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The problem of how best to select which predictors to include in
a model is a nontrivial, unsolved one.

“All models are wrong but some are useful.”
—George Box



The difficulty comes from having to estimate future
performance from past behavior.

“Past performance is no guarantee of future results.”
— Any investment document’



As a forecaster, it is better to know a model has poor skill than
to mistakenly think a poor model has good skill.

“It ain’t what you don’t know that gets you into trouble.
It's what you know for sure that just ain’t so”
— Mark Twain
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Problem

Given a pool of candidate predictors, how to do select those to
include in a prediction model?

(Why not the model that best fits the data?)

Goal: a model which skillfully predicts independent data.

» independent from the the data used to select and train the
model.
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Outline

List some common methods

Apply them to a simple example.
Important: no magic, all-powerful method.
All can be tricked by screening

Avoid methods that that are prone to constructing spurious
relations. (How to check?)
» Include “screening” in predictor selection procedure.

v
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Indirect methods (no use of independent data, depend on
SSE):

» F-test

» Mallow’s Cp

» AIC, BIC

Direct methods (apply models to independent data):
» Split the data.
» Cross-validation



Example: DJF temperature

Predictand (y)

» Average Dec-Feb 1962-2003 temperature over land.
(42 years)

Predictors (x)
» Climatology
» Sep-Nov NINO 3.4.
» Trend



File Edit View History Bookmarks Tools Help

« v £ (@] nttpyfiridl.Ideo.columbia.edu/

[ Most Visitedv *f #, [6) £3datav F3seminarsv [@)AMS Journals [@]Web of Knowledge [¢)OED @ [g)Mathworld [@)E-Journals [@) CLIO: Basic Search [g] Media !

| @ IRILDEO Climate Data Library | %

IRI/LDEO Climate Data Library

The IRI/LDEO Climate Data Library contains over 300 datasets from a variety of earth science disciplines and climate-related
topics. It is a powerful tool that offers the following capabilities at no cost to the user:

Data
Library » access any number of datasets;

« create analyses of data ranging from simple averaging to more advanced EOF analyses using the Ingrid Data Analysis
expert Language;
m . monitur_present climate ;onditions wigh maps and_ ana!yses in the Maproom;
Datasets « create visual representations of data, including animations;

« download data in a variety of commonly-used formats, including GIS-compatible formats.
Browse

Ll /\re you new to the world of climate data? Check out our Intreduction to Climate Data page.

By Category

- What's New

By Search

NOAA ESRL 20th Century Reanalysis Version 2 (extended) NOAA ESRL 20th Century Reanalysis Version 2 six-hourly

data for 1871-2008. The analysis is performed with the Ensemble Filter as described in Compo et al. (2006) based on the
Tutorial method of Whitaker and Hamill (2002). Observations of surface pressure and sea level pressure from the International
Statistical Surface Pressure Databank station component version 2 (Gleason et al. 2008), ICOADS (Woodruff et al. 2009), and the
[AnnI T International Best Track Archive for Climatic Stewardship (IBTrACS, Kruk et al. 2010) were assimilated every six hours.

Ingrid

ECnctr . The IRl Server now has a local copy of all the mean fields; the IRl copy of the spread will be extended as needed. This

should address some of the performance problems we were having

Published: Mon, 24 May 2010 14:33:02 GMT

B TRMM_3B42 Precipi n Esf ates The combined instrument rain calibration algorithm (3B-42) uses an optimal

help combination of 2B-31, 2A-12, SSMI, AMSR and AMSU precipitation estimates (referred to as HQ), to adjust IR estimates

from geostationary IR observations. Near-global estimates are made by calibrating the IR brightness temperatures to the
HN estimatas

Help
Resources

Questions and
Answers.

Done

Mon
Global

Map

A collect
and analy
monite
conditions.
of the may
the figures
sour

ENS
Informati
Nifio-!
Osci




File Edit View History Bookmarks Tools Help

ap v &% [@ https/jiridl.|deo.columbia.edu/expert/SOURCES].UEA/.CRU/ v][

[ Most Visitedv *f #, [6) £3datav F3seminarsv [@)AMS Journals [@]Web of Knowledge [¢)OED @ [g)Mathworld [@)E-Journals [@) CLIO: Basic Search [g] Media !
| @ dataset: UEA CRU | &

UEA CRU[Hulme Global New TS3p0 TS2p1 Jones ]

expert ok
SOURCES .UEA .CRU E3
reset |
Data
Library served from IRI/LDEO Clim:

cRU
UEA CRU

UEA CRU: Climatic Research Unit.

