
Correlation, Simple Regression, and  
Low-order Multiple Regression. 

Pearson product-moment correlation  
…is what we will usually mean by “correlation”. 

It describes the strength of a linear relationship  
between x and y. 
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                                                     X 
correlation for all 18 points = 0.707    correlation squared = 0.5 
When points having a perfect correlation are mixed with an equal 
number of points having no correlation, and the two sets have same 
mean and variance for X and Y, correlation is 0.707. Correlation 
squared (“amount of variance accounted for”) is 0.5. 
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                                                     X 
correlation = 0.87 (due to one outlier in upper right) 

If domination by one case is not desired, can use the Spearman  
rank correlation (correlation among ranks instead of actual values). 
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     correlation = 0  but there is a strong nonlinear relationship 

     The Pearson correlation only detects linear relationships. 
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correlation = 0.9  but there is an exact nonlinear relationship 
      such as   y =        



Standardizing X and Y to equalize their units 

find SD for the 
    x data set 

  Convert each 
  x element to 
to its standardized 
     value (z) 

Then do the same for y. Now their units are 
on an equal footing, with mean = 0,   SD = 1. 



Covariance and correlation between two variables 

x itself 

  (can do  
same for y) 

x vs. y 

This is the Pearson product-moment correlation (the “standard” correlation) 



Correlation Skill for NINO3 forecasts 

Northern 
Spring 
barrier 

Skill 
bonus 

  useless        low     fair        good 

Correlation between forecast and obs 

Basis of climate predictability lies in predictability of ENSO 

Skill of Cane-Zebiak model in prediction of SST in tropical Pacific 



Forecast 
Skill 

Forecast lead 
time (days) 

10 20 30 60 80 90 

Weather forecasts (from 
initial conditions) 

Potential sub-seasonal 
predictability 

Seasonal forecasts (from 
boundary conditions) 

Lead time and forecast skill 

good 

fair 

poor 
zero 

Correlation between temperature and precipitation  
forecasts and their subsequent corresponding observations 

(correlation) 

 1 
.9 
.8 
.7 
.6 
.5 
.4 
.3 
.2 
.1 
 0 



    Skill of forecasts at different time ranges: 

1-2 day weather    good 
3-7 day weather   fair 
Second week weather  poor, but not zero 
Third week weather   virtually zero 
Fourth week weather   virtually zero 
1-month climate (day 1-31)  poor to fair 
1-month climate (day 15-45)  poor, but not zero 
3-month climate (day 15-99)  poor to fair 

At shorter ranges, forecasts are based on initial 
conditions and skill deteriorates quickly with time. 

Skill gets better at long range for ample time-averaging, 
due to consistent boundary condition forcing 



Approximate* Standard Error of a Zero Correlation Coefficient 
(as would be expected if X and Y are independent random data) 

     Examples of              and critical values for 2-sided  
     significance at 0.05 level for various sample sizes n 

     n 
     

    10   0.33   0.65              
   20   0.23   0.45              
   50   0.14   0.28              
 100   0.10   0.20              

            400                  0.05                 0.10            

*For small n, true values of                are slightly smaller. 

Note: For 
significance of 
a correlation, 
z-distribution 
is used, rather 
than t-distribu- 
tion, for any 
sample size. 



Confidence intervals for a nonzero correlation (r) are smaller 
than those for zero correlation, and are asymmetric such 
that the interval toward lower absolute values of r is larger. 

For example: for n=100 and r = 0.35, 95% confidence interval 
is 0.17 to 0.51. That is 0.35 minus 0.18, but 0.35 plus 0.16.  
(For r = 0, it is 0 plus 0.20 and 0 minus 0.20 – a larger span.) 

Sampling distribution around a population correlation is 
computed using the Fisher r-to-Z transformation, then finding 
a symmetric confidence interval in Z, then finally converting 
back to r. 



The use of linear correlation for prediction: 
Simple Linear Regression 
(“simple” implies just one predictor; 

 if more than one, is Multiple Linear Regression) 

Determination of a regression line 
to fit points on the x  vs.  y scatterplot, 

so that if given a value of x, a “best 
prediction” can be made for y. 



A line in the x vs. y coordinate system has the form 
        y = a + bx        a is y-intercept          b is slope 

Regression line is defined such that the 
sum of the squares of the errors (the  
predicted y vs. true y) is minimized. 

Such a line predicts y from x such that: 

For example,  if                       then y will be predicted 
to be half as many SDs away from its mean as x. 



Proof that                                  minimizes the squared errors. 
That is, proof that the slope (the “b” in y=bx+a) should be set to  
be the correlation coefficient between y and x when y and x are in 
standardized (z) form where their means are zero and SDs are 1. 

The squared error to be minimized, where i ranges from 1 to n pairs 
of predicted versus actual values of y, is  

  where        refers to the predicted standardized value of y, and     
the actual (observed) standardized value of y. 

