Correlation, Simple Regression, and
Low-order Multiple Regression.

Pearson product-moment correlation
...1s what we will usually mean by “correlation”.

It describes the strength of a linear relationship
between x and y.



correlation = 0.8



correlation = 0.55
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X O Ccor
X O cor = 1

X
correlation for all 18 points =0.707 correlation squared = 0.5

When points having a perfect correlation are mixed with an equal
number of points having no correlation, and the two sets have same
mean and variance for X and Y, correlation 1s 0.707. Correlation
squared (“amount of variance accounted for”) 1s 0.5.
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X
correlation = 0.87 (due to one outlier in upper right)

If domination by one case 1s not desired, can use the Spearman
rank correlation (correlation among ranks instead of actual values).



D
D

X
correlation = 0 but there 1s a strong nonlinear relationship

The Pearson correlation only detects linear relationships.



X
correlation = 0.9 but there is an exact nonlinear relationship

suchas y =y




Standardizing X and Y to equalize their units

—\2
SD =0 =\/Z(X—x) find SD for the
’ ’ n-—1 x data set

. Convert each
(x-X)°
_ x element to
: SD, to its standardized
value (z)

z

Then do the same for y. Now their units are
on an equal footing, with mean =0, SD = 1.



Covariance and correlation between two variables

S(x-X)° .
Variance, = (SD,)’ =0’ = ( ) X itself
n-—1
(can do
same for y)
, 2(x=x)y-y
Covariance, , = ( =) X VS. y
’ n

O n
X Y

This 1s the Pearson product-moment correlation (the “standard” correlation)

: _1 . (Xi-i)(yi_.)_/)_l .
Correlation, , = ;,21 - = ZZ(xl-)Z(yi)



Basis of climate predictability lies in predictability of ENSO

Skill of Cane-Zebiak model in prediction of SST in tropical Pacific
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Lead time and forecast skill

Correlation between temperature and precipitation
forecasts and their subsequent corresponding observations

Weather forecasts (from
initial conditions)

Forecast |

Skill 2 sub-seasonal

(correlation).8 predictability
good -7 Seasonal forecasts (from

6 boundary conditions)

fair 4

10 20 30 60 80 90 Forecast lead
time (days)




Skill of forecasts at different time ranges:

1-2 day weather good

3-7 day weather fair

Second week weather poor, but not zero
Third week weather virtually zero
Fourth week weather virtually zero

1-month climate (day 1-31) poor to fair
I-month climate (day 15-45) poor, but not zero
3-month climate (day 15-99) poor to fair

At shorter ranges, forecasts are based on initial
conditions and skill deteriorates quickly with time.

Skill gets better at long range for ample time-averaging,
due to consistent boundary condition forcing



Approximate® Standard Error of a Zero Correlation Coefficient
(as would be expected if X and Y are independent random data)

1

n-1
Examples of O,__,, and critical values for 2-sided
significance at 0.05 level for various sample sizes n

O —

O—cor

O cor. .. Note: For
n 0—cor critical s S gniﬁcance of
a correlation,
10 0.33 0.65 z-distribution
20 0.23 0.45 1s used, rather
50 0.14 0.28 than t-distribu-
100 0.10 0.20 tion, for any
400 0.05 0.10 sample size.

*For small n, true values of O

0—cop are slightly smaller.



Confidence intervals for a nonzero correlation (r) are smaller
than those for zero correlation, and are asymmetric such
that the interval toward lower absolute values of r 1s larger.

For example: for n=100 and r = 0.35, 95% confidence interval
1s 0.17 to 0.51. That 1s 0.35 minus 0.18, but 0.35 plus 0.16.
(Forr=0, 1t 1s 0 plus 0.20 and 0 minus 0.20 — a larger span.)

Sampling distribution around a population correlation is
computed using the Fisher r-to-Z transformation, then finding
a symmetric confidence interval in Z, then finally converting
back tor.



The use of linear correlation for prediction:

Simple Linear Regression
(“stmple” implies just one predictor;
if more than one, 1s Multiple Linear Regression)

Determination of a regression line
to fit points on the x vs. y scatterplot,
so that 1f given a value of x, a “best
prediction” can be made fory.



A line 1n the x vs. y coordinate system has the form
y=a+ bx a 1s y-intercept b 1s slope

Regression line 1s defined such that the
sum of the squares of the errors (the
predicted y vs. true y) 1s minimized.

Such a line predicts y from x such that: Z y =COVyZy

For example, if cory,, = .5 then y will be predicted
to be half as many SDs away from its mean as Xx.



Proof that Z y = COnyZ x minimizes the squared errors.
That 1s, proof that the slope (the “b” 1n y=bx+a) should be set to
be the correlation coefficient between y and x when y and x are in
standardized (z) form where their means are zero and SDs are 1.

The squared error to be minimized, where 1 ranges from 1 ton palrs
of predicted versus actual values of y, 1s E E £, -z,

where Z,, refers to the predicted standardized value of y, and z,
the actual’(observed) standardized value of .

