Predicting the atmospheric climate, based on the expected SST anomaly patterns:

Climate prediction designs:

Statistical – based on historical observed data for the predictand (e.g. rainfall, temperature) and for relevant predictors (e.g. SST, atmospheric pressure).

Dynamical – using prognostic physical equations 2-tiered systems (first predict SST, then climate). 1-tiered systems (predict ocean and atmosphere together)

Climate Prediction Systems:statistical vs. dynamical systemADVANTAGESDISADVANTAGES

Based on actual, real-world observed data. Knowledge of Stati- physical processes not needed. stical

> Many climate relationships quasi-linear, quasi-Gaussian

Uses proven laws of physics.

Dyna- Quality observational data not
mical required (but needed for validation). Can handle cases
that have never occurred. Depends on quality and length of observed data

Does **not fully account** for climate change, or new climate situations.

Some physical laws must be abbreviated or statistically estimated, leading to errors and biases.

Computer intensive.

In Dynamical Prediction System:2-tiered vs. 1-tiered forecast systemADVANTAGESDISADVANTAGES

Two-way air-sea interaction,Mas in real world (required(c1-tierwhere fluxes are as important as
large scale ocean dynamics)C

Model biases amplify (drift); flux corrections

Flawed (1-way) physics,

especially unacceptable

Computationally expensive

More stable, reliable SST in the prediction; lack of drift **2-tier** that can appear in 1-tier system

er system in tropical Atlantic and Indian oceans (monsoon) for regions

Reasonably effective for regions impacted most directly by ENSO

IRI's Climate Forecasting System in 2010

IRI's 2-Tiered Forecast System

IRI uses a dynamical, multi-model, 2-tiered prediction system to probabilistically predict global temperature and precipitation with respect to the 3 categories defined by the terciles of the historical climatological distribution.

The system is 2-tiered because it is done in 2 steps:

I) Formulate a SST forecast, or a set of SST forecast scenarios

2) Run atmospheric models using the prescribed SST forecast(s)

IRI's 2-tiered Forecast System

IRI has also developed a fully coupled (1-tier) component, currently in the experimental phase.

Within the 2-tiered system IRI uses 4 SST prediction scenarios, and combines the predictions of 6 AGCMs.

The 6 AGCM predictions are calibrated spatially and locally using MOS (based on CCA), and then merged into a single forecast using equal weighting. IRI's monthly issued probability forecasts of seasonal global precipitation and temperature

We issue forecasts at four lead times. For example:

NOV | <u>Dec-Jan-Feb</u> <u>Jan-Feb-Mar</u> <u>Feb-Mar-Apr</u> <u>Mar-Apr-May</u>

Forecast models are run 7 months into future. Observed data are available through the end of the previous month (end of October in example above). Probabilities are given for three categories of the climatological distribution: below-normal, near-normal, above-normal.

Forecasts of the climate—Frame of Reference

Abbreviating the predicted shift in the pdf: The tercileranked category system: below, near, and above normal* Climatological

*The climatological ("normal") pdf is based on 30 years of historical data for a particular location & season)

IRI's 2-Tiered Forecast System: Calculation of Forecast Mean and Variance

In the 2-tiered system IRI uses 3 SST prediction scenarios, and combines the predictions of 6 atmospheric models. For merging of 6 predictions into a single one, steps are:

- (1) statistical correction of systematic biases of each individual model (spatial and local MOS correction using CCA)
- (2) merging of model forecasts into one forecast (equal weights)
- (3) calibration of forecast uncertainty range according to the historical skill of multimodel ensemble in hindcasts. Higher skills lead to narrower uncertainty ranges.
- Many forecasts (ensemble members) are run by each of the 6 atmospheric models, each having different initial atmospheric condition but using the same prescribed SST forecast.

Method of Forming 3 SST Predictions for Climate Predictions

IRI DYNAMICAL CLIMATE FORECAST SYSTEM

Collaboration on Input to Forecast Production

Sources of the Global Sea Surface Temperature Forecasts

Tropical Pacific	Tropical Atlantic	Indian Ocean	Extratropical Oceans
NOAA/NCEP CFS LDEO Intermediate Constr Analogue	NOAA/NCEP CFS Constr Analogue	NOAA/NCEP CFS Constr Analogue IRI CCA	Damped Persistence

Atmospheric General Circulation Models Used in the IRI's Seasonal Forecasts, for multi-model ensembles

Name	Where Model Was Developed	Where Model Is Run
ECHAM 4.5	MPI, Hamburg, Germany	IRI, Palisades, New York
NSIPP	NASA/GSFC, Greenbelt, MD	NASA/GSFC, Greenbelt, MD
COLA	COLA, Calverton, MD	COLA, Calverton, MD
ECPC	SIO, La Jolla, CA	SIO, La Jolla, CA
CCM3.6	NCAR, Boulder, CO	IRI, Palisades, New York
GFDL	GFDL, Princeton, NJ	GFDL, Princeton, NJ

Verification of IRI's Climate Forecasts, 1997-2008

Temp 0.5month

lead

by

skill

score