Substituting           for        leads to 



Expanding the square in                                         we get 

                               -                                    + 

Because                    = 1 for any variable, and                                     ,  

the expression to be minimized reduces to                                      . 

To find what value of b minimizes the expression, set its 
derivative to zero:                    

We then see that 



  Simple Regression Prediction                Deviations of Observations 
of Streamflow from July Rainfall              from Regression Predictions 
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Simple regression prediction, standardized units: 

If we incorporate the physical units of x and y rather than the 
standardized (z) version in SD units, we get:  

The above equation “tailors” the basic z relationship 
by adjusting for (1) ratio of SD of y to SD of x, and (2) 
the difference between the mean of y and the mean of x. 

                              is the slope (b) of                                  is the y- 
                             the regression line                                 intercept 



Standard error of estimate of regression forecasts 

….is the standard deviation of the error distribution, 
where the errors are 

St Error of Estimate (of standardized y data, or       ) =  

St Error of Estimate (of actual y data in physical units) = 

When cor = 0, Stand Error of Estimate is same as the SD of y. 
When cor = 1, Stand Error of Estimate is 0 (all errors are zero). 



Standard error of estimate for a regression forecast 

Stand error of estimate = 

                                        X 
The linear regression model can lead to probability forecasts 
for any result, given the exact prediction and the correlation, 
and an assumption that the variables are normally distributed.  

Y                                         regression line 

vertical arrow shows 
    68% confidence 
    interval (±1 SD) 
= stand error of estimate 

standardized units 

p h y s i c a l   u n I t s 



Correlation vs. Standard Error of Estimate 

                         Standard Error 
                           of Estimate 

Correlation    (as a fraction of SD 
                     of the predictand [y] ) 
   1.00                     0.00 
   0.90                     0.44                     We need quite 
   0.80                     0.60                  a high correlation 
   0.70                     0.71                to get a low standard 
   0.60                     0.80                   error of estimate: 
   0.50                     0.87                 need cor = 0.866 
   0.40                     0.92                 to get an SD of the 
   0.30                     0.95                 error down to half 
   0.20                     0.98                   of the SD of the 
   0.10                     0.99               predicted variable (y). 
   0.00                     1.00 

half 



Standard error of estimate (in standardized units) 
for the prediction model as a whole (generalized for 
any possible values of x) is  

But this can be defined more accurately if we know the x value. 
Let zo be the standardized value of the predictor (x). Then 
standard error of estimate as function of zo is 

Standard error is larger when x value is farther away from mean. 
There is also an “unbiasing” adjustment, even if x is at its mean. 
Both of these effects are smaller when the sample size is larger. 

If we are dealing with 
a single case, 1 is added 
to the content under the  
second square root term. 



Simple Linear Regression Problem: 
Coupled GCM forecasts for Fiji for next Jan-Feb-Mar  

Suppose we know that the correlation between a coupled GCM 
rainfall forecast for parts of Fiji in Jan-Feb-Mar (made at beginning 
of December), and the actual rainfall, is 0.52. This does not come as  
a surprise, because we know that Fiji is sensitive to the ENSO state  
and that climate models are able to reproduce this relationship to a 
moderate extent. By early December the ENSO state is usually stable. 

Suppose we want to issue a rainfall forecast for the station of 
Nadi on the north side of the main Fiji island, using the forecast 
from this model. We have the following historical data: 

Model Predictions (JFM):         Observations (JFM): 
Mean: 1140 mm                             Mean: 935 mm 
SD:  700 mm                                  SD:  500 mm 

If the model forecast for the current year is 1890 mm, what would 
be our regression-based best forecast for the actual precipitation? 



JFM season in Nadi, Fiji: 
Model Predictions (JFM):         Observations (JFM): 
Mean: 1140 mm                         Mean: 935 mm 
SD:  700 mm                              SD:  500 mm 
Correl (forecast vs. observations) = 0.52     Model predicts 1890 mm 

We use:                                             and  

z value for predictor (     )  is  (1890 - 1140) / 700 = 1.07 

Then z value for forecast of precip (     ) is (0.52) (1.07) = 0.56 
  (forecast of precip is 0.56 SDs above its mean.) 
Forecast of precip = mean of y + (0.56)(SDy) 
Forecast of precip = 935 + 0.56(500)  
                              = 935 +    280   = 1215 mm 

Standard error of estimate (standardized units) =                       = .854 

Standard error of estimate (physical units) =          (.854) = 427 mm 

Since we do not know the sample size used to develop this regression model,  
We cannot compute the standard error of estimate for this forecast specifically. 



Below 
Normal 

Above 
Normal 

Historically, the probabilities of above and below are 0.33. Shifting the 
mean by one half standard deviation and reducing the variance by 20% 
changes the probability of below to 0.15 and of above to 0.53. Correlation 
skill would be 0.45, and predictor signal strength would be 1.11 SD units. 