I 2
Substituting bz for z leads to _E[bzxi —Z yl,]

N 4=
l



|
Expanding the square in — E bz, —z we get
n 1

» ]

I

l

| 0 1
Because — E z =1 for any variable, and — E Zx Zy =COlyy,
i I

the expression to be minimized reduces to b — 2b(cory, ) +1

To find what value of b minimizes the expression, set its
derivative to zero: 2h —2(cor xy) =0

We then see that |H = COTy,,




Streamflow
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Simple regression prediction, standardized units: Z y = COVyZy

If we incorporate the physical units of x and y rather than the
standardized (z) version in SD units, we get:

_ SD,,
y=y+(cor y) (x =)

The above equation “tailors™ the bas1c z relationship
by adjusting for (1) ratio of SD of y to SD of x, and (2)
the difference between the mean of y and the mean of x.

(cory)% is the slope (b) of )—/ _ bf is the y-
" SD

the regression line intercept



Standard error of estimate of regression forecasts

....1s the standard deviation of the error distribution,
where the errors are y predicted ~ Yactual

St Error of Estimate (of standardized y data, or Zz

\/ 1 -cor? Xy
St Error of Estimate (of actual y data in physical units) =
2
SDy \/ 1 —cor”yy

When cor = 0, Stand Error of Estimate 1s same as the SD of y.
When cor = 1, Stand Error of Estimate 1s 0 (all errors are zero).

»)




Standard error of estimate for a regression forecast

physical unlts

>

Stand error of estimate = S \/ - CO?‘ Xy

5404
480
4204

"567360-
3004
2404
180-

1204

standardlzed unlts

regression line

vertical arrow shows

68% confidence

interval (=1 SD)

= stand error of estimate

The linear regression model can lead to probability forecasts
for any result, given the exact prediction and the correlation,
and an assumption that the variables are normally distributed.



Correlation vs. Standard Error of Estimate

Correlation

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

Standard Error
of Estimate

I—COszy

(as a fraction of SD
of the predictand [y] )

half

0.00

. 0.44
0.60
0.71
0.80
0.87
0.92
0.95
0.98
0.99
1.00

We need quite
a high correlation
to get a low standard
error of estimate:
need cor = 0.866
to get an SD of the
error down to half
of the SD of the
predicted variable (y).



Standard error of estimate (in standardized units)
for the prediction model as a whole (generalized for
any possible values of x) is

\/I—COszy

But this can be defined more accurately if we know the x value.
Let z, be the standardized value of the predictor (x). Then
standard error of estimate as function of z_ is

7 If we are dealing with

9 1 ZO a single case, 1 is added
1 —cor X + to the content under the
n n second square root term.

Standard error is larger when x value is farther away from mean.
There is also an “unbiasing” adjustment, even if x is at its mean.
Both of these effects are smaller when the sample size is larger.



Simple Linear Regression Problem:
Coupled GCM forecasts for Fiji for next Jan-Feb-Mar

Suppose we know that the correlation between a coupled GCM
rainfall forecast for parts of Fiji in Jan-Feb-Mar (made at beginning

of December), and the actual rainfall, is 0.52. This does not come as

a surprise, because we know that Fiji is sensitive to the ENSO state
and that climate models are able to reproduce this relationship to a
moderate extent. By early December the ENSO state is usually stable.

Suppose we want to issue a rainfall forecast for the station of
Nadi on the north side of the main Fij1 1sland, using the forecast
from this model. We have the following historical data:

Model Predictions (JFM): Observations (JFM):
Mean: 1140 mm Mean: 935 mm
SD: 700 mm SD: 500 mm

If the model forecast for the current year 1s 1890 mm, what would
be our regression-based best forecast for the actual precipitation?



JFM season 1n Nadi, Fiji:

Model Predictions (JFM): Observations (JFM):

Mean: 1140 mm Mean: 935 mm

SD: 700 mm SD: 500 mm

Correl (forecast vs. observations) =0.52 Model predicts 1890 mm
X—X

We use: y Cco xny and X SD

X

z value for predictor (Z,) 1s (1890 - 1140) /700 = 1.07

Then z value for forecast of precip (2, 1s (0.52) (1.07) = 0.56
(forecast of precip 1s 0.56 SDs above its mean.)
Forecast of precip = mean of y + (0.56)(SDy)
Forecast of precip = 935 + 0.56(500)
=035+ 280 =1215mm

Standard error of estimate (standardized units) = \/ 1- cor2 Xy = 854

Standard error of estimate (physical units) =5/ y (.854) =427 mm

Since we do not know the sample size used to develop this regression model,
We cannot compute the standard error of estimate for this forecast specifically.



What probabilistic forecasts
represent

Near-Normal

| | 4 | ‘

| Below Above |
Normal Normal

0.45

0.35 \
3 < - Historical distribution
- (climatological distribution)

(33.3%, 33.3%, 33.3%)

FREQUENCY

Forecast distribution
(15%, 32%, 53%)

(Courtesy Mike Tippett)

4 3 2 14 0 1 2 3 4

NORMALIZED RAINFALL
Historically, the probabilities of above and below are 0.33. Shifting the
mean by one half standard deviation and reducing the variance by 20%
changes the probability of to 0.15 and of to 0.53. Correlation
skill would be 0.45, and predictor signal strength would be 1.11 SD units.



