

2165-16

International MedCLIVAR-ICTP-ENEA Summer School on the Mediterranean Climate System and Regional Climate Change

13 - 22 September 2010

Cyclone trackinng and wind tracking

ULBRICH Uwe Freie Universitaet Berlin Germany Cyclone Tracking and wind tracking

a short introduction

MedCLIVAR SummerschoolU. UlbrichFreie Universität13.-22. Sep. 2010 Triesteulbrich@met.fu-berlin.de

Identification and tracking of mid-latitude cyclone systems:

Based on Murray & Simmonds (1991), adapted to Northern Hemisphere conditions by Pinto et al. (2005)

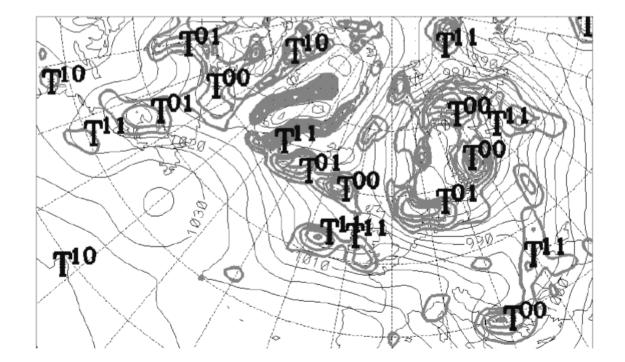
1. Identification

a) Gridded MSLP field is transformed to a regular 0.75°x0.75° grid by a polar stereographic projection via bicubic spline interpolation

b) This grid is scanned for maxima of the quasi-geostrophic relative vorticity via the Laplacian of pressure ($\nabla^2 p$)

$$\boldsymbol{\xi} = \frac{1}{\boldsymbol{\rho} \cdot \boldsymbol{f}} \nabla^2 \boldsymbol{p}$$

c) Iterative search of a pressure minimum in the vicinity of $\nabla^2 p$ d) Removal of systems on basis of specific thresholds


Identification and tracking of mid-latitude cyclone systems:

Based on Murray & Simmonds (1991), adapted to Northern Hemisphere conditions by Pinto et al. (2005)

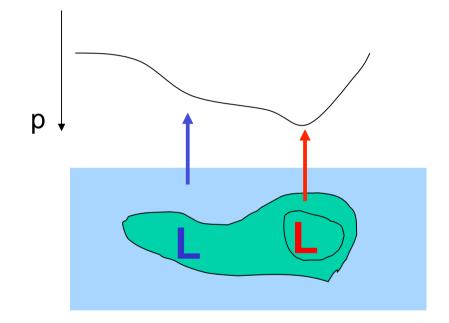
- 2. Tracking
 - a) For each identified cyclone a subsequent position and core pressure is predicted by using a *prediction velocity*, which is an average of the velocity deduced from the previous displacement and a geostrophic steering velocity
 - b) Geostrophic steering velocity (surface level) is calculated from an averaged pressure gradient around the centre of the cyclone over a radius of 4° of latitude scaled with a fixed value due to higher wind speeds in upper levels
 - c) Only those tracks were considered in which cyclones have been "closed" and "strong (>0.7 hPa/deg²)" at least once in their lifetime

Sensitivities and applications of a cyclone tracking algorithm

Joaquim G. Pinto ⁽¹⁾, U. Ulbrich ⁽²⁾, G. C. Leckebusch ⁽²⁾, M. Donat ⁽²⁾, K. M. Nissen ⁽²⁾, T. Spangehl ⁽²⁾, S. Ulbrich ⁽¹⁾, S. Zacharias ⁽¹⁾

- 1. Institute of Geophysics and Meteorology, Univ. of Cologne, Germany (jpinto@meteo.uni-koeln.de)
- 2. Institute of Meteorology, Freie Universität Berlin, Germany

Sensitivities and applications of a cyclone tracking algorithm

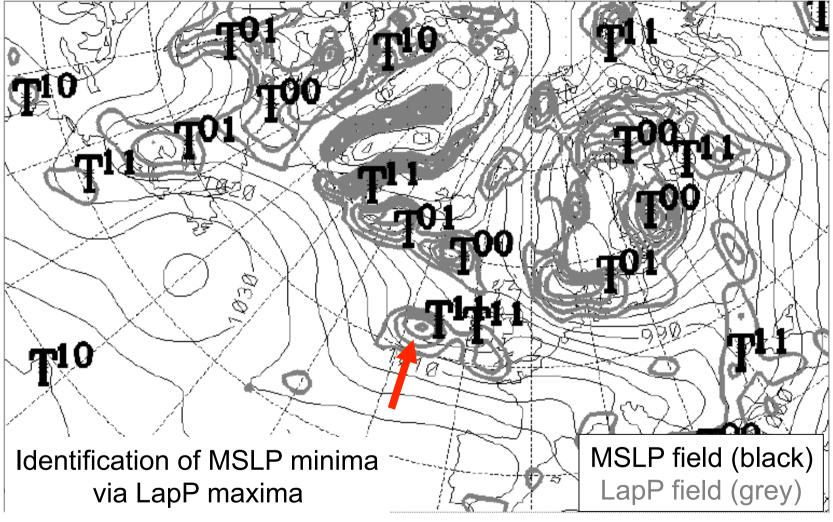

Outline:

- 1. Identification
- 2. Tracking
- 3. Case Study: Storm "Kyrill" with different data resolutions
- 4. Other Applications
- 5. Conclusions

Cyclone Identification

(1) Identification from MSLP data but based on $\nabla^2 p$ ($\xi = \frac{1}{\rho \cdot f} \nabla^2 p$)