Historical distribution 
(climatological distribution) 
(33.3%, 33.3%, 33.3%) 

Forecast distribution 
  (15%, 32%, 53%) 

(Courtesy Mike Tippett) 

What probabilistic forecasts 
represent 

Near-Normal 

NORMALIZED RAINFALL 
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A “strong” shift of odds in rainfall forecast for Kenya during El Nino 

| 
| 
| 
| 

| 
| 
| 
| 13%    29%    59% 

Steps in finding  probabilities of  each of the tercile- 
based categories (below, near and above normal).   

1. Use regression to make a deterministic (single  
point) forecast. 

2. Determine standard error of estimate to represent 
the uncertainty of the deterministic forecast.  

3. Use standard error of estimate to form  a forecast  
distribution (i.e., make the red curve).  

4. Find what value of z on the forecast distribution  
coincides with the tercile boundaries of the  
climatological distribution (33%ile and 67%ile  
on the black curve). Then use z-table to get the 
probabilities associated with these z values.. 



Correlation 

     Skill 

 Predictor 

Signal=0.0 

 Predictor 

Signal +0.5 

 Predictor 

Signal +1.0 

 Predictor 

Signal +1.5 

 Predictor 

Signal +2.0 

 0.00 
F signal  0.00 

  33 / 33 / 33 

F signal  0.00 

33 / 33 / 33 

F signal  0.00 

33 / 33 / 33 

F signal  0.00 

33 / 33 / 33 

F signal  0.00 

33 / 33 / 33 

 0.20 
F signal  0.00 

  33 / 34 / 33 

F signal  0.10 

  29 / 34/ 37 

F signal  0.20 

  26 / 33 / 41 

F signal  0.30 

  23 / 33 / 45 

F signal  0.40 

  20 / 31 / 49 

 0.30 
F signal  0.00 

  33 / 35 / 33 

F signal  0.15 

  27 / 34 / 38 

F signal  0.30 

  22 / 33 / 45 

F signal  0.45 

  17 / 31 / 51 

F signal  0.60 

  14 / 29 / 57 

 0.40 
F signal  0.00 

  32 / 36 / 32 

F signal  0.20 

  25 / 35 / 40 

F signal  0.40 

  18 / 33 / 49 

F signal  0.60 

  13 / 30 / 57 

F signal  0.80 

   9 / 25 / 65 

 0.50 
F signal  0.00 

  31 / 38 / 31 

F signal  0.25 

  22 / 37 / 42 

F signal  0.50 

  14 / 33 / 53 

F signal  0.75 

   9 / 27 / 64 

F signal  1.00 

   5 / 21 / 74 

 0.60 
F signal  0.00 

  30 / 41 / 30  

F signal  0.30 

  18 / 38 / 44 

F signal  0.60 

  10 / 32 / 58 

F signal  0.90 

   5 / 23 / 72 

F signal  1.20 

   2 / 15 / 83 

 0.70 
F signal  0.00 

  27 / 45 / 27 

F signal  0.35 

  13 / 41 / 46 

F signal  0.70 

   6 / 30 / 65 

F signal  1.05 

   2 / 17 / 81 

F signal  1.40 

   1 /  8 / 91 

 0.80 
F signal  0.00 

  24 / 53 / 24 

F signal  0.40 

   8 / 44 / 48 

F signal  0.80 

   2 / 25 / 73 

F signal  1.20 

  0* / 10 / 90 

F signal  1.60 

 0** / 3 / 97 

*0.3                    **0.04 

Tercile probabilities for various correlation skills and predictor 
signal strengths (in SDs). Assumes Gaussian probability distri- 
bution.  Forecast (F) signal = (Predictor Signal) x (Correl Skill). 





Nino3.4 SST anomaly predictions 
                from July 







Slope can be nonzero only if correlation is nonzero. 

Therefore, testing if the slope is significantly different 
from zero should give the same result (the probability  
that it is different from zero by chance alone) as testing 
if the correlation is significantly different from zero. 

where      is predicted value of y from regression from x 

Raw scores 
regression formula: 



Hypothesis test for a correlation value 
How can we reject the (null) hypothesis that a correlation  
value comes from a population having zero correlation? 

Standard error of correlation coefficient with respect to 
zero correlation (approximate; slightly too strict for n <10): 

                                                             (can also be called            )  

See if your sample correlation falls outside of plus or minus 1.96 
(for 2-tailed, 5% level) times the above standard error. If not, it 
could have come from population with zero correlation. For 1-sided  
test (if sign of the correlation in known or expected in advance of  
seeing the resulting experimental correlation), see if your sample  
correlation is greater in magnitude than 1.65 times the above  
standard error. For correlation, 1-sided tests are common. 



Example of a hypothesis test for a correlation 

Suppose we test the correlation between malaria incidence 
following the November – March rainy season in Botswana,  
and the amount of rainfall during that rainy season. We know,  
before investigating the correlation, that more rainfall (except  
for extreme flooding conditions) creates a more favorable  
environment for the vector and thus greater risk for malaria. 