Finding Data [SOURCES |UEA

Tuterial
Questions and
nswer:

Documentation

Documents

an outline showing sub-datasets of this dataset
CRU Home Page

Datasets and variables

Global Historical monthly precij
Hulme UEA CRU Hulme[Global ]

Jones Land air temperature and sea surface temperature anomalies.

New Mean surface climate data over global land areas, including tercile and percentile data
TS52pl Mean surface climate data over global land areas, including tercile and percentile data
TS3p0 T53.0 Pre-Release (Interim) Data: Mean surface climate data over global land areas.

tation dataset for global land areas.

Done



File Edit View History Bookmarks Tools Help

-« = £ (@] nttpyfiridl Ideo.columbia.edu/expert/SOURCES/. UEA/.CRU/.TS2p1/monthly/.mean/.temp/ ~| 43~

[ Most Visitedv *f #, [6) £3datav F3seminarsv [@)AMS Journals [@]Web of Knowledge [¢)OED @ [g)Mathworld [@)E-Journals [@) CLIO: Basic Search [g] Media !

| @ data: UEA CRU TS2p1 monthly .. | %

TXY
£» UEA CRU TS2p1 monthly mean temp[ XY [ TTMMM
expert ok |
SOURCES .UEA .CRU .TS2pl .monthly .mean .temp —_—
[ reset |

Data
Library

Tutorial rew Views . - .
Questions and
Answers

Funetion

Bl |SOURCES ‘M ‘@ ‘TSZp 12| ‘manthly |m ean ‘tem perature |
UEA CRU

“Tgl UEA CRU TS2p1l monthly mean temp: temperature data

Filters||\Data Files|Tables

old Viewer

served from IRI/LDEOQ Climat

monthly mean temperature from UEA CRU TS2p1: Mean surface climate data over global land areas, including tercile and percentile datz

Independent Variables (Grids)

me
grid: /T (months since 1960-01-01) ordered (Jan 1901) to (Dec 2002) by 1. N= 1224 pts :grid
Longiti
grid: /X (degree_east) periodic (179.75W) to (179.75E) by 0.5 N= 720 pts :grid
Latitude
grid: /Y (degree_north) ordered (89.75S) to (89.75N) by 0.5 N= 360 pts :grid

Other Info

Done



File Edit View History Bookmarks Tools Help

B

[ Most Visitedv *f #, [6) £3datav F3seminarsv [@)AMS Journals [@]Web of Knowledge [¢)OED @ [g)Mathworld [@)E-Journals [@) CLIO: Basic Search [g] Media !

-« = £ (@] nttpyfiridl Ideo.columbia.edu/expert/SOURCES/. UEA.CRU/.TS2p1/ monthly/. mean/.temp/T/3/runningAverage/T/(Dt v

| @ data: UEA CRU TS2p1 monthly .. | %
TXY
£» UEA CRU TS2p1 monthly mean temp[ XY [ TTMMM

expert o
SOURCES .UEA .CRU .TS2pl .monthly .mean .temp | ok |
Data T 3 runningAverage -
Library T (Dec-Feb) VALUES
— T (Dec 1960) (Feb 2002) RANGE
Finding Data ‘ reset ‘
Tuterial
Questions and — ~ — — —
Answers
Funetien new Views w\—*m__‘ ) w &@ hﬂ ata Selection [Filters|Data Files Tables
Documentation old Viewer
u_Elslzcl}u served from IRILDEQ Climai
i . T(DecFeb) |T(Dec1960) (Feb 2002)
documentation ‘LRU ‘T_LS! 1 Imonthly ‘mean ‘t;bem erature‘ runn?n3 ﬁ‘\)vgra e ‘ o VDAEI:EJEEb ‘T = lgR‘:)NGEeh 2002
—_— runningAverage VALUES RANGE

D=

UEA CRU TS2pl1l monthly mean temp: temperature data
monthly mean temp temp temp temperature from UEA CRU TS2p1l: Mean surface climate data over global land areas, including tercile and percentile d
Independent Variables (Grids)

Time
grid: /T (months since 1960-01-01) ordered (Dec 1960 - Feb 1961) to (Dec 2001 - Feb 2002) by 12. N= 42 pts :grid

Longitude
grid: /X (degree_east) periodic (179.75W) to (179.75E) by 0.5 N= 720 pts :grid

Latitude
crid

Done

IV [dnarnn narthl ardarad (20 7861 ta (20 T5MY hae 0 & A= A0 nte -arid



File Edit View History Bookmarks Tools Help

« o ] £ (@] nttpyfiridl Ideo.columbia.edu/expert/SOURCES/. UEA.CRU/.TS2p1/.monthly/.meanj.temp/T/3/runningAverage/T/(Dt