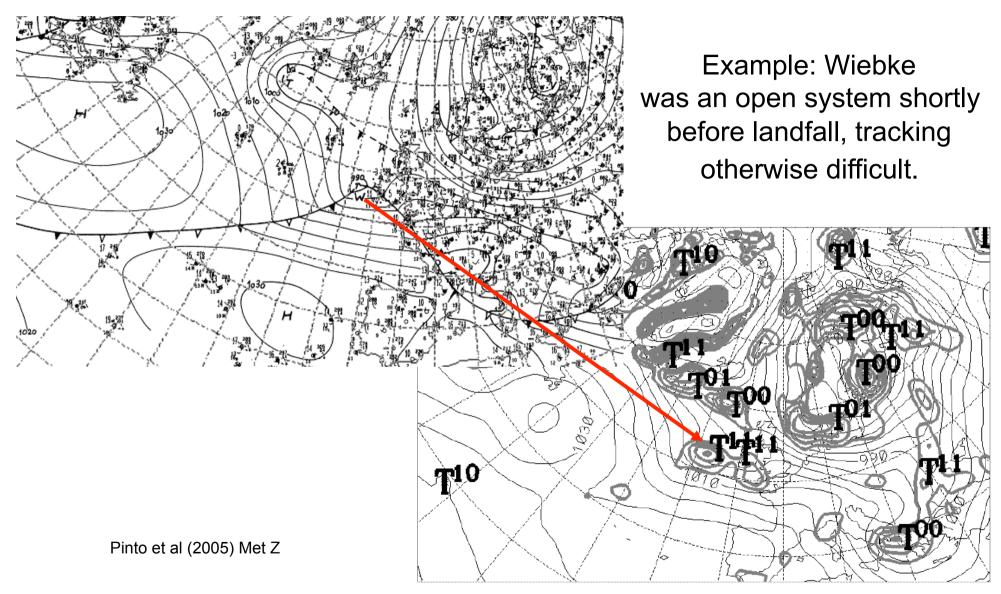
(2) Differenciate between closed and open systems, threshould exceedance


Closed: 0.1 hPa deg.lat.⁻²

Open: 0.2 hPa deg.lat.-2

(3) Cyclones removed if over high orography (> 1500 m)

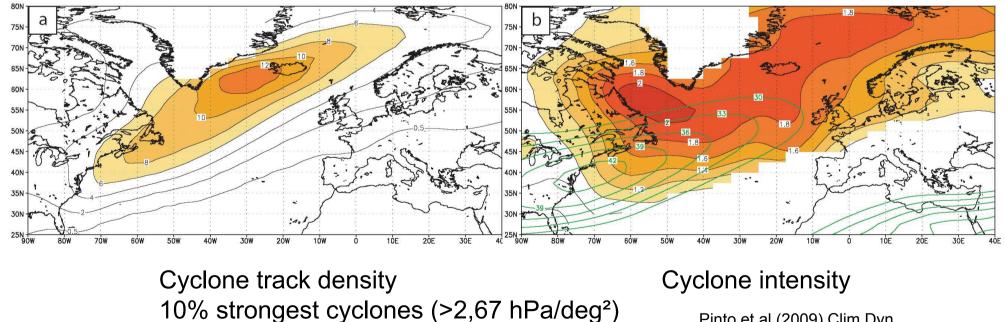
Method based on Murray & Simmonds (1991), adapted to NH conditions by Pinto et al. (2005)


Identification of closed and open systems

Pinto et al (2005) Met Z

Closed: T00 (strong), T10 (weak); Open: T01 (strong), T11 (weak)

Validation with weather charts


Closed: T00 (strong), T10 (weak); Open: T01 (strong), T11 (weak)

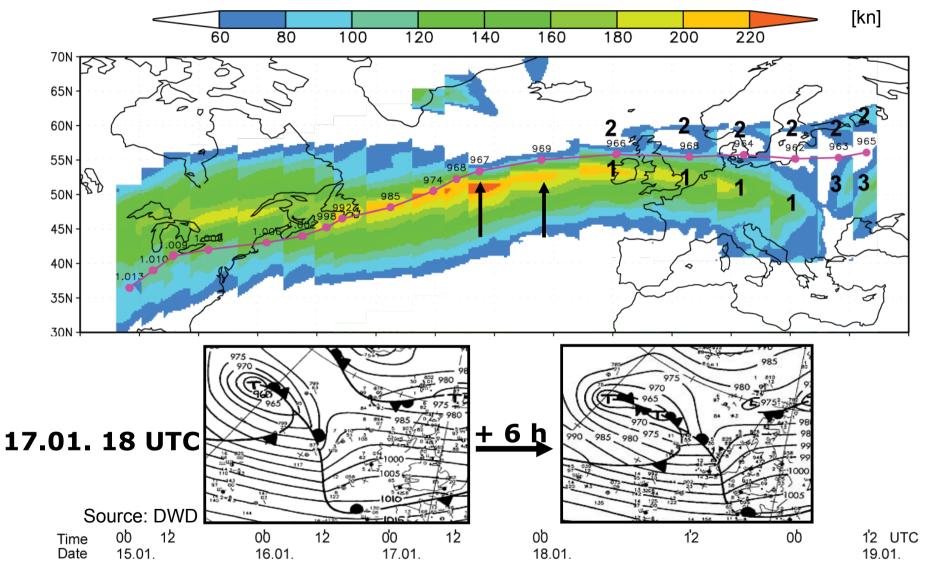
Cyclone Tracking / Manipulation / Statistics

(4) Tracking performed using an assignment algorithm for consecutive fields, the most probable solution is taken (via minimization of a cost function)

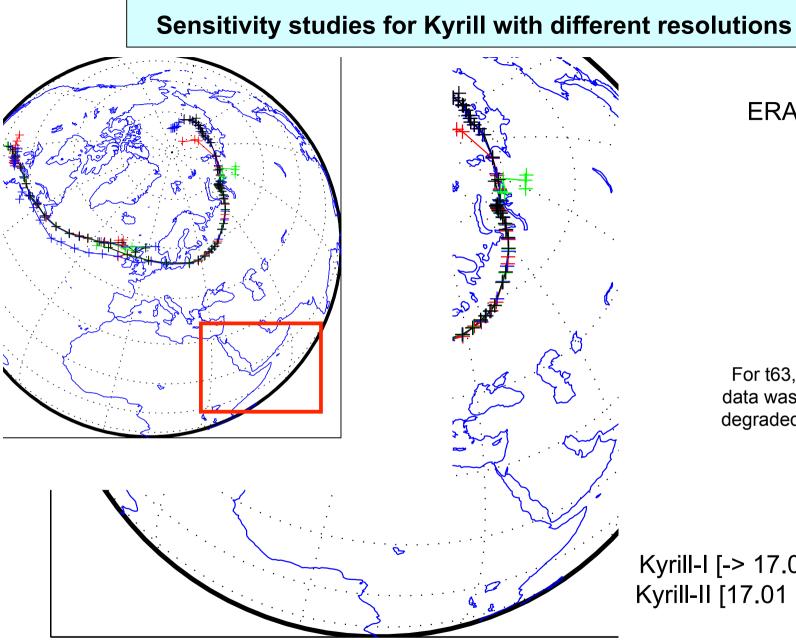
(5) Cyclones must have a lifetime of at least 24 hours