Suppose for 10 years of data for rainfall during Nov – March and  
malaria during March – May, we get a correlation of 0.64. Is this 
statistically significant in terms of the hypothesis that the true 
population correlation is zero? That is, could the 0.64 have come 
about just by chance, due to natural sampling variations, and not 
due to a physical association between rainfall amount and malaria? 
Since the slate is wiped clean for the rainfall – malaria relationship 
with each new year, we can use 10 as the degrees of freedom. 
(This might not be true if the cases were not independent, such 
as for adjacent seasons that have nonzero lag correlation in both 
rainfall and malaria.) 



Example of a hypothesis test for a correlation 

Sample size for rainfall and subsequent malaria incidence:  n = 10 
Correlation between rainfall and malaria incidence:  0.64 

We set up a 1-sided z test for the correlation of 0.64. It is 1-sided 
because we have physical reason to expect a positive correlation 
rather than a negative correlation. 

Looking at a z table, the chance of equaling or exceeding z = 1.92 
is 0.0274. Significance at the 5% level is therefore achieved.  

Numerator shows correlation difference  
between sample outcome and population 
                          having zero correlation 



but 

As mentioned earlier…… 
Confidence intervals for a nonzero correlation are smaller 
than those for zero correlation, and are asymmetric such 
that the interval toward lower absolute values is larger. 

Significance tests against populations with nonzero 
correlation require the Fisher r-to-Z transformation, 
whose tables are available in many statistics books. 



Temporal degrees of freedom (number of independent time samples) 
can be less than the number of cases, due to autocorrelation in the 
data. 

To assess the effective degrees of freedom (from Livezey and Chen,  
1983, Mon. Wea. Rev.), the time between independent samples is 
estimated: 

Integral time = 

Then the effective degrees of freedom is Total period / integral time 

For example, if there are 20 years of data and the integral time is 
1.4 years, then there are 20/1.4 = about 14 degrees of freedom. 

Monte Carlo techniques can also be used to estimate temporal  
degrees of freedom and also spatial degrees of freedom. 



Standard error of the slope b (depends on b itself, and on the  
correlation and on sample size n):  

See if confidence interval around your sample slope, reaching 
about double (for 2-tailed, 5% level) the StError(b) on either 
side of your sample slope, contains zero slope. If so, could 
have come from population with zero slope (retain null hypoth). 

Again, a significance test on the slope should agree with a 
significance test on the correlation itself. 



Multiple Linear Regression 
uses 2 or more predictors 

General form: 

Let us take simplest multiple regression case -- two predictors: 

Here, the b’s are not simply              and               , unless 
x1 and x2 have zero correlation with one another.  Any correl- 
ation between x1 and x2 makes determining the b’s less simple. 
The b’s are related to the partial correlation, in which the 
value of the other predictor(s) is held constant. Holding other 
predictors constant eliminates the part of the correlation due 
to the other predictors and not just to the predictor at hand. 

Notation: partial correlation of y with x1, with x2 held  
constant, is written  



For 2 (or any n) predictors, there are 2 (or any n) equations 
in 2 (or any n) unknowns to be solved simultaneously. 
When n >3 or so, determinant operations are necessary. 
For case of 2 predictors, and using z values (variables  
standardized by subtracting their mean and then dividing  
by the standard deviation) for simplicity, the solution can  
be done by hand. The two equations to be solved  
simultaneously are: 

b1.2                      +b2.1(cor x1,x2)     = cory,x1 
b1.2(corx1,x2)        +b2.1                    = cory,x2 

Goal: to find the two coefficients, b1.2 and b2.1 
(called simply b1and b2 in the equation at the top) 



Example of a multiple regression problem with two predictors 

The number of Atlantic hurricanes between June and November 
is slightly predictable 6 months in advance (in early December)  
using several precursor atmospheric and oceanic variables. Two 
variables used are: 

(1)  500 mb geopotential height in November in the polar  
north Atlantic (67.5N-85°N latitude, 10E-50°W longitude) 

(2) Sea level pressure in November in the North 
tropical Pacific (7.5N-22.5°N latitude, 125-175°W longitude). 



http://www.cdc.noaa.gov/map/images/sst/sst.anom.month.gif 
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500mb  

Location of two long-lead Atlantic hurricane predictor regions 



             Physical reasoning behind the two predictors: 

(1) 500 millibar geopotential height in November in the polar 
north Atlantic. High heights are associated with a negative 
North Atlantic Oscillation (NAO) pattern, tending to associate 
with a stronger thermohaline circulation, and also tending to be 
followed by weaker upper atmospheric westerlies and weaker 
low-level trade winds in the tropical Atlantic the following  
hurricane season. All of these favor hurricane activity. 

(2) sea level pressure in November in the North tropical Pacific. 
High pressure in this region in winter tends to be followed by 
La Nina conditions in the coming summer and fall, which favors 
easterly Atlantic wind anomalies aloft, and hurricane activity. 

