
Verification of climate forecasts 

How is forecast skill or accuracy measured? 

What aspects of forecast quality is measured by various scores? 



    Some verification measures          D: deterministic 
                                                                              P: probabilistic 
D Heidke skill score (a hit/miss score)         
D Correlation with respect to means of sample being evaluated 
D Correlation using climate means, not sample means 
D Rank correlation 
D Root mean squared error skill score (RMSSS) 
P Ranked probability skill score (RPSS); a form of Brier Score 
P Likelihood skill score (LSS)  
P Rate of return 
P ROC area 
P ROC area generalized to all categories 
P Reliability analysis 



Heidke Skill Score (for deterministic categorical forecasts) 

Probability forecasts for 3 tercile-based categories can be scored as if 
they are forecasts simply for the category having the highest probability. 
       Then, depending on the obs category, it was either a hit or not. 

Heidke skill score =  

Example: Suppose for OND 1997, rainfall forecasts are made for 
15 stations in southern Brazil. Suppose the forecast is defined by  
tercile-based category having highest probability. Suppose for 
all 15 stations, “above” is forecast with highest probability, and 
that observations were above normal for 12 stations, and near 
normal for 3 stations. Then Heidke score is: 

   100 X  (12 – 15/3) / (15 – 15/3) 
              100 X      7 /  10 
                        = 70              Note that the forecast probabilities 
                                    did not matter, only which category had  
                     highest probability. This conversion of probability 
       forecasts to deterministic forecasts is a major weakness. 



Correlation: Measuring the strength of linear relationship 
between two variables—here, between forecasts and their 
corresponding observations. 

Let forecasts be x, and corresponding observations be y. 

Mean forecast biases and linear conditional forecast biases 
are ignored by the correlation. (When such biases exist, the 
correlation describes potential, but not actual, accuracy.) The 
correlation therefore measures discrimination. 



Two versions of correlation:  
(1)  When                 are means for just the sample being correlated 
(2) When                 are means for some other defined base period 

Version 2: Suppose there is a warming trend, and the 1971-2000 base period 
is used to define the climatology (means, anomalies, and tercile boundaries).  
Then by forecasting enhanced probabilities for “above normal”, a somewhat 
positive correlation is virtually guaranteed even if the year-to-year variations  
are not well discriminated. So, version 2 measures discrimination, and also 
calibration (freedom from mean bias and conditional biases). 

Version 1: If the means of the sample at hand are subtracted, then interannual  
variability becomes critical, and a positive correlation is not guaranteed by just 
forecasting “above normal” most of the time. Here, discrimination is measured.  



Spearman rank correlation 
Spearman rank correlation is the Pearson correlation  
between the ranks of X vs. the ranks of Y, treating ranks  
as numbers. Rank correlation measures the strength of  
monotonic relationship between two variables. 

Rank correlation de-emphasizes outliers by not honoring 
original intervals between adjacent ranks. Adjacent 
ranks simply differ by 1. One or two influential cases 
become much less influential. 

Original data:  2   9   189  3   21   7 
Ranks:            6   3     1    5    2    4 



Root-mean-Square Skill Score: RMSSS for continuous 
deterministic forecasts     Murphy (1988), Mon. Wea. Rev. 

               RMSSS is defined as:   

where: RMSEf = root mean square error of forecasts, and RMSEs = root 
mean square error of a standard used as no-skill baseline. 

Either persistence or climatology can be used as baseline. Persistence, 
for a given parameter, is  the persisted anomaly from the forecast period 
immediately prior to the period being verified. For example, for example, for 
seasonal forecasts, persistence is the seasonal anomaly from the season 
prior to the season being verified. (For SST, it can be from the prior month.) 
Climatology is equivalent to a forecast having an anomaly of zero.  

RMSf    = 



where:  i stands for a particular location (grid point or station). 

fi = forecasted anomaly at location i 
Oi = observed or analyzed anomaly at location i. 

Wi = weight at grid point i. When verification is done on a grid, to 
equalize grid areas, set weight using Wi = cos(latitude) 

N = total number of grid points or stations where verification is carried. 

RMSSS is given as a percentage, while RMS scores for f and for s 
are given in the same units as the verified parameter. 

RMSf    = 



The RMS and the RMSSS are made larger by three 
main factors:  

(1) The mean bias 
(2) The conditional bias (including an amplitude bias) 
(3) The lack of correlation between forecast and obs 

 (1) and (2) are calibration factors; (3) involves discrimination. 

