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Question From Lecture 1

If 2 predictors are better than one,
then are 10 predictors better than two?

In general, should we use as many predictors as possible?



Fitting Data
What is a “good” model of x and y?
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Consider two models of the above data

Model Ay = β0 + β1x + ε

Model By = β0 + β1x + β2x
2 + β3x

3 + β4x
4 + β5x

5 + ε



Which Model is Best?

Is it the model that fits the data with the least error?
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Model Standard Error

Model A 3.76
Model B 3.01

By this criterion, the “best” model is model B.



Take the Logical Extreme

If the criterion is to select the best fit model, then we should select
a 9’th order polynomial, because it fits 10 data points exactly.
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What is Wrong with Choosing the Best Fit Model?



Logical Extreme of Choosing the Best Fit Model

Model B contains model A (simply set all but β0 and β1 to zero).

Model B has more flexibility than model A to capture variability.

Higher order polynomials have increasing flexibility.

If the criterion is to select the model that fits the data the best,
then the highest order polynomial will always be selected.



Adding Random Predictor Also Gives Better Fit

Model C y = β0 + β1x + β2x
2 + β3x

3 + β4x
4 + β5x

5 + β6z + ε

where z is independent random noise.

Model Standard Error

Model A 3.76
Model B 3.01

9‘th order polynomial 0
Model C 2.98

Can you explain why adding a random predictor improves the fit?



Why Adding a Random Predictor Improves the Fit

Even though z is independent random noise, the sample covariance
between y and z does not vanish.

Loosely speaking, the method of least squares interprets the
nonzero covariances as real relations, and uses these apparent
relations to fit the data as well as possible.

Logical Extreme: you can fit any data simply by adding enough
random predictors to the model.



Another Problem With Selecting the Best Fit Model:
It does not generalize to independent data

Consider “new” data from the population y = ax + ε.
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The curves give the best fit polynomials of order 1, 5, 9.

Only the line fits the new, independent data well. The other
polynomials are grossly incorrect.



Distinguish Fitting from Forecasting

Fitting is the process of describing a specific sample (including its
random variations) with a model.

Forecasting is the process of predicting independent data (i.e., data
that is independent of the sample used to construct the model).



Overfitting

Fitting a model with “too many” parameters is called overfitting.

If the true model has noise, e.g., y = ax + ε, then fitting the data
exactly to a high order polynomial is fitting the model to noise.

Unfortunately, we rarely know how many parameters is “too many.”



Artificial Skill

The forecast error variance is always greater, on average, than the
fit error variance. The difference between the mean error variances
of the forecast and fit is called the artificial skill.

If the in-sample SSE is used to estimate the prediction error, then
the model will appear to be more skillful than it really is on
independent data. The enhancement in skill is due solely to
overfitting the model and hence is artificial.



If the goal is to predict independent data, then the model should
generalize to independent data.

How Do You Select a Model that “Generalizes” to other
Independent Data?



Leave-One-Out Regression

I Withhold one sample.

I Fit the model to the remaining sample (of size N − 1).

I Use the resulting model to predict the withheld sample.

I Measure the error of the resulting prediction.



Result of Leave-One-Out Regression
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SOLID: Fit using all data.
DASH: Fit using all but one datum (open circle)

The difference between the withheld sample and the model fit is
smaller for the line fit than for the higher order polynomial.

Note: Largest difference occurs near the withheld datum.



Do You See a Problem with Leave-One-Out Regression?

I The withheld sample might be unrepresentative.

Can you think of a way to avoid this problem?



Leave-One-Out Cross Validation

Training

Training

Training

Assessment

Assessment

Assessment

Training Sample: Sample
used to estimate model
parameters.

Assessment Sample:
Sample used to assess/test
model predictions.



Cross Validation of Polynomial Fits
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Cross Validation of Polynomial Fits

I Cross validated SSE is minimum for first order polynomial.
I Implies that line fit generalizes to independent data the best.
I Consistent with the population model that generated the data.

I In-sample SSE decreases monotonically with order.
I Cross validated SSE has relatively large fluctuations.

I Fluctuations in SSEcv can produce spurious minima.



AICC: Another Predictor Selection Method

Use a selection criterion that penalizes against “complexity.”

AICCK = log σ̂2
K + N+K

N−K−2

SICK = log σ̂2
K + K

N logN

Goodness-of-Fit Penalty Function

where σ̂2
K = SSE/N.

The more predictors K , the stronger the penalty.



Application of AICC with Polynomial Fits
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Minimum AICC and SIC occur for one predictor (i.e., a first order
polynomial), consistent with the true population model.



Let R do the Work

R has several packages for doing cross validation, AIC, etc. I have
broken things step by step for pedagogical reasons.

See http://www.statmethods.net/stats/regression.html for a nice
summary of things you can do.