First step: Find “regular” correlations among all the variables  
(x1 ,x2, y):   corx1,y    corx2,y    corx1,x2 



X1: Polar north Atlantic 500 mb height 
X2: North tropical Pacific sea level pressure 

                                                      = 0.20 (x1,y) 

                                                      = 0.40 (x2,y) 

                                                      = 0.30 (x1,x2)  

Simultaneous equations to be solved: 
b1.2                  +(0.30)b2.1          = 0.20 
(0.30)b1.2        +b2.1                    = 0.40 

Solution: Multiply 1st equation by 3.333, then subtract second equation 
from first equation: 
(3.033)b1.2       +0                       = 0.267    Dividing by 3.033: 
b1.2 = 0.088. Then use this in either equation to find  b2.1 = 0.374. 
Then regression equation is Zy = (0.088)zx1 + (0.374)zx2 

one pre- 
dictor vs 
the other 

Want to get one 
of the predictors 
to cancel out. 



More detail on solving the two simultaneous equations: 

b1.2                  +(0.30)b2.1          = 0.20 
(0.30)b1.2        +b2.1                    = 0.40 

Solution: Multiply 1st equation by 3.333: 
(3.333)b1.2    + (3.333)(0.30)b2.1  = (3.333)(0.20) 
     then the 1st equation becomes: 
3.333 b1.2    + (1.0)b2.1                 = 0.667 

Now subtract second equation from the new first equation:  
(3.333 - 0.3)b1.2   + (1 - 1)b2.1     = 0.667 - 0.40 
       Doing the subtraction yields: 
    3.033b1.2        =     0.267 
Then divide both sides by 3.033:  b1.2 = 0.267 / 3.033 = 0.088.  
Use this value of b1.2 in either equation, and get  b2.1 = 0.374. 
Then the regression equation is Zy = (0.088)zx1 + (0.374)zx2 

Want to get one of the 
predictors to cancel  
out. Do it with b2.1 



Multiple correlation coefficient = R = correlation between 
predicted y and actual y using multiple regression. 

In example above,                                                                = 0.408 

Note this is only very slightly better than using the second 
predictor alone in simple regression. This is not surprising, 
since the first predictor’s total correlation with y is only 
0.2, and it is correlated 0.3 with the second predictor, so 
that the second predictor already accounts for some of what 
the first predictor has to offer. A decision would probably  
be made concerning whether it is worth the effort to include 
the first predictor for such a small gain. Note: the multiple 
correlation can never decrease when more predictors are added. 



Multiple R is usually inflated somewhat compared with 
the true relationship, since additional predictors fit 
the accidental variations found in the data sample. 

Adjustment (decrease) of R for the existence of multiple 
predictors gives a less biased estimate of R: 

Adjusted R =                                       n = sample size 
                                                            k = number of predictors  



Sampling variability of a simple (x, y) correlation coefficient 
around zero when population correlation is zero is approximately 

In multiple regression the same approximate relationship 
holds except that n must be further decreased, depending 
on the number of predictors additional to the first one. 

If the number of predictors (x’s) is denoted by k, then 
the sampling variability of R around zero, when there is 
no true relationship with any of the predictors, is given by 

It becomes easier to get a given multiple correlation by  
chance as the number of predictors increases.  



Hypothesis test for a multiple correlation value 
How can we reject the (null) hypothesis that a multiple corre- 
lation value comes from a population having zero correlation? 

Standard error of correlation coefficient with respect to 
zero correlation (approximate; slightly too strict for n <10): 

                                                             (also called            )  

See if your sample correlation (R) equals or exceeds 1.96 (for  
2-sided, 5% level) times the above standard error, or 1.65 (for 
1-sided, 5% level) times it. If not, it could have come from a 
population with zero correlation, with a probability of >5%.  
For multiple correlations, a 1-sided test can be used only when  
the signs of the correlations between each individual predictor  
and the predictand (y) are anticipated before the experiment,  
and when the results confirm those expected correlation signs.  
(Note: R is always positive.) 



 Example of a hypothesis test for a multiple correlation 

As a follow-up to the hypothesis test of the positive rainfall vs.  
malaria correlation in Botswana presented in the section on simple  
regression, suppose we now use both rainfall and temperature as  
predictors of malaria incidence. We expect greater rainfall to result  
in greater malaria incidence, but also expect higher temperature to  
increase incidence, so we use both as predictors in multiple regression. 

Suppose for 10 years of data for rainfall during Nov – March and  
malaria during the following March – May, using a correlation of  
0.64 for rainfall vs. malaria, 0.46 for temperature vs. malaria, and  
0.35 for rainfall vs. temperature, we get a multiple correlation of 0.69.  
Is this statistically significant in terms of the null hypothesis that  
the true population multiple correlation is zero? (Could the 0.69 have  
come about just by chance, due to natural sampling variations among  
x1, x2, and y, and not due to a physical association involving the  
combined predictive effects rainfall and temperature, and malaria?) 