¥

[ Most Visitedv *f #, [6) £3datav F3seminarsv [@)AMS Journals [@]Web of Knowledge [¢)OED @ [g)Mathworld [@)E-Journals [@) CLIO: Basic Search [g] Media !

| @ UEA CRU TS2p1 monthly mean ...| &

Data
Library

Finding Data
Tutorial
Questions and
Answers.
Documentation

UEA CRU
TS2pl

UEA CRU TS2p1 monthly mean temp Data Files
This dataset has bytes (4.3545600E07 41.52832MB) of data in it, which should give you a rough idea of the size of any file that you ask

Download Data To Specific Software

ingrid

[The Postscript-based software on which the Data Library is built.

CPT  |Climate Predictability Tool More information

ferret

Interactive computer visualization and analysis software. More information

GrADS Erid Analysis and Display System More informatien

matlab [Data analysis and visualization software. More information

NCL WCAR Command Language More information

WinDis; |A public domain software package for the display and analysis of satellite images, maps and associated databases, with an
AInDisp o early warning for food security. More information

Other Available File Formats

Full Information Formats
[These files contain all of the available metadata.

OPeNDAP

/A system which downloads data directly to software, such as matlab, Ferret, GrADS, etc. Specific instructions
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Example: DJF temperature

Predictand (y)

» Average Dec-Feb 1962-2003 temperature over land.
(42 years)

Predictors (x)
» Climatology
» Sep-Nov NINO 3.4.
» Trend
Consider 4 possible sets of predictors.
» Climatology
» Climatology & Sep-Nov NINO 3.4.
» Climatology & Trend
» Climatology & Sep-Nov NINO 3.4.& Trend
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1-parameter reference model. (What is the 1-parameter model?)



F-test

Compare the SSE of a P-predictor model with that of the
1-parameter reference model. (What is the 1-parameter model?)
Reference forecast = “climatology” (1-parameter model).

. SSE, - SSEp _ SSE; — SSEpN-P
SSEp SSEr P —1

where
N J—
» SSE; = Z(Y,- —Y)? is the sum of squared error for the

i=1
climatology forecast.
N

» SSEp = Z(Y,- - Yp,')2 is the sum of squared error for the

i=1
model with P predictors,
» Nis the sample size.



F-test

SSE; —SSEp

_ P—1
f= SSEp

N—P

» Under the null hypothesis that the P-parameter model is
not better than the 1-parameter model, f has an F
distribution with parameters (P — 1, N — P).

» Compute the associated o = Prob(F > f) probability
value.

» Find the model with the lowest a.

» Check that « is smaller than some limit (5%). If « exceeds
the limit, use climatology forecast.



F-test

A correction is needed for multiple comparisons.
a—a/(m=1)
Not quite right (not independent).

Modest values of m lead to very strict requirements on the
significance level.



Example: DJF temperature

Models selected at each gridpoint using the F-test (o« < 0.05)
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Example: DJF temperature

Models selected at each gridpoint using the F-test (v < 0.05/3)

I Trend

ENSO+Tr

F-test corrected
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Mallow’s Cp

SSEp

Ce = MSEy

—~N+2P

where
N
» SSEp = Z(Y,- — Y,:,-)2 is the sum of squared error for the

i=1
model with P predictors,

> Yy is the predicted value of the i-th observation of Y from
the model with P predictors.
] N
> MSEw = ¢ Z (Y; — Yki)? is the residual mean

square of the model using the complete set of K predictors
» N is the sample size.



Mallow’s Cp

SSEp
= -~ N+2P
Cr MSEqy -
If the extra variables are noise (no more variables needed)
SSEp } op
E = — —_— =N —
[ MSEq P) O full P
and
E[Cpl=p

If the extra variables are useful (not enough variables in model),
op > ofy and
E[Cp]>p

The model with the lowest Cp value approximately equal to P is
the most “adequate” model.
Strategies:

» Minimize Cp.

» Graphical



Example: DJF temperature

Models selected at each gridpoint using Mallow’s Cp.

Mallow’s Cp
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AIC

Information theory measure of the difference between model
and truth.

» To estimate parameters, find the most likely model (best fit)
given the observations.

» This maximized likelihood (fit) is biased.

» Likelihood (fit) increases as the number of predictors
increases. AIC corrects for this bias.

General case
AIC = —2logL + 2P

where L is the maximized likelihood of a model with P
parameters.

Can be applied to any model where L is known. (Not just
regression).