Seasonal Variability Indices

Downloaded from http://www.cpc.ncep.noaa.gov/data/indices/

* North Atlantic Oscillation (NAO)
* East Atlantic (EA.NP)
* East Atlantic/Western Russia (EA.WR)
* Scandinavia (SCA)
* West Pacific (WP)
* East Pacific-North Pacific (EP-NP)
* Pacific/North American (PNA)
* Pacific Decadal Oscillation (PDO)
* El Nino/Southern Oscillation (NINO3.4)
* Quasi-Biennial Oscillation (QBO30)
* Index of zonal averaved 500mb temperature (z500t)
* 850mb Trade Wind Index (EPAC850)
* Average South Atlantic SST (SATL)
* Average North Atlantic SST (NATL)
* year (year)



Goal: We want to predict Indian Monsoon Rainfall
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jjas All−India Rainfall Anomaly From IITM
Mean= 850mm; Std Dev= 83mm

Figure: JJAS Indian Monsoon Rainfall



How to Make Bar Graph of ISMR

# make bar graph with labels
plot(year,y-mean(y),type="h",col="blue",

xlab="year",ylab="Rainfall Anomaly (mm)",lwd=2)

# calculate mean and standard deviation
ismr.mean = mean(y)
ismr.sd = sd(y)

# make titles
ftitle.top = paste("JJAS All-India Rainfall Anomaly From IITM")
ftitle.bot = paste("Mean= ",round(ismr.mean),"mm;

Std Dev= ",round(ismr.sd),"mm",sep="")
title(main=ftitle.top,line=2)
title(main=ftitle.bot,line=1)



Comparing Correlations in R

# x is a matrix of seasonal indices
# y is a vector of Monsoon Rainfall

xy.cor = cor(x,y) ; # correlation between y and columns of x
cor.crit = 2/sqrt(length(y)); # approx. 5% significance level

# identify symmetric limits on x-axis
xrange = max(abs(xy.cor))
xrange = c(-xrange,xrange)

# make bar plot
barplot(xy.cor[,1],horiz=TRUE,las=1,xlim=xrange,

col="yellow",cex.names=1.5)

# draw significance levels
abline(v= cor.crit ,col="red",lty="dashed",lwd=3)
abline(v=-cor.crit ,col="red",lty="dashed",lwd=3)
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Figure: Correlation between AMJ-climate indices and all-India Monsoon
Rainfall for 1979-2008 (30 yrs). Red dashed is the 5% significance level.



Linear Regression With R

# fit linear regression model y = ...
y.all = lm ( y ~ year + nao + ea + wp + ep.np

+ pna + ea.wr + sca + nino34 + natl
+ satl + epac850 + qbo + z500 + pdo )

# extract statistical properties
summary(y.all)



Linear Regression

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -16671.897 8192.566 -2.035 0.0612 .

year 8.804 4.121 2.137 0.0508 .

nao -15.351 29.796 -0.515 0.6145

ea -37.655 30.900 -1.219 0.2431

wp 56.643 44.861 1.263 0.2273

ep.np -93.421 55.628 -1.679 0.1152

pna 18.757 34.156 0.549 0.5915

ea.wr -4.303 39.243 -0.110 0.9142

sca 28.581 37.915 0.754 0.4634

nino34 -77.229 38.748 -1.993 0.0661 .

natl -70.167 67.269 -1.043 0.3146

satl -106.613 72.611 -1.468 0.1641

epac850 15.575 27.111 0.574 0.5748

qbo 10.908 19.580 0.557 0.5863

z500 23.150 19.478 1.189 0.2544

pdo 41.566 25.116 1.655 0.1202

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 77.64 on 14 degrees of freedom

Multiple R-squared: 0.5292, Adjusted R-squared: 0.0248

F-statistic: 1.049 on 15 and 14 DF, p-value: 0.4667



Conclusions Based on Correlations and Model Fitting

I Individual correlations not significant (except Scandinavia)

I p-value for all predictors vanishing = 0.47 (not significant)

I No single coefficient in full model is significant.

So far, no evidence that any of the predictors are related to ISMR.



All Possible Subsets

# do all possible subsets of predictors

xy.step = regsubsets(x=x,y=y,nvmax=dim(x)[2])

# plot indicator of selected predictors

plot(xy.step)



Interpretation of regsubsets

regsubsets performs an exhaustive search for the best subsets of
the variables in x for predicting y in linear regression.

I Minimum model has only the intercept, by default.

I For more complicated minimum model, use force.in to
specify terms in the minimum model (a logical vector with
TRUE for variables in the minimum model and FALSE for
variables not in the minimum model).

I regsubsets() will give you the best model with one variable,
the best with two variables, and so on. The object produced
by summary() of the regsubsets() has a component $bic that
gives the BIC value for each of the best models.

I use plot() to see which variables are in the good models, and
which variables tend to occur together or separately



Indicator Plot for All Possible Subset Selection
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All Possible Subsets

# summarize the results

summary(xy.step)$bic

[1] 1.377163 2.724493 4.020964 5.189060 7.273588

[6] 9.476993 10.905596 12.860013 14.740451 16.766610

[11] 19.573594 22.614447 25.610864 28.443235 31.818675

Rule: choose the model with the smallest BIC

This rule indicates we should chose SCA for predicting ISMR.



Independent Verification
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Why is the training correlation so much larger than assessment
correlation?

Answer: the way we selected predictors creates a bias).



Correlations When Selection is Taken Into Account

Random Time Series
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Comments About Overfitting and Artificial Skill

There is no general solution to the problem of overfitting.

Statistical climate prediction is particularly problematic because
thousands of candidate predictors need to be considered.

If cross validation is used to select predictors AND assess skill,
then the skill will be artificially inflated because the predictors were
chosen to optimize skill for the available sample.

When the process of selecting the “best” variables from a pool of
hundreds is taken into account, results usually are not significant.

To obtain statistically significant results, initial pool of variables
must be restricted based on criteria independent of the data, such
as on physics or independent climate simulations.