A “strong’ shift of odds 1n rainfall forecast for Kenya during El Nino

3—MONTH TOTAL PRECIPITATION

MULTI-MODEL PROBABILITY FORECAST FOR OND 1997
2.5 MONTH LEAD OUTLOOK — MADE MID-JULY, 1997

Station 389 WAJIR, Kenya 1.45 40.30 152
Point forecast: 18.87cm - Zile:  71.1 : ] ] iliti 178
" hnomas aa2mm Ccrews h88 Steps in finding probabilities of each of the tercile

Normal (center): 14.45cm Median: 14.96cm based categories (below, near and above normal).

1. Use regression to make a deterministic (single

e Normal (Fitted) point) forecast.

WARNING: The: Observed data

- ex:r;e'ne tails ;Of oooooooo Finol Forecost ) ) ;
/.0 each curve have Error Envelope | 2. Determine standard error of estimate to represent

high uncertainty; 0 ce
97 UneSrany '| the uncertainty of the deterministic forecast.
use. cautiously.

‘| 3. Use standard error of estimate to form a forecast
‘| distribution (i.e., make the red curve).

‘| 4. Find what value of z on the forecast distribution

- ‘| coincides with the tercile boundaries of the

‘| climatological distribution (33%ile and 67%ile

‘| on the black curve). Then use z-table to get the
*s...:| probabilities associated with these z values..

PROBABILITY DENSITY

.Q
£y .
~
.-.
-

/ 13% 20%! 59% S

L 3
.......

5/-0"‘.‘, ar(

) 5 10 15 20 25 30 35 40 45 50 55 80
International Research Institute Note: When the forecast ond normal

IR %or cimate prediction PRECIPITATION (cm) coincide, the forecast is for the



Tercile probabilities for various correlation skills and predictor
signal strengths (in SDs). Assumes Gaussian probability distri-
bution. Forecast (F) signal = (Predictor Signal) x (Correl Skill).

Correlation Predictor Predictor Predictor Predictor Predictor
Skill Signal=0.0 Signal +0.5 Signal +1.0 Signal +1.5 Signal +2.0
O OO F signal 0.00 | F signal 0.00 | F signal 0.00 | F signal 0.00 | F signal 0.00

. 33/33/33 33/33/33 33/33/33 33/33/33 33/33/33
F signal 0.00 | F signal 0.10 | F signal 0.20 | F signal 0.30 | F signal 0.40

020 33/34/33 29/34/ 37 26 /33 /41 23/33/45 20/31/49
F signal 0.00 | F signal 0.15 | F signal 0.30 | F signal 0.45 | F signal 0.60

030 33/35/33 27134 /38 22/33/45 171311751 14 /29 /57
F signal 0.00 | F signal 0.20 | F signal 0.40 | F signal 0.60 | F signal 0.80

040 32/36/32 25/35/40 18 /33 /49 13/30/57 9/25/65
F signal 0.00 | F signal 0.25 | F signal 0.50 | F signal 0.75 | F signal 1.00

050 31/38/ 31 22137142 14 /33 /53 9/27/64 5/21/74
F signal 0.00 | F signal 0.30 | F signal 0.60 | F signal 0.90 | F signal 1.20

060 30/41/30 18 /38 /44 10/32/58 5/23/72 2/15/83
F signal 0.00 | F signal 0.35 | F signal 0.70 | F signal 1.05 | F signal 1.40

070 27145/ 27 13/41/46 6/30/65 2/171781 1/ 8/91
F signal 0.00 | F signal 0.40 | F signal 0.80 | F signal 1.20 | F signal 1.60

080 24153 /24 8/44 /48 2/25/73 0*/10/90 0** /317197

*0.3 **0.04




Probability Forecasts for Number of Tropical Cyclones
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Nino3.4 SST Anomaly (°C)

Model Predictions of ENSO from Jul 2010

3.0 ] I | [ [ | [ | | | Dynamical Model:
IR Nino3.4 SST anomaly predictions| = "ssswo
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Probability (%)

IRI Probabilistic ENSO Forecast for NINO3.4 Region
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IRI Multi-Model Probability Forecast for Precipitation
for October-November-December 2010, Issued July 2010
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SD,
(x—X)
SD,

Raw scores A —
regression formula: V=V T (cor xy)

where )A/ 1s predicted value of y from regression from x

l : 5D,

slope=b = (corxy)ST

X
Slope can be nonzero only if correlation 1s nonzero.

Therefore, testing 1f the slope 1s significantly different
from zero should give the same result (the probability
that 1t 1s different from zero by chance alone) as testing
if the correlation is significantly different from zero.



Hypothesis test for a correlation value

How can we reject the (null) hypothesis that a correlation
value comes from a population having zero correlation?

Standard error of correlation coefficient with respect to
zero correlation (approximate; slightly too strict for n <10):

1

n-1

StErr ON zerocorrel) = (can also be called O__,,.)

See 1f your sample correlation falls outside of plus or minus 1.96
(for 2-tailed, 5% level) times the above standard error. If not, it
could have come from population with zero correlation. For 1-sided
test (1f sign of the correlation 1n known or expected in advance of
seeing the resulting experimental correlation), see if your sample
correlation is greater in magnitude than 1.65 times the above
standard error. For correlation, 1-sided tests are common.



