, and the strength of the
teleconnections does not change. The time series ~rðtÞ is

stationary (more precisely: nonstationarity cannot be re-

jected) and observed variations in ~rðtÞ can be explained as
the result of a stochastic process brought about by the

combined action of all non-ENSO processes, represented

by g. Conversely, if the observed values of ~rðtÞ lie outside
the PDF we can conclude that the teleconnections them-

selves have changed.

The actual test builds upon these general considerations,
but differs in two points. First, we do not use regression but

correlation, transformed to Fisher’s z values: z ¼ 1
2 log

ð1þ cÞ=ð1% cÞ: This quantity is unbounded, estimates are
more normally distributed around the true value, and

the variance is to a first approximation independent of

c. Second, instead of dealing directly with z we use

a) Hadley (1871-1998) b) ERA-40 (1957-2002)

c) Speedy (1881-2002) d) ECHAM5/MPI-OM (1860-2000)

Fig. 2 As Fig. 1, but regression instead of correlations. Units, hPa/K

472 A. Sterl et al.: On the robustness of ENSO teleconnections
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Figure: Regression coefficients between NINO3.4 index and Sea Level
Pressure in January for (a) observations (HadSLP1), (b) ERA-40. Sterl
et al., 2007, Clim. Dyn.



Can We Trust Regression Patterns at Face Value?
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Coefficients that are insignificant at the 5% level are masked out.



Regression Between T2m and Random Noise
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How Can Regression With Random Noise be Significant?

Answer: because we are testing it a 1000 times
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How Can Regression With Random Noise be Significant?

I Even if true coefficient is zero, sample coefficient can be large.

I The distribution of sample coefficient is known exactly.

I The probability that sample coefficient exceeds a critical value
when true coefficient vanishes is the significance level.

I Histogram shows that 5% significance level is 0.68, so we
expect sample correlation to exceed 0.68 5% of the time.



Gridded Data Tends to be Spatially Correlated Too
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Figure: Correlation between base point and neighboring grid points for
T2m reanalysis 1950-2009.



Effect of Spatial Correlations

Correlations in space imply that if one grid point has a high
correlation with a time series, then the neighboring points also will
have a strong correlation, no matter the true correlation.

This means that the significance tests are not independent.

We do not expect just 5% of the grid points to exceed the
significance threshold randomly, but rather 5% of the spatially
coherent structures to exceed the threshold.

This means that more than 5% of the area tends to exceed the
significance threshold for spatially correlated data.



Field Significance

Field significance is the statistical significance of the hypothesis
that all regression coefficients vanish simultaneously.

To perform a field significance test, need to account for:

I multiple hypothesis are being tested simultaneously.

I variables are interdependent.



Gilbert Walker
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Figure: Sir Gilbert Walker

“[Let c be the probability that the correlation between independent
quantities is less than p.] Then the chance of all coefficients
[between m pairs of independent quantities] being less than p will
be cm.” -Walker 1914



Experimentwise Error Rate

The 5% significance level is the absolute correlation below which
sample correlations will fall 95% of the time, for independent data.

However, if the sample correlation is calculated for M different
indices, then the probability that at least one correlation out of M
exceeds the α-significance level is

prob = 1− (1− α)M

M 1 2 3 4 5 10 20
prob 5% 10% 14% 19% 23% 40% 64%

Table: Probability that event occurs at least once in M trials when
probability of the event occurring in one trial is 5%

The probability of at least one false rejection of the null hypothesis
over multiple comparisons is called the experimentwise error rate.



Multiple Comparisons

The comparisonwise αc = 5% significance level should NOT be
used for multiple comparisons.

For multiple comparisons, one should use the experimentwise
significance level:

αe = 1− (1− αc)1/M



Livezey and Chen 1983
Even if 5% significance tests are independent, the number of “passed

tests” that occur by accident is often more than 5%.



Effect of Spatial Correlations

Large cross-correlations in the field reduce the “degrees
of freedom” in the field. -Livezey and Chen 1983

The “effective” number of degrees of freedom is not known, but
can be estimated by a variety of techniques.



Monte Carlo Estimate of Field Significance

Livezey and Chen (1983) procedure:

I Replace pre-specified time series with random numbers drawn
from same distribution as pre-specified time series.

I Calculate correlation maps between field and random numbers.

I Count the number of “passed tests” in the field.

I Repeat many times and record the counts.

I Compare observed count with counts from random numbers.