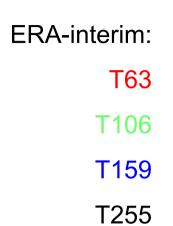
(6) Cyclone intensity (measured as $\nabla^2 p$) > 0.6 *hPa deg.lat.*⁻² and is associated "true" pressure minimum at least once during life time (T_{00})

Pinto et al (2009) Clim Dyn


Evolution of cyclone characteristics over time (Daria)

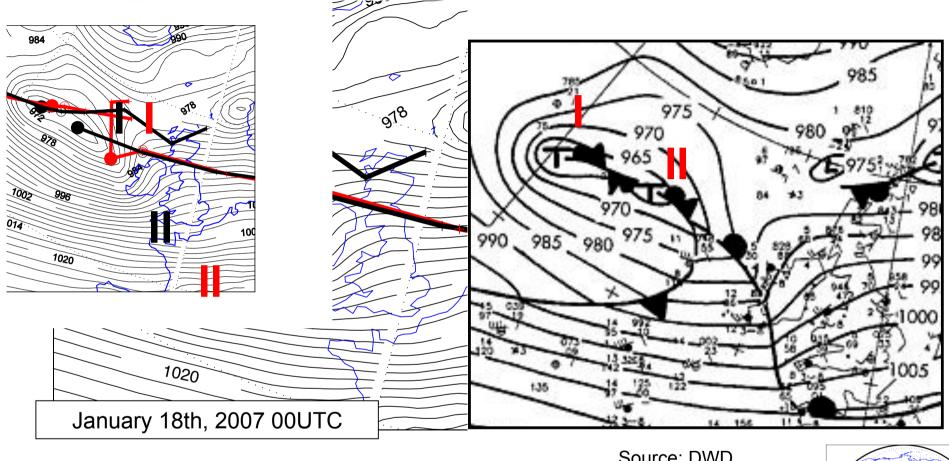
Date	Time	Longitude	Latitude	Core Pressure	$\nabla^2 p$	d/dt _. (CP)	d/dt ($\nabla^2 p$)	#
19900123	00	303,85	40,42	1011,20	0,652	2,68	-0,110	
19900123	06	304,51	41,00	1010,81	0,719	-0,39	0,067	
19900123	12	306,03	42,07	1011,27	0,642	0,46	-0,077	
19900123	18	309,34	43,59	1008,94	0,818	-2,33	0,176	
19900124	00	315,81	45,69	1007,85	0,977	-1,09	0,159	
19900124	06	320,06	47,24	1002,83	1,095	-5,02	0,118	
19900124	12	325,74	48,48	996,82	1,339	-6,01	0,244	
19900124	18	333,36	49,84	986,66	1,600	-10,16	0,261	1
19900125	00	343,05	51,38	976,18	1,921	-10,48	0,321	2
19900125	06	350,40	53,23	963,70	2,218	-12,48	0,297	3
19900125	12	356,96	54,73	954,49	2,850	-9,21	0,632	4
19900125	18	1,98	56,17	946,98	3,432	-7,51	0,582	5
19900126	00	5,38	57,25	948,58	3,058	1,60	-0,374	
19900126	06	8,20	58,06	955,28	2,461	6,70	-0,597	
19900126	12	11,94	58,68	962,18	1,984	6,90	-0,477	
19900126	18	16,29	59,37	965,77	1,877	3,59	-0,107	
19900127	00	20,63	59,96	970,28	1,900	4,51	0,023	
19900127	06	24,92	61,11	974,15	1,731	3,87	-0,169	
19900127	12	28,16	61,85	978,62	1,396	4,47	-0,335	
19900127	18	32,34	62,90	982,81	1,070	4,19	-0,326	


Grey: maximum 24-hour intensification phase


Pinto et al (2009) Clim Dyn

Example: European winter storm Kyrill (18.01.2007)

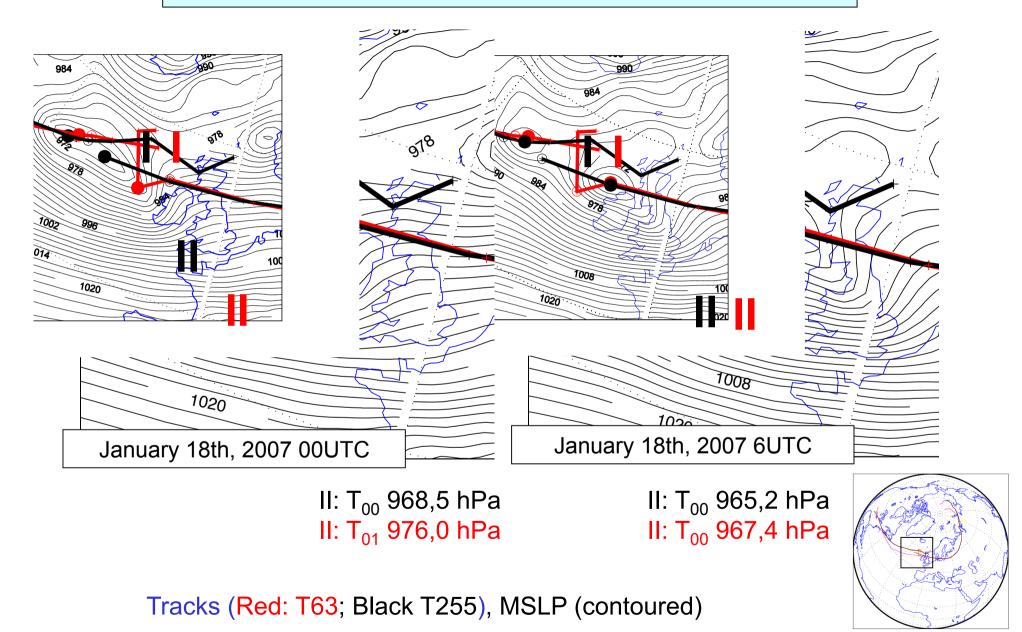
Fink et al (2009) NHESS:



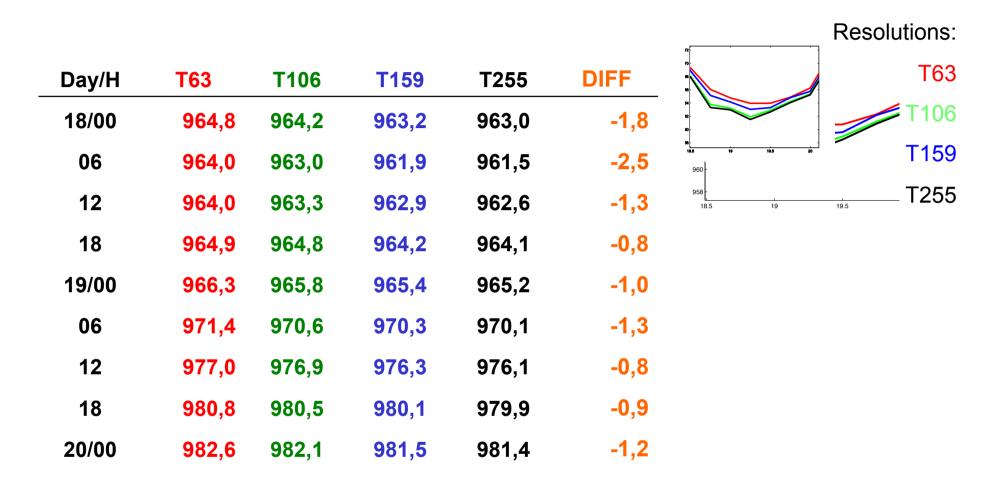
For t63,t106,t159 data was sprectraly degraded from t255

Kyrill-I [-> 17.01 06 UTC] Kyrill-II [17.01 00 UTC ->]

Sensitivity studies for Kyrill: comparison T63 vs T255

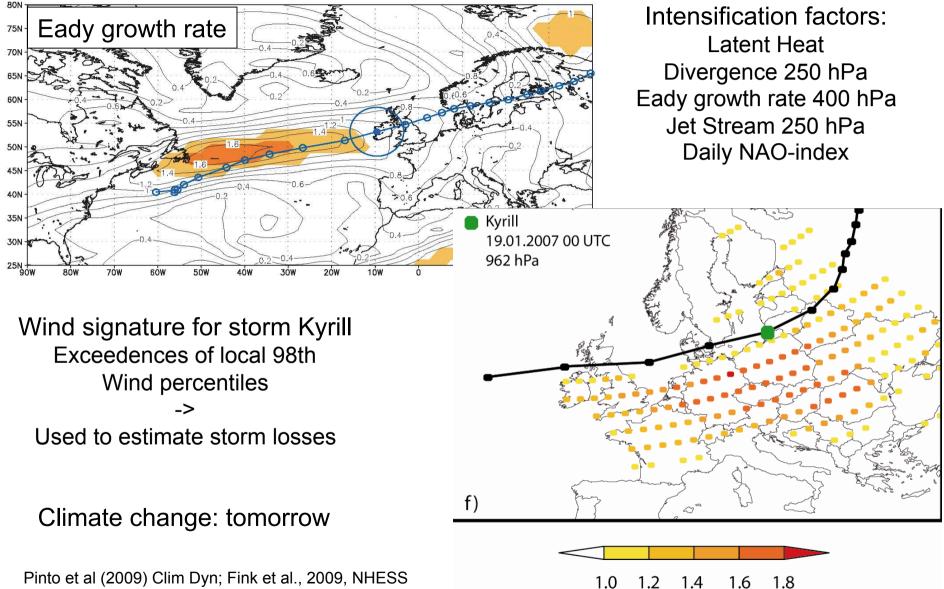

l:	967,7	hPa
I:	969,7	hPa

II: T₀₀ 968,5 hPa II: T₀₁ 976,0 hPa


Source: DWD

Tracks (Red: T63; Black T255), MSLP (contoured)

Sensitivity studies for Kyrill: comparison T63 vs T255



Sensitivity studies for Kyrill: Comparison core pressure

Important: take **data resolution** into account when comparing / validating cyclone statistics, e.g. GCM vs reanalysis data.

Applications: Intensification of cyclones / wind storm impacts

We use a cyclone track algorithm originally developed by Murray and Simmonds (1991) adapted to NH cyclone characteristics.

The scheme considers the cyclone laplacian of pressure (~ relative vorticity) on the first steps of cyclone intensification. Intensity measures are core pressure (CP) and laplacian of pressure (VOR)

The algorithm is capable of automatically tracking different types of cyclones at the same time (Important – open systems)

Results show a strong sensitivity to data resolution (here only spatial resolution investigated, example Kyrill)

Data permits a detailed description of cyclone life cycles. Applications:

> factors contributing to cyclone intensification

> associated wind fields and related impacts (losses / floods)

Step 1 - Identification

- Lows are normally regarded as pressure minima and are called closed depressions because they are surrounded by closed isobars
- But cyclonic disturbances may have locally large vorticity and may be meteorologically important without being associated with closed isobars
- Search for low in MSLP field or rather maxima of the pressure Laplacian

$$\boldsymbol{\xi} = \frac{1}{\boldsymbol{\rho} \cdot \boldsymbol{f}} \nabla^2 \boldsymbol{p}$$

MedCLIVAR SummerschoolU. UlbrichFreie Univ13.-22. Sep. 2010 Triesteulbrich@met.fu-berlin.de

Step 1 - Identification

• Search for a pressure minimum in the vicinity of the Laplacian p maximum

 If such a minimum is found, the cyclone is classified as a
closed system, with its core located at the pressure minimum If the search is not successful a second search is performed for the point with the minimum pressure gradient (inflection point), and the system is classified as an open depression