Example of a hypothesis test for a correlation

Suppose we test the correlation between malaria incidence
following the November — March rainy season in Botswana,
and the amount of rainfall during that rainy season. We know,
before investigating the correlation, that more rainfall (except
for extreme flooding conditions) creates a more favorable
environment for the vector and thus greater risk for malaria.

Suppose for 10 years of data for rainfall during Nov — March and
malaria during March — May, we get a correlation of 0.64. Is this
statistically significant in terms of the hypothesis that the true
population correlation is zero? That 1s, could the 0.64 have come
about just by chance, due to natural sampling variations, and not
due to a physical association between rainfall amount and malaria?
Since the slate 1s wiped clean for the rainfall — malaria relationship
with each new year, we can use 10 as the degrees of freedom.
(This might not be true 1f the cases were not independent, such

as for adjacent seasons that have nonzero lag correlation in both
rainfall and malaria.)



Example of a hypothesis test for a correlation

Sample size for rainfall and subsequent malaria incidence: n= 10
Correlation between rainfall and malaria incidence: 0.64

= StError l =0.333

| 1
(zerocorrel) — \/ﬂ _ \/§ _ 3

We set up a 1-sided z test for the correlation of 0.64. It 1s 1-sided
because we have physical reason to expect a positive correlation

rather than a negative correlation. Numerator shows correlation difference
/ between sample outcome and population

SampleCOF—0.00 ~ 064 _haIinggzirocorrelation
0.333

Looking at a z table, the chance of equaling or exceeding z = 1.92
1s 0.0274. Significance at the 5% level 1s therefore achieved.

O

O—cor

7 =
StndardError

zerocorrel




1

n-—1

1

n-—1

Oy .o = StETTor

(zerocorrel) —

but StError

(non—zerocorrel)

As mentioned earlier......

Confidence intervals for a nonzero correlation are smaller
than those for zero correlation, and are asymmetric such
that the interval toward lower absolute values 1s larger.

Significance tests against populations with nonzero
correlation require the Fisher r-to-Z transformation,
whose tables are available in many statistics books.



Temporal degrees of freedom (number of independent time samples)

can be less than the number of cases, due to autocorrelation in the
data.

To assess the effective degrees of freedom (from Livezey and Chen,
1983, Mon. Wea. Rev.), the time between independent samples is
estimated:

Integral time = 1+2 E (autocor,,,, Nautocor, )
lag=1

Then the effective degrees of freedom is Total period / integral time

For example, if there are 20 years of data and the integral time is
1.4 years, then there are 20/1.4 = about 14 degrees of freedom.

Monte Carlo techniques can also be used to estimate temporal
degrees of freedom and also spatial degrees of freedom.



Standard error of the slope b (depends on b itself, and on the
correlation and on sample size n):

1 - cor,
StErronpy = b id
COryy, n-—>2

See 1f confidence interval around your sample slope, reaching
about double (for 2-tailed, 5% level) the StError(b) on either
side of your sample slope, contains zero slope. If so, could
have come from population with zero slope (retain null hypoth).

Again, a significance test on the slope should agree with a
significance test on the correlation itself.



Multiple Linear Regression
uses 2 or more predictors

General form: 2z, = bz, +byzy, + D3z, +....+ bz,

Let us take simplest multiple regression case -- two predictors:
2y = bizy, +byzy,

Here, the b’s are not simply COFy, y, and COFy, y,, unless

X, and X, have zero correlation with one another. Any correl-
ation between x, and x, makes determining the b’s less simple.
The b’s are related to the partial correlation, in which the
value of the other predictor(s) is held constant. Holding other
predictors constant eliminates the part of the correlation due

to the other predictors and not just to the predictor at hand.

Notation: partial correlation of y with x,, with x, held

constant, 1S written COI”y, X1.X0



Zy = bz, +byz,,

For 2 (or any n) predictors, there are 2 (or any n) equations
in 2 (or any n) unknowns to be solved simultaneously.
When n >3 or so, determinant operations are necessary.
For case of 2 predictors, and using z values (variables
standardized by subtracting their mean and then dividing
by the standard deviation) for simplicity, the solution can
be done by hand. The two equations to be solved
simultaneously are:

b, +b, j(cor xx2) = COTy 4
by y(cor,; 1) tb, | — COIy o

Goal: to find the two coefficients, b, , and b, ,
(called simply b,and b, in the equation at the top)



Example of a multiple regression problem with two predictors

The number of Atlantic hurricanes between June and November
1s slightly predictable 6 months in advance (in early December)
using several precursor atmospheric and oceanic variables. Two
variables used are:

(1) 500 mb geopotential height in November in the polar
north Atlantic (67.5N-85°N latitude, 10E-50°W longitude)

(2) Sea level pressure in November in the North
tropical Pacific (7.5N-22.5°N latitude, 125-175°W longitude).



Location of two long-lead Atlantic hurricane predictor regions
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Physical reasoning behind the two predictors:

(1) 500 millibar geopotential height in November 1n the polar
north Atlantic. High heights are associated with a negative
North Atlantic Oscillation (NAO) pattern, tending to associate
with a stronger thermohaline circulation, and also tending to be
followed by weaker upper atmospheric westerlies and weaker
low-level trade winds in the tropical Atlantic the following
hurricane season. All of these favor hurricane activity.