AIC

For linear regression (neglecting some constants),

AIC = Nlog SSEp + 2P

N
» SSEp =Y (Y;— Yp)? is the sum of squared error for the
i=1
model with P predictors,
» AIC rewards fit, penalizes complexity.
» Choose model that minimizes AIC.

» Differences in AIC are relevant.
A < 2 small.
4 < A <7large.
A > 10 very large.



Example: DJF temperature

Models selected at each gridpoint using AlC.

60N |- &

I Trend

Y 1 ENSO+Tr
20N

——ENSO
20S|

—CL

60S =

OE 50E 100E 150E 160W 110W 60W



Corrected AIC

Correction for small sample size.
AIC is an approximation.
AlCc is more accurate for small sample size.

Should be used always (especially. for N/P < 40)

2P(P + 1)

AlICc = Nlog SSEp + 2P + N_P_1

Rewards fit, penalizes complexity a little more.



Example: DJF temperature

Models selected at each gridpoint using AlCc.

corrected AIC

I Trend
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BIC

Approximation to Bayes factor with equally likely priors.
(AIC = Bayes factor with “savvy” prior).

General case
BIC = —2log L+ Plog N

where L is the maximized likelihood of a model with P
parameters.

[AIC = —2log L + 2P

(Which picks simpler models? Why?)



BIC

For linear regression (neglecting some constants),

BIC = Nlog SSEp + Plog N

Rewards fit, penalizes complexity more than AIC.
May under-fit in small-moderate sample sizes.

AIC vs. BIC? Unsettled.



Example: DJF temperature

Models selected at each gridpoint using BIC.
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Data splitting method

» Train the model on half of the data.
» Make forecasts the other half of the data.
» Choose the model with the best skill.

Is this picking the model with the best fit?

A third data set is needed to evaluate the skill of the selected
model. Why?



The third data set ...

A screening example.
» Your model = 20 random numbers. rnorm (20)
» Generate many such models.
» Check how well each one fits the last 20 years of AIR.
» Pick the one that does best.
Skill in the selection data set is high.

Skill in an independent data set (and real skill) would be low.



The third data set ...

A screening example.
» Your model = 20 random numbers. rnorm (20)
» Generate many such models.
» Check how well each one fits the last 20 years of AIR.
» Pick the one that does best.
Skill in the selection data set is high.

Skill in an independent data set (and real skill) would be low.
Moral:

1. Avoid looking at many models.
2. Model selection and skill estimation are separate.

Avoid procedures that lead to the skill in the “third data set”
being very different from that in the selection data set.
(How to check?)



Example: DJF temperature

Models trained using 1962-1982 and selected at each gridpoint
using skill 1983-2003.

predict second half
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Why noisier?



Example: DJF temperature

Models trained using 1983-2003 and selected at each gridpoint
using skill 1962-1982.
ITrend

1 ENSO+Tr

predict first half
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Cross validation

A method for mimicking actual forecasting.

An alternative to splitting the data.

» Remove some number K of samples from the data set.

» Estimate the model on the remaining N — K samples.
» Use that model to predict the K left-out samples.

» Sometimes a set of K contiguous in time samples are left
out and only the middle one is predicted to deal with
temporal correlation.[More later]

» Repeat.

Often K = 1. Leave-one-out cross-validation.



[llustration: Cross-validation in R

ypred = y+NA

for(ii in 1:N) {
out = (ii-1):(ii+1)
training = setdiff (1:N,out)

xcv = x[training]

ycv = yl[training]

model.cv = lm(ycv ~ XCV)

ypred[ii] = predict (model.cv,list (xcv=x[ii]))

» R has built-in cross-validation routines
» More efficient method for leave-one-out.



Example: DJF temperature

Models selected at each gridpoint using leave-one-out
cross-validation.

Cross—validation
T
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Summary of methods

Two types of methods

Balance between fit and number of predictors.

» F-test
» Mallow’s Cp
» AIC (corrected), BIC



Summary of methods

Two types of methods

Balance between fit and number of predictors.
» F-test

» Mallow’s Cp
» AIC (corrected), BIC

Apply model to independent data:
» Split data
» Cross-validation



Frequencies of the models selected

3000 :
I aic
I o
2500 - B aicc ]
N v
2000} I bic 4
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15001 I Fc |
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N .]
0
CL ENSO ENSO+Tr Trend

» AIC, AICc, C, and cross-validation agree at 90% of the
gridpoints.

» BIC and F-test agree in 93% of the gridpoints.

» F-test “corrected” for multiple comparisons is very strict.



How effective are the methods?

Apply them to models with random predictors.

Performance across methods is more similar than different.
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Moral

» Many predictor selection methods.
» All can be fooled given enough chances.

What can be done to avoid mishaps?



