

The Abdus Salam International Centre for Theoretical Physics

2160-Presentation

Conference on Decadal Predictability

16 - 20 August 2010

On the limit set of Complex Klenian Groups acting on PC2

Navarrete Carrillo Juan Pablo Universidad de Autonoma de Yucatan Facultad de Matematicas MEXICO

On the limit set of Complex Klenian Groups acting on $\mathbb{P}^2_{\mathbb{C}}$

Juan Pablo Navarrete Carrillo

14 de julio de 2010

Universidad de Autónoma de Yucatán Facultad de Matemáticas Advanced School and Workshop on Discrete Groups in Complex Geometry ICTP, Triestre. Let G be a subgroup of $PSL(3, \mathbb{C})$ acting on $\mathbb{P}^2_{\mathbb{C}}$.

$$L_0(G) := \overline{\{x \in \mathbb{P}^2_{\mathbb{C}} : |Stab_G(x)| = \infty\}}$$
$$L_1(G) := \overline{\bigcup_{x \in \mathbb{P}^2_{\mathbb{C}} \setminus (L_0(G))} (G \cdot x)'}$$
$$L_2(G) := \overline{\bigcup_{K \subset \mathbb{P}^2_{\mathbb{C}} \setminus (L_0(G) \cup L_1(G))} (G \cdot K)'}$$

The Limit Set of G is defined as

$$\Lambda(G) = L_0(G) \cup L_1(G) \cup L_2(G).$$

The Discontinuity Domain of G is defined as

$$\Omega(G) = \mathbb{P}^2_{\mathbb{C}} - \Lambda(G)$$

If $\Omega(G) \neq \emptyset$ we say G is Complex Kleinian.

EXAMPLE.

$$g = \begin{pmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
$$L_0(g) = \{e_1, e_2, e_3\},$$
$$L_1(g) = \{e_1, e_2, e_3\},$$
$$L_2(g) = \overleftarrow{e_1, e_2} \cup \overleftarrow{e_2, e_3}$$

then

$$\Lambda(g) = L_0(g) \cup L_1(g) \cup L_2(g) = \overleftarrow{e_1, e_2} \cup \overleftarrow{e_2, e_3}$$

The set $\Omega(g)$ is not the maximal open set where $\langle g \rangle$ acts properly and discontinuously.

If $g, g' \in PSL(3, \mathbb{C})$ are conjugated in $PSL(3, \mathbb{C})$ then there exists $h \in PSL(3, \mathbb{C})$ such that $\Lambda(g') = h\Lambda(g)$.

In order to list all possible limit sets of cyclic groups it suffices to consider the following Jordan canonical forms:

Strongly loxodromic.

$$\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}, |\lambda_1| < |\lambda_2| < |\lambda_3|$$

$$L_0(g) = \{e_1, e_2, e_3\},$$

 $L_1(g) = \{e_1, e_2, e_3\},$
 $L_2(g) = \overleftarrow{e_1, e_2} \cup \overleftarrow{e_2, e_3}$

Screw

$$\begin{pmatrix} \lambda_1 & 0 & 0\\ 0 & \lambda_2 & 0\\ 0 & 0 & \lambda_3 \end{pmatrix}, |\lambda_1| = |\lambda_2| < |\lambda_3|$$
$$\frac{\lambda_2}{\lambda_1} = e^{2\pi i \theta}$$

CASE 1. θ is a *rational* number.

$$L_0(g) = L_1(g) = L_2(g) = \overleftarrow{e_1, e_2} \cup \{e_3\} = \Lambda(g)$$

CASE 2. θ is not a rational number

$$L_0(g) = \{e_1, e_2, e_3\},$$

 $L_1(g) = L_2(g) = \overleftarrow{e_1, e_2} \cup \{e_3\} = \Lambda(g)$

Complex Homotetia

$$\left(\begin{array}{ccc} \lambda_1 & 0 & 0\\ 0 & \lambda_1 & 0\\ 0 & 0 & \lambda_2 \end{array}\right), \, |\lambda_1| < |\lambda_2|$$

$$L_0(g) = L_1(g) = L_2(g) = \overleftarrow{e_1, e_2} \cup \{e_3\} = \Lambda(g).$$

Loxoparabolic

$$\left(\begin{array}{ccc} \lambda_1 & 1 & 0\\ 0 & \lambda_1 & 0\\ 0 & 0 & \lambda_2 \end{array}\right), \, |\lambda_1| < |\lambda_2|$$

$$L_0(g) = L_1(g) = \{e_1, e_3\}$$

$$L_2(g) = \overleftarrow{e_1, e_2} \cup \overleftarrow{e_1, e_3} = \Lambda(g).$$