(2) sea level pressure in November 1n the North tropical Pacific.
High pressure 1n this region in winter tends to be followed by
La Nina conditions in the coming summer and fall, which favors
casterly Atlantic wind anomalies aloft, and hurricane activity.

First step: Find “regular” correlations among all the variables

(Xl 9X29 Y) Corxl,y COrXZ,y Corxl,XZ



X,: Polar north Atlantic 500 mb height
X,: North tropical Pacific sea level pressure

CorAﬂanticSOOmb,hurricaneS =0.20 (X19Y)

COrPacif icSLE hurricanes =0.40 (XZ,Y)
one pre-
COrAtlanticSOOmb,Pacif iesLe = 0.30 (Xl,Xz) <> dictor vs
the other
Simultaneous equations to be solved: Want to et
_ ant to get one
by 0.30)b, =0.20 Fthe prgdictors
(0.30)b, , +b, =0.40 {9 cancel out.

Solution: Multiply 1%t equation by 3.333, then subtract second equation
from first equation:

(3.033)b, , +0 = (0.267 Dividing by 3.033:
b, , = 0.088. Then use this in either equation to find b, ; = 0.374.
Then regression equation 1s Z, = (0.088)z,, + (0.374)z,,



More detail on solving the two simultaneous equations:

b, , +(0.30)b, =0.20
0.30)b,,  +b,, = 0.40

Solution: Multiply 1% equation by 3.333:

(3.333)b,, +(3.333)(0.30)b,, =(3.333)(0.20)
then the 15t equation becomes: Want to get one of the

3.333b,, +(1.0)b,; = 0.667 predictors to cancel
out. Do 1t with b, ,
Now subtract second equation from the new first equation:

(3.333-0.3)b,, +(1-1)b,; =0.667-0.40
Doing the subtraction yields:
3.033b, , = 0.267
Then divide both sides by 3.033: b, , =0.267/3.033 = 0.088.
Use this value of b, , in either equation, and get b, ; = 0.374.
Then the regression equation 1s Z, = (0.088)z,, + (0.374)z,,



Multiple correlation coefficient = R = correlation between
predicted y and actual y using multiple regression.

R = \/bl.zcorxly + by jcory

In example above, R = \/(.088)(.20) +(.373)(.40) =0.408

Note this 1s only very slightly better than using the second
predictor alone in simple regression. This 1s not surprising,
since the first predictor’s total correlation with y 1s only

0.2, and 1t 1s correlated 0.3 with the second predictor, so

that the second predictor already accounts for some of what

the first predictor has to offer. A decision would probably

be made concerning whether it 1s worth the effort to include
the first predictor for such a small gain. Note: the multiple
correlation can never decrease when more predictors are added.



Multiple R 1s usually inflated somewhat compared with
the true relationship, since additional predictors fit
the accidental variations found in the data sample.

Adjustment (decrease) of R for the existence of multiple
predictors gives a less biased estimate of R:

2
Adjusted R= | R (n-1)-k n- sample size
n—Fk—1 k = number of predictors




Sampling variability of a simple (x, y) correlation coefficient
around zero when population correlation 1s zero 1s approximately

1

n-—1

Oo-cor = StEFF OK zerocorrel) =

In multiple regression the same approximate relationship
holds except that n must be further decreased, depending
on the number of predictors additional to the first one.

If the number of predictors (x’s) is denoted by k, then
the sampling variability of R around zero, when there 1s
no true relationship with any of the predictors, 1s given by

0-cor

o, .= OStErroy 7y =
(zerocorrel) —k

It becomes easier to get a given multiple correlation by
chance as the number of predictors increases.



Hypothesis test for a multiple correlation value

How can we reject the (null) hypothesis that a multiple corre-
lation value comes from a population having zero correlation?

Standard error of correlation coefficient with respect to
zero correlation (approximate; slightly too strict for n <10):

1
StErr Orfzerocorrel) - n—k (3130 called OO—cor)

See 1f your sample correlation (R) equals or exceeds 1.96 (for
2-sided, 5% level) times the above standard error, or 1.65 (for
1-sided, 5% level) times it. If not, it could have come from a
population with zero correlation, with a probability of >5%.
For multiple correlations, a 1-sided test can be used only when
the signs of the correlations between each individual predictor
and the predictand (y) are anticipated before the experiment,
and when the results confirm those expected correlation signs.
(Note: R 1s always positive.)



Example of a hypothesis test for a multiple correlation

As a follow-up to the hypothesis test of the positive rainfall vs.
malaria correlation in Botswana presented in the section on simple
regression, suppose we now use both rainfall and temperature as
predictors of malaria incidence. We expect greater rainfall to result

in greater malaria incidence, but also expect higher temperature to
increase incidence, so we use both as predictors in multiple regression.

Suppose for 10 years of data for rainfall during Nov — March and
malaria during the following March — May, using a correlation of
0.64 for rainfall vs. malaria, 0.46 for temperature vs. malaria, and
0.35 for rainfall vs. temperature, we get a multiple correlation of 0.69.
Is this statistically significant in terms of the null hypothesis that

the true population multiple correlation 1s zero? (Could the 0.69 have
come about just by chance, due to natural sampling variations among
X1, X5, and y, and not due to a physical association involving the
combined predictive effects rainfall and temperature, and malaria?)