MedCLIVAR Summerschool 13.-22. Sep. 2010 Trieste

U. Ulbrich ulbrich@met.fu-berlin.de Freie Universität

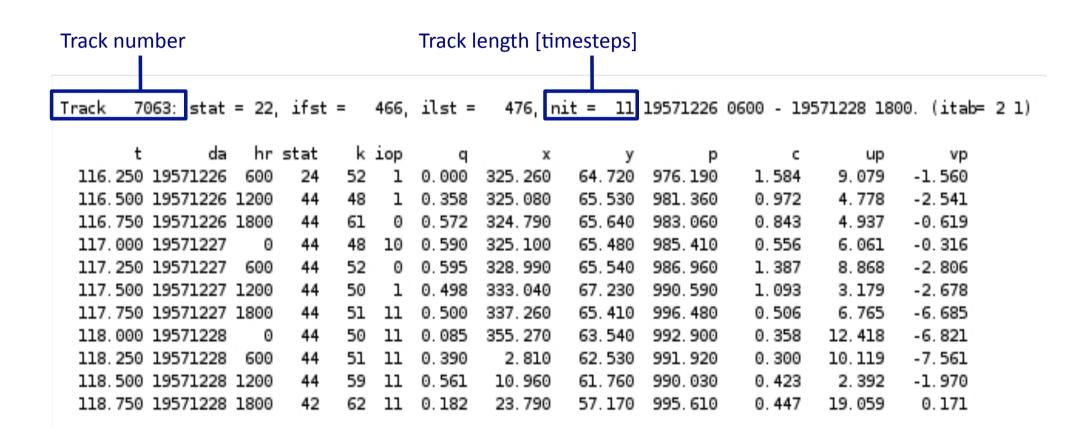
Step 1 - Identification

- Removal of systems ...
 - ... over high orography (probably artificial lows – because of extrapolation inaccuracies)
 - ... that do not have a minimum intensity
 - The presence of vorticity maxima along frontal zones and also in the vicinity of orography frequently leads to chains of open systems.

Only the strongest system in a certain radius is included

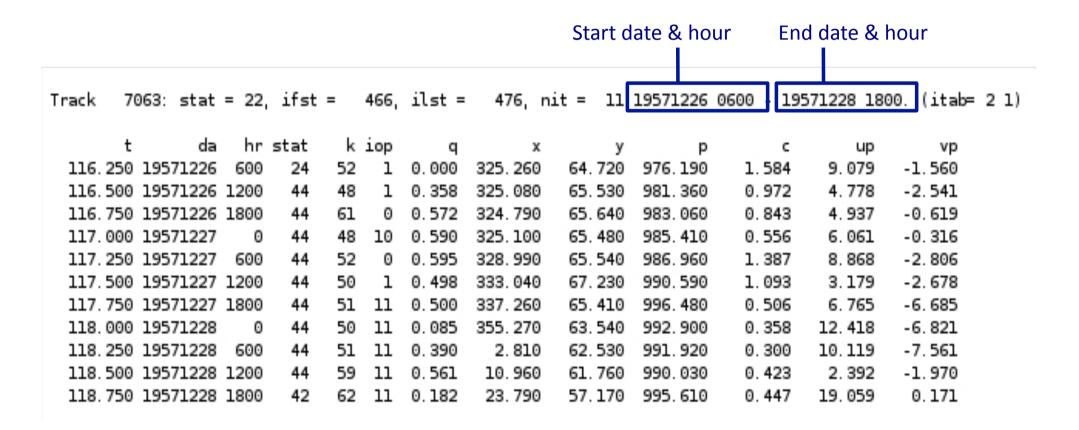
- For each identified cyclone, the algorithm predicts a subsequent position and core pressure.
- The identified cyclones in the following time step which are located in the vicinity of the suggested position are examined and the most likely candidate is chosen.

• We will now work with those tracked cyclones


Track	70)63: stat	= 22	, ifst	=	466,	ilst =	476,	nit =	11	19571226	0600	- 1	9571228 1	.800. (i	.tab=	21)
	t	da	hr	stat	k	iop	q	3	ĸ	у	р		c	up	0	vp	
116.	250	19571226	600	24	52	1	0.000	325.260	9 64.	720	976.190	1.	584	9.079) -1.5	60	
116.	500	19571226	1200	44	48	1	0.358	325.080	9 65.	530	981.360	Θ.	972	4.778	-2.5	41	
116.	750	19571226	1800	44	61	0	0.572	324.790	9 65.	640	983.060	Θ.	843	4.937	-0.6	19	
117.	000	19571227	0	44	48	10	0.590	325.100	9 65.	480	985.410	Θ.	556	6.06	-0.3	16	
117.	250	19571227	600	44	52	0	0.595	328.990	9 65.	540	986.960	1.	387	8.868	3 -2.8	806	
117.	500	19571227	1200	44	50	1	0.498	333.040	9 67.	230	990.590	1.	093	3.179	-2.6	78	
117.	750	19571227	1800	44	51	11	0.500	337.260	9 65.	410	996.480	Θ.	506	6.765	6.6	85	
118.	000	19571228	0	44	50	11	0.085	355.270	9 63.	540	992.900	0.	358	12.418	-6.8	21	
118.	250	19571228	600	44	51	11	0.390	2.81	9 62.	530	991.920	Θ.	300	10.119) -7.5	61	
118.	500	19571228	1200	44	59	11	0.561	10.960	9 61.	760	990.030	0.	423	2.392	2 -1.9	70	
118.	750	19571228	1800	42	62	11	0.182	23.79	9 57.	170	995.610	0.	447	19.059	0.1	.71	