Elliptoparabolic

$$\left(\begin{array}{ccc}\lambda_1 & 1 & 0\\ 0 & \lambda_1 & 0\\ 0 & 0 & \lambda_2\end{array}\right), \, |\lambda_1| = |\lambda_2|, \lambda_1 \neq \lambda_2,$$

$$\frac{\lambda_1}{\lambda_2} = e^{2\pi i\theta}$$

CASE 1. θ is a *rational* number

$$L_0(g) = \overleftarrow{e_1, e_3},$$

 $L_1(g) = \{e_1\} = L_2(g)$
 $\Lambda(g) = \overleftarrow{e_1, e_3}$

)

Elliptoparabolic

$$\begin{pmatrix} \lambda_1 & 1 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{pmatrix}, |\lambda_1| = |\lambda_2|, \lambda_1 \neq \lambda_2,$$

$$\frac{\lambda_1}{\lambda_2} = e^{2\pi i\theta}$$

CASE 2. θ is not a rational number

$$L_0(g) = \{e_1, e_3\}$$

 $L_1(g) = \overleftarrow{e_1, e_3} = \Lambda(g)$
 $L_2(g) = \{e_1\}$

Parabolics

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$L_0(g) = \overleftarrow{e_1, e_3}$$
$$L_1(g) = \{e_1\} = L_2(g)$$
$$\Lambda(g) = \overleftarrow{e_1, e_3}$$
$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix},$$
$$L_0(g) = L_1(g) = \{e_1\}$$
$$L_2(g) = \overleftarrow{e_1, e_2} = \Lambda(g)$$

Elliptic

$$\left(\begin{array}{ccc} \lambda_1 & 0 & 0\\ 0 & \lambda_2 & 0\\ 0 & 0 & \lambda_3 \end{array}\right), \ |\lambda_1| = |\lambda_2| = |\lambda_3|$$

CASE 1. g has finite order

$$L_0(g) = L_1(g) = L_2(g) = \emptyset$$

CASE 2. g has infinite order

$$egin{aligned} \mathcal{L}_0(g) &= \{e_1, e_2, e_3\}, \ \mathcal{L}_1(g) &= \mathbb{P}^2_{\mathbb{C}} \ \mathcal{L}_2(g) &= arnothing \ \Lambda(g) &= \mathbb{P}^2_{\mathbb{C}} \end{aligned}$$

What about limit sets of discrete subgroups of PU(2,1) acting on $\mathbb{P}^2_{\mathbb{C}}$?

If $G \leq PU(2,1)$ is discrete then L(G) the *limit set* according to Chen-Greenberg is the set of accumulation points in $\partial \mathbb{H}^2_{\mathbb{C}}$ of the G-orbit of any point $p \in \mathbb{H}^2_{\mathbb{C}}$ THEOREM. The limit set L(G) is the intersection

$${\it L}({\it G})\,=\,{\it \Lambda}({\it G})\cap\partial{\sf H}^2_{\mathbb C}\,,$$

and $\Lambda(G)$ is the union of all complex projective lines I_z tangent to $\partial \mathbf{H}_{\mathbb{C}}^2$ at points in L(G):

$$\Lambda(G) = \bigcup_{z \in L(G)} I_z .$$

Furthermore, if G is non-elementary then the action of G is minimal on $L(G) \subset \partial \mathbf{H}_{\mathbb{C}}^2$, i.e. all orbits are dense, while the orbit of each line I_z is dense in $\Lambda(G)$ (though the G-action on $\Lambda(G)$ is not minimal). THEOREM. (Barrera-Navarrete)If $G \subset PU(2,1)$ is an infinite discrete group acting on $P_{\mathbb{C}}^2$ without invariant complex projective lines, then the connected component of the domain of discontinuity containing $\mathbb{H}_{\mathbb{C}}^2$ is *G*-invariant and complete Kobayashi hyperbolic. THEOREM.(Barrera-Cano-Navarrete) If $\Gamma \subset PSL(3, \mathbb{C})$ is a discrete group then,

 $Eq(\Gamma) \subset \Omega(\Gamma).$

If U is an open Γ invariant subset with at least three lines in general position lying on its complement, then $U \subset Eq(\Gamma)$.

If $\Lambda(\Gamma)$ contains at least three lines in general position, then $\Omega(\Gamma) = Eq(\Gamma)$.

THEOREM. (Barrera-Cano-Navarrete)

Let $\Gamma \subset PSL(3, \mathbb{C})$ be a discrete group, if the number of complex lines in general position in $\Lambda(\Gamma)$ and $C(\Gamma) = \bigcup_{\gamma \in \Gamma} \Lambda(\gamma)$ is at least three, then

$$\Lambda(\Gamma) = C(\Gamma),$$

and $\Lambda(\Gamma)$ is the union of complex lines.

Moreover, if Γ acts on $\mathbb{P}^2_{\mathbb{C}}$ without global fixed points, then $\Omega(\Gamma)$ is the largest open set where Γ acts properly and discontinuously.