Example of a hypothesis test for a multiple correlation

Sample size for rainfall, temperature, and malaria incidence: n= 10
Multiple correlation between (rain, temp) and malaria incidence: 0.69
1 1 here k=2

Oy_..,r = StError =0.354

1
(zerocorrel) — m B \/g B 283

We do a 1-sided z test for the 0.69 correlation. 1-sided 1s justified,
given that the correlations between malaria and both climate vari-
ables are both positive, as expected on basis of malaria knowledge.

Numerator shows correlation difference
/ between sample outcome and population

SampleCOI/'—0.00 B 069 _haiing92§rocorrelation
0.354

Looking at the z table, the chance of equaling or exceeding 1.95
1s 0.5 - 0.4744 = 0.0256. Significance at the 5% level is achieved.

7 =
StndardError

zerocorrel



Partial Correlation 1s correlation between y and x,, where a
variable x, 1s not allowed to vary. Example: in an elemen-
tary school, reading ability (y) is well correlated with

the child’s weight (x,). But both y and x, are really caused
by something else: the child’s age (call x,). What would the
correlation be between weight and reading ability if the age
were held constant? (Would it drop down to zero?)

y x1 ( V,Xx2 )( 1x2)
\/(1 -7 -y r vix2)
StErrorkst, ,
bl = ry xl.x2 ’
© " StErrorEst, .,

A similar set of equations exists for b, (second predictor).

14 —

v,xl.x2




Suppose the three correlations in a school study are:
reading vs. weight : 7}, x = 0.66
reading vs. age: V) ox2 = 0.82
weight vs. age: 7 p = 0.80

The two partlal correlations come out to be:

yx1x2 =0.012
v,x2.x1 = O 648

Finally, the two regression weights, for standardized
variables, turn out to be:

b =0.011 -
s oy R=0.820

Body weight is seen to be a minor factor compared with age,
as 1ts regression weight 1s near zero.



Suppose a group of people observes an increase in global
temperature but does not believe it is due to greenhouse gas
increases. Instead, they believe that the warming is due to the
simple passage of time, as stipulated by their religious doctrine.

To try to judge whether global warming can be attributed more to

increases in greenhouse gas concentrations or to the march of
time, we do a 2-predictor multiple regression:

X4 = CO, concentration (annual average)
X, = the year number

y = global mean temperature (annual average)



The correlations among x,, X, and y:
CO, vs. global temperature: 0.89 (x,, y)

year vs. global temperature: 0.85 (x,, y)
CO, vs. year: 0.96 (x;,X,)

The two partial correlations come out to be:

V) o = 0.502
r =—-0.034

v,x2.x1

Finally, the two regression weights, for standardized
variables, turn out to be:

b, =0.944 -
b, = -0.056 R =0.890

CO, concentration 1s seen to be the dominant predictor.



Suppose the CO, vs. year correlation 1s even higher:
CO, vs. global temperature: 0.89 (x,, y)
year vs. global temperature: 0.85 (x,, y)
CO, vs. year: 0.98 (x,X,)

The two partial correlations then come out to be:

V) o = 0.544
v = —0.245

v,x2.x1
Finally, the two regression weights turn out to be:

b, =1.439 -
o ose  R=0897

When two predictors are correlated with one another and

r(x,,y) < [ r(x4,y) (r(x4,%,) I, the weight for x, becomes signed
opposite 1(X,,y). (Here it becomes negative instead of positive.)
In extreme cases the weights can take on very high magnitudes,
and the regression can become unstable and even incalculable.



Two-predictor multiple regression:

Some examples of behavior of regression
weights when x4, X, and y are all standardized
to equalize their units




Squared
correlations
are additive;
correlations

are not.

r(y,XyX5) is r(X4,y)
when X, is held
constant

Zero-order terms:
2(x;y) =@+ c
2(Xyy) = b +c
R%(y, x;&x,)=a+b+c
Semipartials:
r2(y,X;X;) = @
r2(y,x;%X;) = b
Partials:
r’(y,x;X,)=al (a+e)
r’(y,X,x,)=b /(b + e)



In the following 2-predictor examples, colors are used as follows:

Black: Independence of predictors:

Information provided by each is unique.

Blue: Partial redundancy among
predictors: Part, but not all, of what x,
offers is already provided by x,. Both
coeffs retain original sign.

Green: Maximum redundancy among
predictors: x, adds nothing beyond
what is provided by X4, SO X, is useless
and has coeff of zero.