MedCLIVAR Summerschool 13.-22. Sep. 2010 Trieste

U. Ulbrich



MedCLIVAR Summerschool 13.-22. Sep. 2010 Trieste . U. Ulbrich

ulbrich@met.fu-berlin.de

Freie Universität

🛿 Berlin

MedCLIVAR Summerschool 13.-22. Sep. 2010 Trieste . U. Ulbrich

Date and hour of current cyclone location

Track	70)63:	stat	= 22,	ifst	=	466,	ilst =	476,	nit =	11	19571226	0600	- 19	571228 180	00. (itab=	21)
	t		da	hr	stat	k	iop	q	x		у	р		с	up	vp	
116.	250	1957	71226	600	24	52	1	0.000	325.260	64.	720	976.190	1.	584	9.079	-1.560	
116.	500	1957	71226	1200	44	48	1	0.358	325.080	65.	530	981.360	Θ.	972	4.778	-2.541	
116.	750	1957	71226	1800	44	61	0	0.572	324.790	65.	640	983.060	0.	843	4.937	-0.619	
117.	000	1957	71227	0	44	48	10	0.590	325.100	65.	480	985.410	0.	556	6.061	-0.316	
117.	250	1957	71227	600	44	52	0	0.595	328.990	65.	540	986.960	1.	387	8.868	-2.806	
117.	500	1957	71227	1200	44	50	1	0.498	333.040	67.	230	990.590	1.	093	3.179	-2.678	
117.	750	1957	71227	1800	44	51	11	0.500	337.260	65.	410	996.480	0.	506	6.765	-6.685	
118.	000	1957	71228	0	44	50	11	0.085	355.270	63.	540	992.900	0.	358	12.418	-6.821	
118.	250	1957	71228	600	44	51	11	0.390	2.810	62.	530	991.920	0.	300	10.119	-7.561	
118.	500	1957	71228	1200	44	59	11	0.561	10.960	61.	760	990.030	0.	423	2.392	-1.970	
118.	750	1957	71228	1800	42	62	11	0.182	23.790	57.	170	995.610	0.	447	19.059	0.171	

MedCLIVAR Summerschool 13.-22. Sep. 2010 Trieste . . U. Ulbrich...

Classification of open/closed and strong/weak system

wook

Track	7063	: stat	= 22	ifst	=	466,	ilst =	476,	nit = ll	19571226	0600 - 195	571228 180	00. (itab=	2 1)
	t	da	hr	stat	k	iop	q	x	у	р	c	up	vp	
116.3	250 19	571226	600	24	52		0.000	325.260			1.584	9.079	-1.560	
116.	500 19	571226	1200	44	48	1	0.358	325.080			0.972	4.778	-2.541	
116.	750 19	571226	1800	44	61	0	0.572	324.790			0.843	4.937	-0.619	
117.	000 19	571227	0	44	48	10	0.590	325.100	65.480	985.410	0.556	6.061	-0.316	
117.	250 19	571227	600	44	52		0.595	328.990	65.540	986.960	1.387	8.868	-2.806	
117.	500 19	571227	1200	44	50	1	0.498	333.040	67.230	990.590	1.093	3.179	-2.678	
117.	750 19	571227	1800	44	51	11	0.500	337.260	65.410	996.480	0.506	6.765	-6.685	
118.	000 19	571228	0	44	50	11	0.085	355.270	63.540	992.900	0.358	12.418	-6.821	
118.	250 19	571228	600	44	51	11	0.390	2.810	62.530	991.920	0.300	10.119	-7.561	
118.	500 19	571228	1200	44	59	11	0.561	10.960	61.760	990.030	0.423	2.392	-1.970	
118.	750 19	571228	1800	42	62	11	0.182	23.790	57.170	995.610	0.447	19.059	0.171	
				00 0	close	ed	stroi	ng						
	a .7			01 0	oper	า		Ť						
Medu	GLIVAR					stror	ng							\ \
Vernseig		J.		10 0	close		wea	k	<u> </u>	Ibrich	Fr	eie Univers	ität 🛛 🌏	Berlin
			_		oper				rich@me	et.fu-berli	n.de			

	Longitude and latidute														
Track	70	063: st	at	= 22,	ifst	=	466,	ilst =	476,	nit = 1	1 1957122	5 0600 - 19	9571228 180	0. (itab=	2 1)
	t		da	hr	stat	k	iop	q		x	у	o c	up	vp	
116.	250	195712	26	600	24	52	1	0.000	325.26	0 64.72	0 976.19	0 1.584	9.079	-1.560	
116.	500	195712	26	1200	44	48	1	0.358	325.08	0 65.53	0 981.36	0.972	4.778	-2.541	
116.	750	195712	26	1800	44	61	0	0.572	324.79	0 65.64	0 983.06	0.843	4.937	-0.619	
117.	000	195712	27	0	44	48	10	0.590	325.10	0 65.48	0 985.41	0.556	6.061	-0.316	
117.	250	195712	27	600	44	52	0	0.595	328.99	0 65.54	0 986.96	0 1.387	8.868	-2.806	
117.	500	195712	27	1200	44	50	1	0.498	333.04	0 67.23	0 990.59	0 1.093	3.179	-2.678	
117.	750	195712	27	1800	44	51	11	0.500	337.26	0 65.41	.0 996.48	0.506	6.765	-6.685	
118.	000	195712	28	0	44	50	11	0.085	355.27	0 63.54	0 992.90	0.358	12.418	-6.821	
118.	250	195712	28	600	44	51	11	0.390	2.81	9 62.53	0 991.92	0.300	10.119	-7.561	
118	500	195712	28	1200	44	59	11	0.561	10.96	9 61.76	0 990.03	0.423	2.392	-1.970	
118	750	195712	28	1800	42	62	11	0.182	23.79	9 57.17	0 995.61	0.447	19.059	0.171	

MedCLIVAR Summerschool 13.-22. Sep. 2010 Trieste

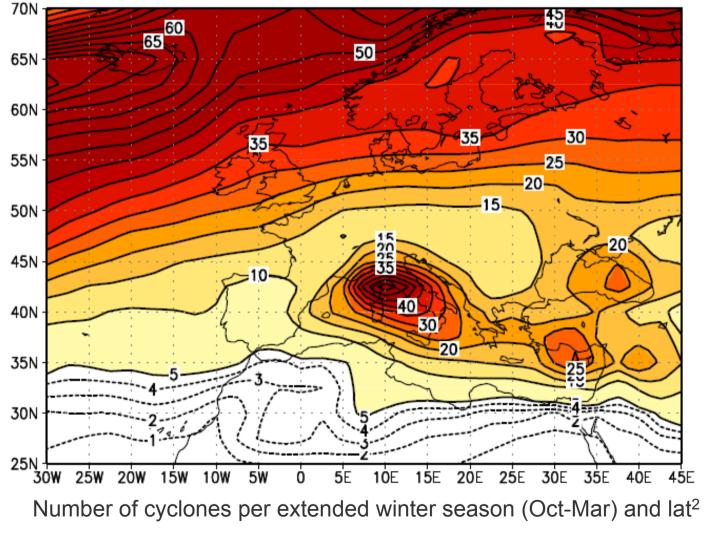
. U. Ulbrich....