It is easy to correct for (1) using a hindcast history. This will 
improve the score. In some cases (2) can also be removed,  
or at least decreased, and this will improve the RMS and the 
RMSSS farther. Improving (1) and (2) does not improve (3). It 
is most difficult to increase (3). If the tool is a dynamical 
model, a spatial MOS correction can increase (3), and help 
improve RMS and RMSSS. 



Verification of Probabilistic Categorical Forecasts: 
The Ranked Probability Skill Score (RPSS) 

Epstein (1969), J. Appl. Meteor. 

RPSS measures cumulative squared error between categorical 
forecast probabilities and the observed categorical probabilities 
relative to a reference (or standard baseline) forecast. 

The observed categorical probabilities are 100% in the observed 
category, and 0% in all other categories. 

Where Ncat = 3 for tercile forecasts. The “cum” implies that the sum- 
mation is done first for cat 1, then cat 1 and 2, then cat 1 and 2 and 3. 
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The higher the RPS, the poorer the forecast.  RPS=0 means that 
the probability given to the category that was observed was 100%. 

The RPSS is based on the RPS for the forecast compared to the RPS  
For a reference forecast such as one that simply gives climatological 
probabilities. 

RPSS > 0 when RPS for actual forecast is smaller than RPS for 
the reference forecast. 



Suppose that the forecast probabilities for terciles for 15 stations in OND 
1997 in Kenya, and the observations were:  
    forecast(%)   obs(%)      RPS calculation 
 1   20 30 50    0  0 100  RPS=(0-.20)2+(0-.50)2+(1.-1.)2 =.04+.25 +.0 = .29 

 2   25 35 40    0  0 100  RPS=(0-.25)2+(0-.60)2+(1.-1.)2 =.06+.36 +.0 = .42 
 3   25 35 40    0  0 100 
 4   20 35 45    0  0 100 RPS=(0-.20)2+(0-.55)2+(1.-1.)2 =.04+.30 +.0 = .34 
 5   15 30 55    0  0 100 
 6   25 35 40    0  0 100 
 7   25 35 40    0 100 0  RPS=(0-.25)2+(1-.60)2+(1.-1.)2 =.06+.16 +.0 = .22 
 8   25 35 40    0  0 100 
 9   20 35 45    0  0 100 
10  25 35 40    0  0 100 
11  25 35 40    0 100 0 
12  20 35 40    0 100 0 
13  15 30 55    0  0 100 RPS=(0-.15)2+(0-.45)2+(1.-1.)2 =.02+.20 +.0 = .22 
14  25 35 40    0  0 100 
15  25 35 40    0  0 100 
              Finding RPS for reference (climatology baseline) forecasts: 
for 1st forecast, RPS(clim) = (0-.33)2+(0-.67)2+(1.-1.)2 = .111+.444+0=.556 
for 7th forecast, RPS(clim) = (0-.33)2+(1.-.67)2+(1.-1.)2 = .111+.111+0=.222 
 for a forecast whose observation is “below” or “above”,  PRS(clim)=.556 



forecast(%)       obs(%)       RPS and RPSS(clim)               RPSS 
 1   20 30 50    0  0 100  RPS= .29  RPS(clim)= .556   1-(.29/.556) = .48 

 2   25 35 40    0  0 100  RPS= .42  RPS(clim)= .556   1-(.42/.556) = .24 
 3   25 35 40    0  0 100  RPS= .42  RPS(clim)= .556   1-(.42/.556) = .24 
 4   20 35 45    0  0 100  RPS= .34  RPS(clim)= .556   1-(.34/.556) = .39 
 5   15 30 55    0  0 100  RPS= .22  RPS(clim)= .556  1-(.22/.556) =  .60 
 6   25 35 40    0  0 100  RPS= .42  RPS(clim)= .556  1-(.42/.556) =  .24 
 7   25 35 40    0 100 0   RPS= .22  RPS(clim)= .222   1-(.22/.222) = .01 
 8   25 35 40    0  0 100  RPS= .42  RPS(clim)= .556  1-(.42/.556) =  .24 
 9   20 35 45    0  0 100  RPS= .34  RPS(clim)= .556   1-(.34/.556) = .39 
10  25 35 40    0  0 100  RPS= .42  RPS(clim)= .556  1-(.42/.556) =  .24 
11  25 35 40    0 100 0   RPS= .22  RPS(clim)= .222   1-(.22/.222) = .01 
12  20 35 40    0 100 0   RPS= .22  RPS(clim)= .222   1-(.22/.222) = .01 
13  15 30 55    0  0 100  RPS= .22  RPS(clim)= .556  1-(.22/.556) =  .60 
14  25 35 40    0  0 100  RPS= .42  RPS(clim)= .556  1-(.42/.556) =  .24 
15  25 35 40     0  0 100  RPS= .42  RPS(clim)= .556  1-(.42/.556) =  .24 
              Finding RPS for reference (climatol baseline) forecasts: 
When obs=“below”, RPS(clim) = (0-.33)2+(0-.67)2+(1.-1.)2 =.111+.444+0=.556 
When obs=“normal”, RPS(clim)=(0-.33)2+(1.-.67)2+(1.-1.)2 =.111+.111+0=.222 
When obs=“above”, RPS(clim)= (0-.33)2+(0-.67)2+(1.-1.)2 =.111+.444+0=.556 