Purple: Redundancy among predictors,
but r(x,,y) is low (or even zero), and x,
beneficially suppresses a part of x,

that is unrelated to y. Coeff of x, becomes
opposite sign of its simple correlation with vy.
Red: One form of this condition is when the
redundancy is less than the beneficial
suppression, causing R to exceed that
expected for independent predictors. A var-

Rmult = \/l”(xl,y)2 + V(Xza)/)z
r(x,x,)=0

Rmult < \/r(xl,y)2 +7(xy, )’
V(x2,J/) > r(xl,y)r(xl,xz)

Rmult = \/r(xl,y)2 =7r(x,,y)
r(xy,y) =r(x, y)r(x,x,)

F(x,, ) < Rmult < \[r(x,, y)* +r(x,,))’
r(xzay) < r('x]’y)r('xlﬂx2)

Rmult > \[r(x,, )" +7(x,, )’

iation of this is when x; and x, have negative
redundancy: e.g. (4 ,)>0, r(x,,)>0, r(; x»)<O0



Effect of the inter-predictor correlation on weights (w) and multiple correlation (R)

r(x4,y) =.50 | r(x,,y) =.50

W, W, r(X4,Xp) Rimult

.50 .50 .0 0.707
42 42 2 0.645
36 36 4 0.598
31 31 6 0.559
28 28 8 0.527
26 26 9 0.513
256 256 95 0.506
251 251 99 0.501

Independence

Increasing
redundancy,
decreasing
benefit from
using both
predictors
instead of one




Effect of the inter-predictor correlation on weights (w) and multiple correlation (R)

r(xy,y) =.50 | r(x,,y) =.50
w, W, r(x4,Xp) Rinuit
62 62 -2 0.791
50 .50 .0 0.707
42 42 2 0.645

r(xs,y) =90 | r(x,y)=-.50 |  r(x4,X;) Rimult
42 -42 -2 0.645
50 -.50 .0 0.707
62 -.62 2 0.791

When r(x,,x,) =0, Rmult = \/r(xl,y)z + V(X2,J/)2

Enhancement
Independence

Redundancy

Redundancy
Independence

Enhancement

Redundancy occurs when r(x,,X,) is of same sign as that of [r(x,,y)]*[r(X,,y)]
Enhancement occurs when r(x4,X,) is of sign opposite that of [r(x,,y)]*[r(X,,Y)]



Effect of the inter-predictor correlation on weights (w) and multiple correlation (R)

*When R(x4,X,) = .926, all information about y provided by x,
is totally redundant with that carried by x,.

r(x4,y) =.54 | r(x,y) =.50
w, w, r(X4,X») Rt
.54 .50 .0 0.736 | independence
46 41 2 0.672 | Increasing
41 34 4 0.623 ;;e/gin?riqc):(yhz)
38 27 6 0.583
39 19 8 0.552
A7 07 9 0.541 N
54 .00 .926* 0.540 [ ry2=(ry1)(r12)
67 -13 95 0.542 | ry2<(ry1)(r12)

ry1is r(Xq,y)
ry2 is r(X,,y)
r12 is r(x,,x2)



Effect of the inter-predictor correlation on weights (w) and multiple correlation (R)

r(x4,y) =.70 | r(x,,y) =.20
W, W, r(Xy,X,) RmuIt
.70 .20 .0 0.728 | Independence
69 06 2 0.703 rI;IGngn(?;‘In)((%Z)
70 .00 .286* 0.700 [ v2=yNHr2)
74 -.10 4 0.705 | ry2 <(ry1)(r12)
.80 -.20 5 0.721 l
01 -34 6 0.752 Enhancement

*When r(x4,X,) = .286, all information about y provided by x,
is totally redundant with that carried by x,.

ry1is r(x,y)
ry2 is r(x,,y)
r12 is r(x,,x2)



Effect of the inter-predictor correlation on weights (w) and multiple correlation (R)

though its correlation
with y is zero.

r(x;,y) =.50 | r(x,y) =.00
Wy W, r(X4,Xy) Rmult
78 A7 -.6 0.625 ¢
Increasin
.60 24 -4 0.646 beneficialg
suppression,
52 10 -2 0.510 | enhancement
“Independence”,
.50 .00 .0 0.500 ry2 = (ry1)(r12)
52 -.10 2 0.510 | Increasing
beneficial
suppression,
60 '24 4 O .546 enﬁra)ncement
78 47 6 0625 | ¥
ry1is r(x4,y)
X, plays a role even ry2 is r(x,y)

r12 is r(x,,x2)



In the preceding 2-predictor examples, colors were used as follows:

Black: Independence of predictors:

Information provided by each is unique.

Blue: Partial redundancy among
predictors: Part, but not all, of what x,
offers is already provided by x,. Both
coeffs retain original sign.

Green: Maximum redundancy among
predictors: x, adds nothing beyond
what is provided by X4, SO X, is useless
and has coeff of zero.

Purple: Redundancy among predictors,
but r(x,,y) is low (or even zero), and x,
beneficially suppresses a part of x,

that is unrelated to y. Coeff of x, becomes
opposite sign of its simple correlation with vy.
Red: One form of this condition is when the
redundancy is less than the beneficial
suppression, causing R to exceed that
expected for independent predictors. A var-

Rmult = \/l”(xl,y)2 + V(Xza)/)z
r(x,x,)=0

Rmult < \/r(xl,y)2 +7(xy, )’
V(x2,J/) > r(xl,y)r(xl,xz)

Rmult = \/r(xl,y)2 =7r(x,,y)
r(xy,y) =r(x, y)r(x,x,)

F(x,, ) < Rmult < \[r(x,, y)* +r(x,,))’
r(xzay) < r('x]’y)r('xlﬂx2)

Rmult > \[r(x,, )" +7(x,, )’

iation of this is when x; and x, have negative
redundancy: e.g. (4 ,)>0, r(x,,)>0, r(; x»)<O0



Various combinations of the above behaviors are likely to
appear when there are 3 or more predictors.