I If observed count falls in the upper 5th percentile, reject
hypothesis that all correlation vanish.



Monte Carlo Estimate of Field Significance
(Livezey and Chen 1983)



Limitations of “Counting” Methods

Counting methods count the number of passed tests
regardless of spatial location or degree of significance.



False Discovery Rate (Wilks 2006)

The False Discovery Rate is the expected proportion of rejected
local null hypotheses that are actually true.

Wilks (2006) proposed testing field significance based on FDR:

I Perform M independent hypothesis tests H1,H2, . . . ,HM .

I Calculate the corresponding p-values p1, p2, . . . , pM .

I Order p-values: p(1), p(2), . . . , p(M)

I For given α, find the largest k such that p(k) ≤ αk/M.

I Reject the corresponding hypotheses H(i) for i = 1, 2, . . . , k .

Wilks claims that Walker’s test and the FDR approach are
“relatively” insensitive to correlations among local tests.



Multivariate Regression Approach

Fit the model

Ynm = zm tn + µm + εnm

data regression pre-specified constant noise
coefficient time series

Least squares estimate of z is the regression pattern

ẑ = YT t/(tT t),

assuming the time series t has zero mean.



Hypothesis Test in Multivariate Regression
Test hypothesis that regression coefficients vanish simultaneously:

z1 = z2 = · · · = zM = 0.

The likelihood ratio test is a standard procedure for testing
hypothesis in multivariate regression. This test leads to the statistic

λ =

(
tT t

N

)
ẑT Σ̂−1

N ẑ

where Σ̂N is the “noise” covariance matrix

Σ̂N =
1

N

(
Y − 1µ̂T − tẑT

)T (
Y − 1µ̂T − tẑT

)
.

If the null hypothesis z = 0 is true, then

λ
N −M − 1

M
∼ FM,N−M−1.



Problem With Multivariate Hypothesis Test

In typical climates studies, noise covariance matrix Σ̂N is singular
because the number of coefficients exceeds the sample size.

This means the regression problem is underdetermined.



Discriminant Analysis Approach

Find the linear combination of variables that maximizes the
fraction of variance explained by the pre-specified time series.

Equivalently, find the linear combination of variables that
maximizes the correlation with the pre-specified time series.



Discriminant Analysis Approach

Let weights be qm. Then linear combination gives the time series

rn =
∑
m

Ynmqm.

Fit the time series to the pre-specified time series:

rn = αtn + εn.

The fraction of variance explained by the pre-specified time series is

“Signal-to-noise ratio” = STR =
var[α̂tn]

var[rn]

We seek weights q that maximizes the signal-to-total ratio STR.



Solution to Discriminant Analysis

The weights that maximize STR can be found analytically as

q = Σ̂−1
N ẑ.

The signal-to-noise ratio (SNR) turns out to be

SNR = λ =

(
tT t

N

)
ẑT Σ̂−1

N ẑ.

Discriminant analysis and multivariate analysis lead to the same λ.

Discriminant analysis shows that λ is the optimal signal-to-noise
ratio of a linear combination of variables.

Significance test for SNR is exactly the same as the significance
test of z = 0 in multivariate regression.



Limitation of Discriminant Analysis

Exactly the same as multivariate regression: Σ̂N is singular.



Practical Approach

I Transform data into principal components.

I Select a small number of PCs to represent the data.

I Solve regression and discriminant problems in PC-space.

I Transform solutions back into data space.



Example: Trend Analysis

I Annual mean sea surface temperature (SST) 1948-2009.

I Data from ERSSTv3b, Smith and Reynolds (2004).

I 2◦ × 2◦ grid.

I t is a linear function of year, incrementing by 1/10.



Trend Pattern for SST
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Figure: Point-by-point regression coefficients for the trend of annual
mean SST during 1948-2009 (in degrees K per decade)



Cooling in the North Pacific?

1900 1920 1940 1960 1980 2000

13
.0

13
.5

14
.0

14
.5

15
.0

year

S
S

T
 A

ve
ra

ge
 (

C
)

ERSSTv3 Average in lon:160−200 and lat:35−45



Discriminant Analysis

 5 10 15 20 25 30 35 40
0

0.5

1
S

T
R

a)

 5 10 15 20 25 30 35 40
0

0.2

0.4

C
V

M
S

E

b)

 5 10 15 20 25 30 35 40
−0.4

−0.2

0

0.2

PC

S
lo

pe
 (

pe
r 

10
yr

) c)

Figure: Optimal signal-to-noise ratio (solid blue) and 5% significance level
(red dashed) of a linear trend for annual mean SST during 1948-2009, as
a function of the number of PCs used to represent the data.