RPSS for various tercile probability forecasts,  
when observation is “above”. 

Forecasted 
   Tercile 
Probabilities                  
  -    0    +     RPSS         Note: issuing overly confident forecasts 
100  0   0     -2.60           causes high penalty when incorrect. 
 90  10  0     -2.26           Skills are highest for “true” probabilities, 
 80  15  5     -1.78           which would be revealed in a reliability plot. 
  70 25  5     -1.51 
  60 30 10    -1.11 
  50 30 20    -0.60 
  40 35 25    -0.30 
  33 33 33     0.00 
  25 35 40     0.24 
  20 30 50     0.48 
  10 30 60     0.69 
  5  25  70     0.83                 
  5  15  80     0.92                 
  0  10  90     0.98                 
  0   0 100     1.00    



The RPSS is made worse by three main factors:  

(1) Mean probability biases 
(2) Conditional probability biases (including amplitude biases) 
(3) The lack of correlation between forecast probabilities and obs 

(1) and (2) are calibration factors; (3) involves discrimination. 

The RPSS (Epstein 1969, J. Appl. Meteor.)  
is an extension of the Brier Score (Brier, 1950,  
Mon. Wea. Rev.), which is the same calculation  
except for only two categories. The tercile category  
system can be seen as a two category system if the 
two tercile boundaries are considered one at a time: 
    below normal vs. not below normal 
    above normal vs. not below normal. 



               The likelihood score 
The likelihood score is the nth root of the product of the 
probabilities given for the event that was later observed. 
for example, using terciles, suppose 5 forecasts were 
given as follows, and the category in red was observed: 

45 35 20                        The likelihood score 
33 33 33                        disregards what prob- 
40 33 27                        abilities were forecast 
15 30 55                        for categories that did 
20 40 40                        not occur. 

The likelihood score for this example (n=5) would be  

= 0.40 =  

This score could then be scaled such that 0.333 would be 0%, and 1 would be 
100%. A score of 0.40 would translate to (0.40 - 0.333) / (1.00 - 0.333) = 10.0%. 



               The likelihood skill score 

= 0.40, 

Then, LS=0.40 is positioned on a scale where 0.333 becomes 0%, and 1  
becomes 100%:  

The LSS is used in verifying the IRI’s probability forecasts (Barnston et al.  
2010). It is closely related to the ignorance score (Roulston and Smith, Mon. 
Wea. Rev., 2001) and derived scores such as rate of return (Hagedorn and  
Smith, Meteor. Applic., 2008; Tippett and Barnston, Mon. Wea. Rev., 2008).  

If the likelihood score comes out to be 

then a likelihood skill score can be computed using a no-skill reference forecast: 

= 10% 



                 The rate of return 
The rate of return also begins with the nth root of the  
product of the probabilities given for the event that was  
later observed. Using terciles, suppose 5 forecasts were 
again as follows, and the category in red was observed: 

45 35 20                        The rate of return 
33 33 33                        disregards what prob- 
40 33 27                        abilities were forecast 
15 30 55                        for categories that did 
20 40 40                        not occur. 

The rate of return for this example (n=5) begins as:  

= 0.40 =  

The rate of return will then divide this geometric mean by that which would  
result if 0.3333 were forecast perpetually: that is, 0.40 / 0.3333.  