Core pressure (MSLP)															
Track	76)63: sta	: = 22	, ifst	=	466,	ilst =	476,	nit = 1:	1	19571226	0600 - 3	19571228 180	00. (itab=	2 1)
	t	d	a hr	stat	k	iop	q	,	د <u>ب</u>	y	р		c up	vp	
116.	250	1957122	5 600	24	52	1	0.000	325.260	64.72	9	976.190	1.584	4 9.079	-1.560	
116.	500	1957122	5 1200	44	48	1	0.358	325.080	65.53	9	981.360	0.97	2 4.778	-2.541	
116.	750	1957122	5 1800	44	61	0	0.572	324.790	65.640	9	983.060	0.84	3 4.937	-0.619	
117.	000	1957122	70	44	48	10	0.590	325.100	65.48	0	985.410	0.55	5 6.06 1	-0.316	
117.	250	1957122	7 600	44	52	0	0.595	328.990	65.54	Ð	986.960	1.38	7 8.868	-2.806	
117.	500	1957122	7 1200	44	50	1	0.498	333.040	67.23	Ð	990.590	1.093	3 3.179	-2.678	
117.	750	1957122	7 1800	44	51	11	0.500	337.260	65.41	Ð	996.480	0.50	6.765	-6.685	
118.	000	1957122	з о	44	50	11	0.085	355.270	63.54	Ð	992.900	0.35	B 12.418	-6.821	
118.	250	1957122	600	44	51	11	0.390	2.810	62.53	Ð	991.920	0.30	0 10.119	-7.561	
118.	500	1957122	3 1200	44	59	11	0.561	10.960	61.76	Ð	990.030	0.42	3 2.392	-1.970	
118.	750	1957122	3 1800	42	62	11	0.182	23.790	57.17	0	995.610	0.44	7 19.059	0.171	

MedCLIVAR Summerschool 13.-22. Sep. 2010 Trieste . J. Ulbrich...

Laplacian of MSLP															
Track	70)63: stat	= 22	ifst	=	466,	ilst =	476,	nit =	11	19571226	0600 - 1	19571228 18	300. (itab=	21)
	t	da	hr	stat	k	iop	q	3	¢	у	р		: up	vp	
116.	250	19571226	600	24	52	1	0.000	325.260	9 64.	720	976.190	1.584	9.079	-1.560	
116.	500	19571226	1200	44	48	1	0.358	325.080	65.5	530	981.360	0.972	2 4.778	-2.541	
116.	750	19571226	1800	44	61	0	0.572	324.790	65.	640	983.060	0.843	4.937	-0.619	
117.	000	19571227	0	44	48	10	0.590	325.100	65.4	480	985.410	0.556	6.061	-0.316	
117.	250	19571227	600	44	52	0	0.595	328.990	65.	540	986.960	1.387	7 8.868	-2.806	
117.	500	19571227	1200	44	50	1	0.498	333.040	67.3	230	990.590	1.093	3.179	-2.678	
117.	750	19571227	1800	44	51	11	0.500	337.260	65.4	410	996.480	0.506	6.765	-6.685	
118.	000	19571228	0	44	50	11	0.085	355.270	63.	540	992.900	0.358	3 12.418	-6.821	
118.	250	19571228	600	44	51	11	0.390	2.810	62.5	530	991.920	0.300	0 10.119	-7.561	
118.	500	19571228	1200	44	59	11	0.561	10.960	9 61.	760	990.030	0.423	3 2.392	-1.970	
118.	750	19571228	1800	42	62	11	0.182	23.790	57.3	170	995.610	0.447	7 19.059	0.171	

MedCLIVAR Summerschool 13.-22. Sep. 2010 Trieste . U. Ulbrich....


What kind of statistics can we do with such Cyclone Tracks?

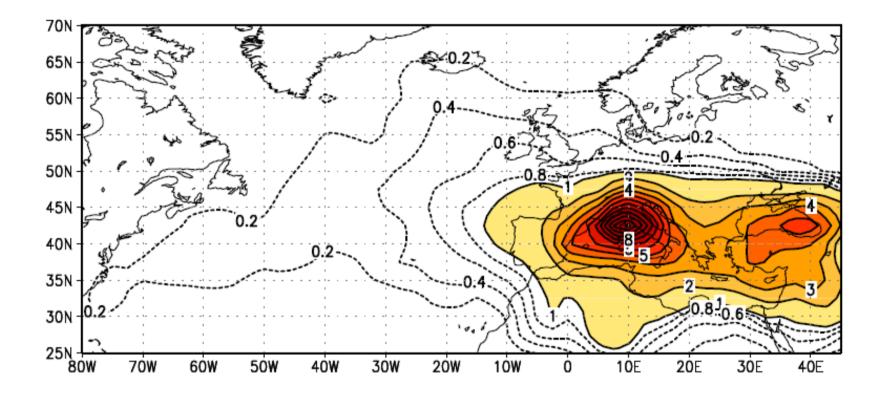
Following figures by Nissen et al. FU Berlin Institute for Meteorology

MedCLIVAR SummerschoolU. UlbrichFreie Universität13.-22. Sep. 2010 Triesteulbrich@met.fu-berlin.de