Comments About Discriminant Analysis Results

I The STR is statistically significant at all PC truncations.

I Most of the STR arises from the first three PCs.

I Little gain in STR using more than three PCs.

How Many PCs Should Be Chosen?



Leave-One-Out Cross Validation
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Training Sample: Sample
used to estimate model
parameters.

Assessment Sample:
Sample used to assess/test
model predictions.



Cross Validation of Discriminant Analysis

For fixed number of PCs and time series t:

I Withhold year n.

I Calculate discriminant component from remaining years.

I Use resulting projection vector to predict amplitude of
discriminant component in year n: rn

I Fit discriminant time series to t using training sample, use
resulting equation to predict time series in year n: r̂n.

I Calculate squared error ε2n = (rn − r̂n)2.

I Compute mean square error E [ε2n].

Plot cross-validated mean square error vs. number of PCs.



Extreme Example Using 50 PCs (For Illustration)
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Figure: Discriminant time series for linear trend in annual mean SST
using all data in 1948-2009.



Extreme Example Using 50 PCs (For Illustration)
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Figure: Discriminant time series for linear trend in annual mean SST
using 50 PCs, leaving out 1959 (black). Trend fit based on data leaving
1959 out (red line).



Cross Validated Mean Square Error
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Figure: Cross validated mean square error (red) and in-sample mean
square error (black) of the trend discriminant for annual mean SST.



Cross Validated Mean Square Error
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Figure: Cross validated mean square error (red) and in-sample mean
square error (black) of the trend discriminant for annual mean SST.



Trend Discriminant for SST
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Figure: Point-by-point regression coefficients (a) and discriminant
pattern based on 3 PCs (b) for the trend of annual mean SST during
1948-2009 (in degrees K per decade)



Comparison With EOF
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Figure: Discriminant pattern based on 3 PCs (b) and leading EOF (c) for
the trend of annual mean SST during 1948-2009.



Discriminant Projection Pattern for SST
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Figure: Discriminant pattern based on 3 PCs (b) and corresponding
projection pattern (d) for the trend of annual mean SST 1948-2009.



Time Series for Discriminant and Principal Component

Year

a)

1950 1960 1970 1980 1990 2000

−2

0

2

Year

b)

1950 1960 1970 1980 1990 2000

−2

0

2

Figure: Time series for the leading principal component (a) and trend
discriminant (b) for annual average SST during the period 1948-2009.



Results for DJF 300-hPa Zonal Wind
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Results for DJF 300-hPa Zonal Wind
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Figure: (a) The point-by-point trend, (b) trend discriminant pattern, (c)
leading EOF, and (d) discriminant projection pattern for the trend
discriminant, of DJF 300-hPa zonal wind during 1948-2009



Results for DJF 300-hPa Zonal Wind

 

 

1010

1010

30
30 30

   0°     60° E  120° E  180° E  120° W   60° W 
  0°   

 20° N 

 40° N 

 60° N 

 80° N 

0

5

10

Figure: Standard deviation (shading) and mean (contours) of the
December-January-February 300-hPa zonal wind during 1948-2009, in
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Results for DJF 300-hPa Zonal Wind
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Figure: Time series for the leading principal component (a) and trend
discriminant (b) for December-January-February 300-hPa zonal wind
during the period 1948-2009.



Results for Regression between DJF T2M and NINO3.4
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Results for Regression between DJF T2M and NINO3.4
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Summary and Discussion

I Field significance of a regression pattern tests hypothesis that
coefficients vanish simultaneously, taking into account
interdependence of the tests.

I Field significance can be tested using multivariate regression and
discriminant analysis, but test is ill posed in typical climate studies.

I Proposal: project data onto a few principal components, perform
field significance in reduced space, then project back to data space.

I The number of PCs is determined from cross validation experiments.

I Application to annual mean SST easily detects trend, since trend
dominates first 3 PCs.

I Application to DJF 300-hPa zonal wind detects trend, even though
the leading PCs have little-to-no trend.

I Application to regression between DJF T2m and NINO3.4 also
detects significant regression pattern, even though individual PCs
have no significant regression coefficient.

I Discriminant projection patterns allows regression pattern amplitude
to be monitored in real-time.