 Example of a hypothesis test for a multiple correlation 

Sample size for rainfall, temperature, and malaria incidence:  n = 10 
Multiple correlation between (rain, temp) and malaria incidence:  0.69 
                                                                                          here  k = 2 

We do a 1-sided z test for the 0.69 correlation. 1-sided is justified, 
given that the correlations between malaria and both climate vari- 
ables are both positive, as expected on basis of malaria knowledge.                                                                               

Looking at the z table, the chance of equaling or exceeding 1.95 
is 0.5 - 0.4744 = 0.0256. Significance at the 5% level is achieved.  

Numerator shows correlation difference  
between sample outcome and population 
                          having zero correlation 



Partial Correlation is correlation between y and x1, where a 
variable x2 is not allowed to vary. Example: in an elemen- 
tary school, reading ability (y) is well correlated with  
the child’s weight (x1). But both y and x1 are really caused 
by something else: the child’s age (call x2). What would the 
correlation be between weight and reading ability if the age 
were held constant? (Would it drop down to zero?) 

A similar set of equations exists for b2 (second predictor). 



Suppose the three correlations in a school study are: 
   reading vs. weight : 
   reading vs. age: 
      weight vs. age: 

The two partial correlations come out to be: 

Finally, the two regression weights, for standardized 
variables, turn out to be: 

Body weight is seen to be a minor factor compared with age, 
as its regression weight is near zero. 



Suppose a group of people observes an increase in global 
temperature but does not believe it is due to greenhouse gas 
increases. Instead, they believe that the warming is due to the 
simple passage of time, as stipulated by their religious doctrine. 

To try to judge whether global warming can be attributed more to 
increases in greenhouse gas concentrations or to the march of 
time, we do a 2-predictor multiple regression: 

x1 = CO2 concentration (annual average) 
x2 = the year number 

y = global mean temperature (annual average) 



The correlations among x1, x2 and y: 
   CO2 vs. global temperature: 0.89 (x1, y) 
   year vs. global temperature:  0.85 (x2, y) 
   CO2 vs. year:                         0.96 (x1,x2) 

The two partial correlations come out to be: 

Finally, the two regression weights, for standardized 
variables, turn out to be: 

CO2 concentration is seen to be the dominant predictor. 



Suppose the CO2 vs. year correlation is even higher: 
   CO2 vs. global temperature: 0.89 (x1, y) 
   year vs. global temperature:  0.85 (x2, y) 
   CO2 vs. year:                       0.98 (x1,x2) 

The two partial correlations then come out to be: 

Finally, the two regression weights turn out to be: 

When two predictors are correlated with one another and 
r(x2,y) < [ r(x1,y) (r(x1,x2) ], the weight for x2 becomes signed  
opposite r(x2,y). (Here it becomes negative instead of positive.)  
In extreme cases the weights can take on very high magnitudes, 
and the regression can become unstable and even incalculable. 



            Two-predictor multiple regression: 

  Some examples of behavior of regression 
weights when x1, x2 and y are all standardized 
                   to equalize their units  



        c      

       a        
         e        

Y 

X1 

X2 

b     Zero-order terms: 
r2(x1,y) = a + c 
r2(x2,y) = b + c 
R2(y, x1 & x2) = a + b + c 
    Semipartials: 
r2(y,x1

.x2) = a 
r2(y,x2

.x1) = b 
    Partials: 
r2(y,x1

.x2)= a / (a + e) 
r2(y,x2

.x1)= b / (b + e) 

  Squared 
correlations 
are additive; 
correlations 
   are not. 

r(y,x1
.x2) is r(x1,y) 

when x2 is held 
      constant 



In the following 2-predictor examples, colors are used as follows: 

Black: Independence of predictors:  
Information provided by each is unique. 

Blue: Partial redundancy among  
predictors: Part, but not all, of what x2  
offers is already provided by x1. Both  
coeffs retain original sign. 

Green: Maximum redundancy among 
predictors: x2 adds nothing beyond 
what is provided by x1, so x2 is useless 
and has coeff of zero. 

Purple: Redundancy among predictors, 
but  r(x2,y) is low (or even zero), and x2  
beneficially suppresses a part of x1  
that is unrelated to y. Coeff of x2 becomes  
opposite sign of its simple correlation with y. 
Red: One form of this condition is when the 
redundancy is less than the beneficial 
suppression, causing R to exceed that 
expected for independent predictors. A var- 
iation of this is when x1 and x2 have negative 
redundancy: e.g. (rx1,y)>0, r(x2,y)>0, r(x1,x2)<0 



r(x1,y) =.50 

w1 

r(x2,y) =.50 

w2 r(x1,x2) Rmult 

.50 .50 .0 0.707 

.42 .42 .2 0.645 

.36 .36 .4 0.598 

.31 .31 .6 0.559 

.28 .28 .8 0.527 

.26 .26 .9 0.513 

.256 .256 .95 0.506 

.251 .251 .99 0.501 

Effect of the inter-predictor correlation on weights (w) and multiple correlation (R) 