                 The rate of return 

= 0.40, 

So, 0.40 is divided by the same computation for climatology forecasts (0.3333), 
and then 1 is subtracted, and the result is multiplied by 100 to give a percentage: 

For tercile-based forecasts, then, the rate of return is exactly double LSS, so that 
“perfect” forecasts would result in a rate of return of 200%. 

If the geometric mean comes out to be 

then the rate of return (ROR) is computed using a no-skill reference forecast: 

= 20% 

(100) 

(100) 



    Use of logarithm in likelihood score and rate of return 

Both the likelihood skill score and the rate of return involve 
computing a geometric mean. When there are many forecasts, 
multiplying many numbers less than 1 can result in underflow. 
Therefore, the logs are computed and summed, followed by 
division by n, and then taking the antilog (exponentiation). Hence  
the term “log likelihood”. 

Then 

would become 

The rate of return seen in the literature uses base 2 instead of the 
base e (2.718), and defines the ignorance score as –log2(prob) 



The likelihood skill score and the rate of return are both made worse  
by three main factors:  

(1) Mean probability biases 
(2) Conditional probability biases (including amplitude biases) 
(3) The lack of correlation between forecast probabilities and obs 

(1) and (2) are calibration factors; (3) involves discrimination. 



Relative Operating Characteristics (ROC) for Probabilistic Forecasts 
Mason, I. (1982) Australian Met. Magazine 

An event, such as observing “below normal” precipitation, is defined. 

The contingency table that ROC verification is based on: 

                              Observation     Observation 
                                    Yes                   No 
--------------------------------------------------------------------------- 
Forecast: Yes           O1 (hit)         NO1  (false alarm) 
Forecast: NO            O2 (miss)     NO2 (correct rejection) 
--------------------------------------------------------------------------- 

Hit Rate = 01 / (O1+O2) 

False Alarm Rate = NO1 / (NO1+NO2) 

The hit rate and false alarm rate are determined for descending categories 
of forecast probability, cumulatively. For high forecast probabilities, we 
hope hit rate rate will be high and false alarm rate low; and for low forecast 
probabilities, we hope hit rate will be low and false alarm rate will be high.  
For in-between probabilities, we expect some of each. 



The curves 
are cumulative 

from left to 
right. For example, 
“30%” really means 

“100% + 90% 
+80% + ….. 

+30%”. 

Curves farther 
to the upper left 

show greater skill, 
since hit rate 

should be higher 
for the higher 

probabilities alone. 

negative 
skill 

Example from Mason and Graham (2002), QJRMS, for eastern Africa 
OND simulations (observed SST forcing) using ECHAM3 AGCM 



Mean forecast probability biases and linear conditional forecast  
probability biases are ignored by the ROC. For example, all of 
the probabilities for “below normal” could be double what they 
should be, or 35% higher than they should be, and ROC would 
be the same as if they did not have that problem. But changes 
in the probability might still correspond to the same directional 
changes in the observed result. 

The ROC therefore measures discrimination. 



GROC =        -------------------------------------------------- 

                                                                           0   if Plj(k) < Pki(k) 
Where                                                                                                 0.5 if Plj(k) = Pki(k)  (tie) 
                                                                      1   if Plj(k) > Pki(k)    

Generalized ROC area  is integrated over categories 
             (Mason and Weigel 2009; Mon. Wea. Rev.). 

Each pair of forecasts having differing observation 
categories is examined to see if the forecast for the  
higher observed category case was “higher” than that  
for the lower observed category. The I[…] tells if so. 

  Number of 
unique forecast 
 pairs having  
differing obs 
     results 



Results of Bayesian multi-model ensemble are evidenced in an analysis of 
reliability (the correspondence between forecast probability and relative 
observed frequency of occurrence). Simple pooling (assignment of equal 
weights to all AGCMs) gives more reliability than that of individual AGCMs, 
but the Bayesian method produces even more reliability. Note that flattish 
lines show model overconfidence, and 45º line shows perfect reliability. 
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Use of Multiple verification scores is encouraged. 

We have seen that different skill scores emphasize different aspects of  
skill. It is usually a good idea to use more than one score, and determine 
more than one aspect of skill. A reliability plot is also informative. 

At least one score that measures overall quality (discrimination and 
calibration together), such as RPSS, or likelihood, or rate or return, 
and one score that measures discrimination alone (ROC), is encouraged. 
When discrimination is good but calibration (biases) is making overall  
quality less good, a reliability diagram can reveal the nature of the 
calibration problems. 


