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Advanced School and Workshop on Discrete Groups in Complex Geometry
ICTP, Triestre.

Juan Pablo Navarrete Carrillo On the limit set of Complex Klenian Groups acting on P
2
C



Let G be a subgroup of PSL(3, C) acting on P
2
C
.

L0(G ) := {x ∈ P2
C
: |StabG (x)| =∞}

L1(G ) :=
⋃

x∈P2
C
\(L0(G))

(G · x)′

L2(G ) :=
⋃

K⊂P2
C
\(L0(G)∪L1(G))

(G · K )′
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The Limit Set of G is defined as

Λ(G ) = L0(G ) ∪ L1(G ) ∪ L2(G ).

The Discontinuity Domain of G is defined as

Ω(G ) = P
2
C − Λ(G )

If Ω(G ) 6= ∅ we say G is Complex Kleinian.
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EXAMPLE.

g =





1/2 0 0
0 1 0
0 0 2





L0(g) = {e1, e2, e3},

L1(g) = {e1, e2, e3},

L2(g) =
←−→e1, e2 ∪

←−→e2, e3

then
Λ(g) = L0(g) ∪ L1(g) ∪ L2(g) =

←−→e1, e2 ∪
←−→e2, e3

The set Ω(g) is not the maximal open set where 〈g〉 acts properly
and discontinuously.
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If g , g ′ ∈ PSL(3, C) are conjugated in PSL(3, C) then there exists
h ∈ PSL(3, C) such that Λ(g ′) = hΛ(g).

In order to list all possible limit sets of cyclic groups it suffices to
consider the following Jordan canonical forms:
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Strongly loxodromic.





λ1 0 0
0 λ2 0
0 0 λ3



 , |λ1| < |λ2| < |λ3|

L0(g) = {e1, e2, e3},

L1(g) = {e1, e2, e3},

L2(g) =
←−→e1, e2 ∪

←−→e2, e3
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Screw





λ1 0 0
0 λ2 0
0 0 λ3



 , |λ1| = |λ2| < |λ3|

λ2
λ1

= e2πiθ

CASE 1. θ is a rational number.

L0(g) = L1(g) = L2(g) =
←−→e1, e2 ∪ {e3} = Λ(g)

CASE 2. θ is not a rational number

L0(g) = {e1, e2, e3},

L1(g) = L2(g) =
←−→e1, e2 ∪ {e3} = Λ(g)
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Complex Homotetia





λ1 0 0
0 λ1 0
0 0 λ2



 , |λ1| < |λ2|

L0(g) = L1(g) = L2(g) =
←−→e1, e2 ∪ {e3} = Λ(g).
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Loxoparabolic





λ1 1 0
0 λ1 0
0 0 λ2



 , |λ1| < |λ2|

L0(g) = L1(g) = {e1, e3}

L2(g) =
←−→e1, e2 ∪

←−→e1, e3 = Λ(g).
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Elliptoparabolic





λ1 1 0
0 λ1 0
0 0 λ2



 , |λ1| = |λ2|, λ1 6= λ2,

λ1
λ2

= e2πiθ

CASE 1. θ is a rational number

L0(g) =
←−→e1, e3,

L1(g) = {e1} = L2(g)

Λ(g) =←−→e1, e3
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Elliptoparabolic





λ1 1 0
0 λ1 0
0 0 λ2



 , |λ1| = |λ2|, λ1 6= λ2,

λ1
λ2

= e2πiθ

CASE 2. θ is not a rational number

L0(g) = {e1, e3}

L1(g) =
←−→e1, e3 = Λ(g)

L2(g) = {e1}
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Parabolics




1 1 0
0 1 0
0 0 1





L0(g) =
←−→e1, e3

L1(g) = {e1} = L2(g)

Λ(g) =←−→e1, e3





1 1 0
0 1 1
0 0 1



 ,

L0(g) = L1(g) = {e1}

L2(g) =
←−→e1, e2 = Λ(g)
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Elliptic




λ1 0 0
0 λ2 0
0 0 λ3



 , |λ1| = |λ2| = |λ3|

CASE 1. g has finite order

L0(g) = L1(g) = L2(g) = ∅

CASE 2. g has infinite order

L0(g) = {e1, e2, e3},

L1(g) = P
2
C

L2(g) = ∅

Λ(g) = P
2
C
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What about limit sets of discrete subgroups of PU(2, 1) acting on
P
2
C
?

If G ≤ PU(2, 1) is discrete then L(G ) the limit set according to
Chen-Greenberg is the set of accumulation points in ∂H

2
C
of the

G-orbit of any point p ∈ H
2
C
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THEOREM. The limit set L(G ) is the intersection

L(G ) = Λ(G ) ∩ ∂H2
C ,

and Λ(G ) is the union of all complex projective lines lz tangent to
∂H2

C
at points in L(G ):

Λ(G ) =
⋃

z∈L(G)

lz .

Furthermore, if G is non-elementary then the action of G is
minimal on L(G ) ⊂ ∂H2

C
, i.e. all orbits are dense, while the orbit of

each line lz is dense in Λ(G ) (though the G-action on Λ(G ) is not
minimal).
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THEOREM. (Barrera-Navarrete )If G ⊂ PU(2, 1) is an infinite
discrete group acting on P2

C
without invariant complex projective

lines, then the connected component of the domain of discontinuity
containing H

2
C
is G -invariant and complete Kobayashi hyperbolic.
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THEOREM.(Barrera-Cano-Navarrete)
If Γ ⊂ PSL(3, C) is a discrete group then,

Eq(Γ) ⊂ Ω(Γ).

If U is an open Γ invariant subset with at least three lines in
general position lying on its complement, then U ⊂ Eq(Γ).

If Λ(Γ) contains at least three lines in general position, then
Ω(Γ) = Eq(Γ).
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THEOREM. (Barrera-Cano-Navarrete)
Let Γ ⊂ PSL(3, C) be a discrete group, if the number of complex
lines in general position in Λ(Γ) and C (Γ) =

⋃

γ∈Γ Λ(γ) is at least
three, then

Λ(Γ) = C (Γ),

and Λ(Γ) is the union of complex lines.

Moreover, if Γ acts on P
2
C
without global fixed points, then Ω(Γ) is

the largest open set where Γ acts properly and discontinuously.
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