Independence 

 Increasing 
redundancy, 
 decreasing 
 benefit from 
  using both  
   predictors 
instead of one 



r(x1,y) =.50 

w1 

r(x2,y) =.50 

w2 r(x1,x2) Rmult 

.62 .62 -.2 0.791 

.50 .50 .0 0.707 

.42 .42 .2 0.645 

r(x1,y) =.50 r(x2,y)= -.50 r(x1,x2) Rmult 

.42 -.42 -.2 0.645 

.50 -.50 .0 0.707 

.62 -.62 .2 0.791 

Effect of the inter-predictor correlation on weights (w) and multiple correlation (R) 

Enhancement 

Independence 

Redundancy 

Redundancy 

Independence 

Enhancement 

When r(x1,x2) = 0,  

Redundancy occurs when r(x1,x2) is of same sign as that of [r(x1,y)]*[r(x2,y)]  
Enhancement occurs when r(x1,x2) is of sign opposite that of [r(x1,y)]*[r(x2,y)]  



r(x1,y) =.54 

w1 

r(x2,y) =.50 

w2 r(x1,x2) Rmult 

.54 .50 .0 0.736 

.46 .41 .2 0.672 

.41 .34 .4 0.623 

.38 .27 .6 0.583 

.39 .19 .8 0.552 

.47 .07 .9 0.541 

.54 .00 .926* 0.540 

.67 -.13 .95 0.542 

Effect of the inter-predictor correlation on weights (w) and multiple correlation (R) 

Independence 

 Increasing 
redundancy, 
ry2 > (ry1)(r12) 

ry2 = (ry1)(r12) 

ry2 < (ry1)(r12) 

*When R(x1,x2) = .926, all information about y provided by x2 

is totally redundant with that carried by x1.  

ry1 is r(x1,y) 
ry2 is r(x2,y) 
r12 is r(x1,x2) 



r(x1,y) =.70 

w1 

r(x2,y) =.20 

w2 r(x1,x2) Rmult 

.70 .20 .0 0.728 

.69 .06 .2 0.703 

70 .00 .286* 0.700 

.74 -.10 .4 0.705 

.80 -.20 .5 0.721 

.91 -.34 .6 0.752 

Effect of the inter-predictor correlation on weights (w) and multiple correlation (R) 

Independence 

 redundancy, 
ry2 > (ry1)(r12) 

ry2 = (ry1)(r12) 

ry2 < (ry1)(r12) 

Enhancement 

*When r(x1,x2) = .286, all information about y provided by x2 

is totally redundant with that carried by x1. 

ry1 is r(x1,y) 
ry2 is r(x2,y) 
r12 is r(x1,x2) 

Y 
X1 

X2 



r(x1,y) =.50 

w1 

r(x2,y) =.00 

w2 r(x1,x2) Rmult 

.78 .47 -.6 0.625 

.60 .24 -.4 0.646 

.52 .10 -.2 0.510 

.50 .00 .0 0.500 

.52 -.10 .2 0.510 

.60 -.24 .4 0.546 

.78 -.47 .6 0.625 

Effect of the inter-predictor correlation on weights (w) and multiple correlation (R) 

Increasing 
beneficial 
suppression, 
enhancement 

“Independence”, 
ry2 = (ry1)(r12) 

Increasing 
beneficial 
suppression, 
enhancement 

ry1 is r(x1,y) 
ry2 is r(x2,y) 
r12 is r(x1,x2) 

Y 
X1 

X2 

X2 plays a role even 
though its correlation 
     with y is zero. 



In the preceding 2-predictor examples, colors were used as follows: 

Black: Independence of predictors:  
Information provided by each is unique. 

Blue: Partial redundancy among  
predictors: Part, but not all, of what x2  
offers is already provided by x1. Both  
coeffs retain original sign. 

Green: Maximum redundancy among 
predictors: x2 adds nothing beyond 
what is provided by x1, so x2 is useless 
and has coeff of zero. 

Purple: Redundancy among predictors, 
but  r(x2,y) is low (or even zero), and x2  
beneficially suppresses a part of x1  
that is unrelated to y. Coeff of x2 becomes  
opposite sign of its simple correlation with y. 
Red: One form of this condition is when the 
redundancy is less than the beneficial 
suppression, causing R to exceed that 
expected for independent predictors. A var- 
iation of this is when x1 and x2 have negative 
redundancy: e.g. (rx1,y)>0, r(x2,y)>0, r(x1,x2)<0 



Various combinations of the above behaviors are likely to  
appear when there are 3 or more predictors. 

Modelers should not be insulted when their model is 
assigned a negative weight in multiple regression! 

When there are MANY predictors, and not very many time 
samples to develop the model, collinearity can become so 
severe that some of the weights have very high magnitudes. 
This is dangerous with respect to the addition of new cases. 

“Ridging” can ease this problem. 

Ridging is the addition of small amounts on the diagonal of 
the cross-correlation matrix; is like adding noise. It has the 
effect of reducing the cross-correlations among the models. 