Modelers should not be insulted when their model is
assigned a negative weight in multiple regression!

When there are MANY predictors, and not very many time
samples to develop the model, collinearity can become so
severe that some of the weights have very high magnitudes.
This is dangerous with respect to the addition of new cases.

“Ridging” can ease this problem.

Ridging is the addition of small amounts on the diagonal of
the cross-correlation matrix; is like adding noise. It has the
effect of reducing the cross-correlations among the models.
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Figure 1. [ ]weights for ensemble averages corresponding to the 9 models in the
DEMETER+PLUS data as a function of ridging amount (A in Log;o scale) for (a) ridging,
RID, (b) ridging with departure-from-equal-weight penalty, RIM, and (¢) ridging with

departure-from-skill-based-weights penalty, RIW.



Another Example — Sahel Drying Trend

Suppose 50 years of climate data suggest that the drying of the
Sahel 1n northern Africa in July to September may be related

to warming in the tropical Atlantic and Indian oceans (x,) as
well as local changes in land use in the Sahel itself (x,). X, 1s
expressed as SST, and x, 1s expressed as percentage vegetation
decrease (expressed as a negative percentage) from the
vegetation found at the beginning of the 50 year period. Both
factors appear related to the downward trend 1n rainfall (in
opposite sense), and the two predictors are negatively
correlated. Suppose the correlations come out as follows:

Cor(y,x,)=-0.52 Cor(y,x,)=0.37 Cor(x,,x,)=-0.50

What would be the multiple regression equation in “unit-free”
standard deviation (z) units?



Cor(x,,y)=-0.52 Cor(x,,y)=0.37 Cor(x,,x,)=-0.50

First we set up the two equations to be solved simultaneously

b, +b, ;(cor xl,x2) — COIy
b, (cory, 1) b, — COLy o

Want to eliminate (or cancel) b, , or b, ;. To eliminate b, |,
multiply first equation by 2 and add second one to 1it:

Regression equation 1s Z, = -0.447 z,, + 0.147 z,,



Regression equation 1s Z, = -0.447z,, + 0.147z,,

If want to express the above equation in physical units, then
must know the means and standard deviations of y, x, and x,
and make substitutions to replace the z’s.

y=)_/+ZySDy Zy=(y_J_/)/SDy
X1 = )_Cl + leSDx1 Zy1 = (Xl —)_Cl)/Sl))C1
Xy = )_62 + szSDx2 Zyn = ()C2 — )_Cz)/SDX2

When substitute and simplify results, y, X, and x, terms will
appear instead of z terms. There generally will also be a constant
term that 1s not found in the z expression because the original
variables probably do not have means of 0 the way z’s always do.



The means and the standard deviations of the three data sets are

y: Jul-Aug-Sep Sahel rainfall (mm): mean 230 mm, SD 88 mm
X,: Tropical Atlantic/Indian ocean SST: mean 28.3 C, SD 1.7C
X,: Deforestation (percent of initial): mean 34%, SD 22%

Z,=-0.447z,, +0.147z,,

(y_y) _0447 (’xl_xl)+0.147 (XZ_XZ)

SD, SD. SD._
=230) _ 447 51=283) 5 147 (=3
38 1.7 22

After term collection and algebraic simplification, final form will be:
y = coeff x, + coeff x, + constant (here, b;<0, b,>0)
b, b,



We now compute the multiple correlation R, and the
standard error of estimate for the multiple regression.
Using the two individual correlations and the b terms:
Cor(x,,y)=-0.52 Cor(x,,y)=0.37 Cor(x,,x,)=-0.50
Regression equation 1s Z, = -0.447 z,, +0.147 z,

R = \/bl.zco x,y Do 1c07y ),

R = (-.447)(-.52) + (.147)(.37) = 0.535

The deforestation factor helps the prediction accuracy only a bit.
If there were weaker negative correlation between the two
predictors, then the second predictor would be more valuable.

Standard Error of Estimate = \/ 1-R v (x1x2) = (.845

In physical units, 1t 1s (88 mm) (0.845) = 74.3 mm




Multiple regression with three or more predictors
is just an extension of two-predictor multiple regression.

Matrix math takes over (very tedious to do by hand)
but the ideas are entirely the same; is quick on computer.

Partials and semipartials become with respect to all of
the predictors other than the given one.

2
The shrinkage formula Adjusted R = R™(n-1)-k

n—-k-1

can result in huge shrinkage when number of predictors
(k) is more than two-thirds of the sample size number (n),
and very high R is required to show good prediction skKill.



3-predictor multiple regression formulas

Adjusted correlation coefficient -

(n is sample size, k is number of predictors)

Standard error of estimate

Statistical significance of a

o _




Summary

Regression is a very useful prediction tool. Minimizing
squared errors when several predictors are involved,
using automation, is very powerful.

Regression in simplest form uses a single predictor.

Two-predictor regression adds more utility, can still
be done by hand, and illustrates several awesome
behaviors that will extend to cases of >2 predictors.

Not only can many predictors be used, but many
predictands also can (CCA, etc.) Use of EOFs in
regression provides yet additional fuel for better
understanding of some of the physical processes
involved.

WARNING: Overfitting and artificial skill can fool us!