Various combinations of the above behaviors are likely to  
appear when there are 3 or more predictors. 

Modelers should not be insulted when their model is 
assigned a negative weight in multiple regression! 

When there are MANY predictors, and not so many time 
samples to develop the model, collinearity can become so 
severe that some of the weights have very high magnitudes. 
This is dangerous with respect to the addition of new cases. 

“Ridging” on the diagonal of the cross-correlation matrix can 
ease this problem. 

UR MMA COR 

RI RIM RIW 

Climo 
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+Delsole    
equal 
weight 
limit 
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               Another Example – Sahel Drying Trend 
Suppose 50 years of climate data suggest that the drying of  the 
Sahel in northern Africa in July to September may be related 
to warming in the tropical Atlantic and Indian oceans (x1) as  
well as local changes in land use in the Sahel itself (x2). x1 is  
expressed as SST, and x2 is expressed as percentage vegetation 
decrease (expressed as a negative percentage) from the 
vegetation found at the beginning of the 50 year period. Both 
factors appear related to the downward trend in rainfall (in 
opposite sense), and the two predictors are negatively  
correlated. Suppose the correlations come out as follows: 

Cor(y,x1)= -0.52   Cor(y,x2)= 0.37   Cor(x1,x2)= -0.50 

What would be the multiple regression equation in “unit-free” 
standard deviation (z) units?  



Cor(x1,y)= -0.52    Cor(x2,y)= 0.37    Cor(x1,x2)= -0.50 

First we set up the two equations to be solved simultaneously 

b1.2                      +b2.1(cor x1,x2)     = cory,x1 
b1.2(corx1,x2)        +b2.1                    = cory,x2 

b1.2                           +(-0.50)b2.1              = -0.52 
(-0.50)b1.2                 +b2.1                        =  0.37 

Want to eliminate (or cancel) b1.2 or b2.1. To eliminate b2.1, 
multiply first equation by 2 and add second one to it: 

1.5 b1.2    = -0.67       and b1.2 = -0.447       and b2.1 = 0.147 
Regression equation is Zy = -0.447 zx1 + 0.147 zx2 



Regression equation is Zy = -0.447zx1 + 0.147zx2 

If want to express the above equation in physical units, then 
must know the means and standard deviations of y, x1 and x2 
and make substitutions to replace the z’s. 

When substitute and simplify results, y, x1 and x2 terms will  
appear instead of z terms. There generally will also be a constant 
term that is not found in the z expression because the original 
variables probably do not have means of 0 the way z’s always do. 



The means and the standard deviations of the three data sets are 
y: Jul-Aug-Sep Sahel rainfall (mm):          mean 230 mm, SD 88 mm 
x1: Tropical Atlantic/Indian ocean SST:     mean 28.3 C,   SD 1.7 C 
x2: Deforestation (percent of initial):          mean 34%,      SD 22% 

Zy = -0.447zx1 + 0.147zx2 

After term collection and algebraic simplification, final form will be: 
     y = coeff x1 + coeff x2 + constant  (here, b1< 0,  b2 > 0) 
             b1             b2 



We now compute the multiple correlation R, and the 
standard error of estimate for the multiple regression. 
Using the two individual correlations and the b terms:  
Cor(x1,y)= -0.52    Cor(x2,y)= 0.37    Cor(x1,x2)= -0.50 
Regression equation is Zy = -0.447 zx1 +0.147 zx2 

= 0.535 

The deforestation factor helps the prediction accuracy only a bit. 
If there were weaker negative correlation between the two 
predictors, then the second predictor would be more valuable. 
Standard Error of Estimate =                                    = 0.845 
             In physical units, it is (88 mm) (0.845) = 74.3 mm 



Multiple regression with three or more predictors 
is just an extension of two-predictor multiple regression. 

Matrix math takes over (very tedious to do by hand) 
but the ideas are entirely the same; is quick on computer. 

Partials and semipartials become with respect to all of 
the predictors other than the given one. 

The shrinkage formula   Adjusted R = 

can result in huge shrinkage when number of predictors 
(k) is more than two-thirds of the sample size number (n), 
and very high R is required to show good prediction skill. 



3-predictor multiple regression formulas 

•  Regression equation 

•  Correlation coefficient 

•  Adjusted correlation coefficient 

•  Standard error of estimate 

•  Statistical significance of a 
correlation 

(n is sample size, k is number of predictors) 



                                   Summary 

Regression is a very useful prediction tool. Minimizing 
squared errors when several predictors are involved, 
using automation, is very powerful. 

Regression in simplest form uses a single predictor. 

Two-predictor regression adds more utility, can still 
be done by hand, and illustrates several awesome  
behaviors that will extend to cases of >2 predictors. 

Not only can many predictors be used, but many 
predictands also can (CCA, etc.) Use of EOFs in 
regression provides yet additional fuel for better 
understanding of some of the physical processes 
involved. 

WARNING: Overfitting and artificial skill can fool us! 