Track density

U. Ulbrich

ulbrich@met.fu-berlin.de

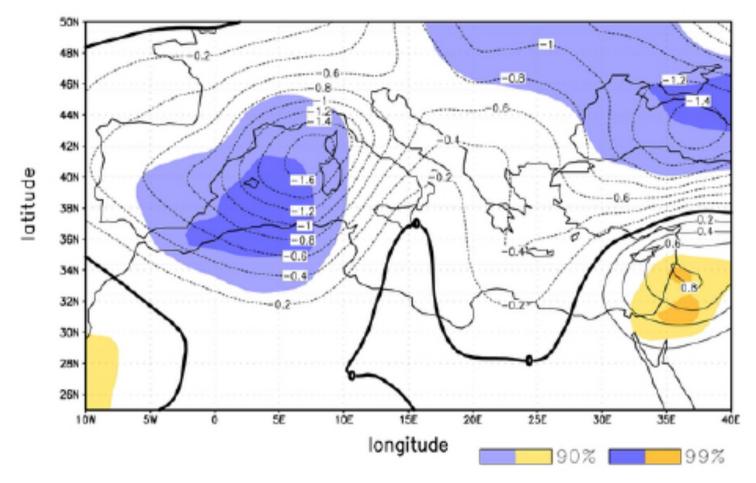


MedCLIVAR Summerschool

13.-22. Sep. 2010 Trieste

Freie Universität

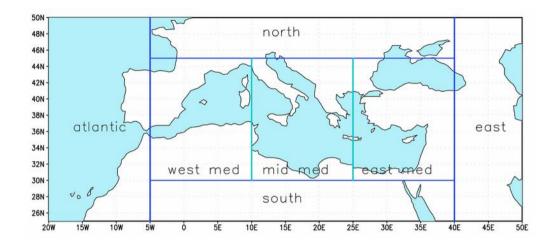
Cyclogenesis


Region of cyclogenesis for cyclones crossing the Mediterranean region during the extended winter season. In events/winter/(deg.lat)^{2.}

MedCLIVAR SummerschoolU. Ulbrich13.-22. Sep. 2010 Triesteulbrich@met.fu-berlin.de

Freie Universität

Trend


Linear trend of cyclone track density 1957-2002 in number of winter cyclones per decade and per (deg.lat)².

MedCLIVAR SummerschoolU. UlbrichFreie Universität13.-22. Sep. 2010 Triesteulbrich@met.fu-berlin.de

Berlin

Annual cycle frequency

Number of cyclones per month originating in different regions.

Today's excercise

- List of precipitation events* in the area of the Mediterranean Sea
- Shell/FORTRAN/Matlab scripts** to create figures with

U. Ulbrich

ulbrich@met.fu-berlin.de

• MSLP and precipitation field

MedCLIVAR Summerschool

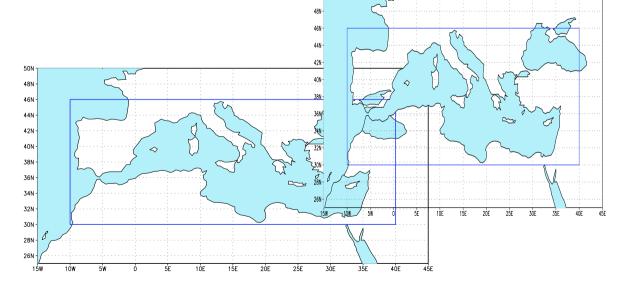
13.-22. Sep. 2010 Trieste

• the track of the corresponding cyclone

* Pinto et al.** Nissen, Schuster

Freie Universität

Berlin


• INVESTIGATING:

o Frequency and spatial distribution of

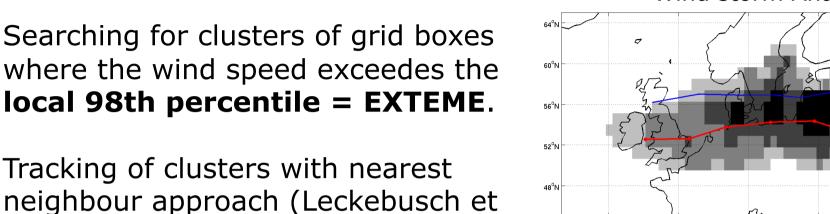
- o Cyclones
- o Wind tracks
- O Cyclones with wind track affecting the Mediterranean region

o Intensity ofo Wind storms

Analysis for the extended winter season (October-March)

MedCLIVAR/ICTP school September 2010

39


ulbrich@met.fu-berlin.de

o Cyclone associated with the wind track is selected from cyclone catalogue (Nissen et al. 2010).

Simmonds 1991, Pinto et al. 2005 technique, based on

o Cyclone catalogue was compiled using Murray and

From Leckebusch et al. 2008 o Minimum thresholds for area and duration

12°W

o Searching for clusters of grid boxes where the wind speed exceedes the local 98th percentile = EXTEME.

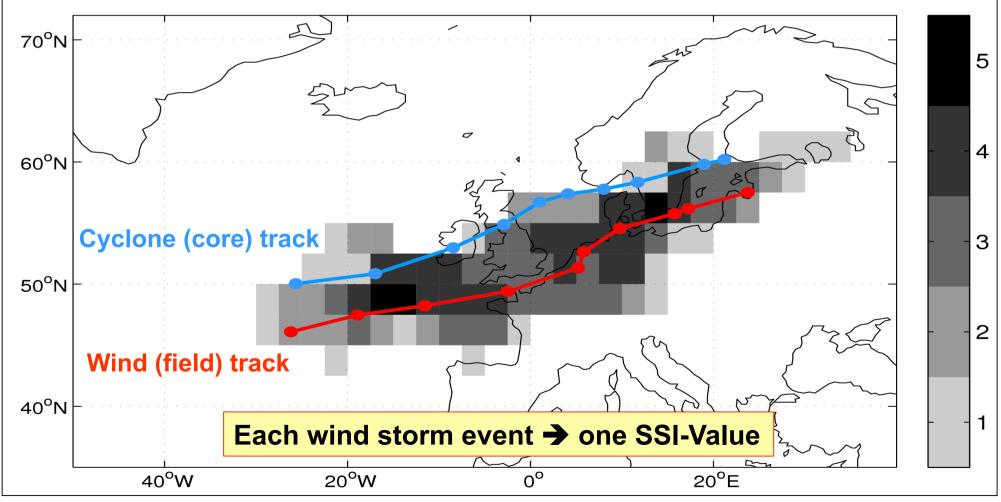
Tracking of clusters with nearest

0

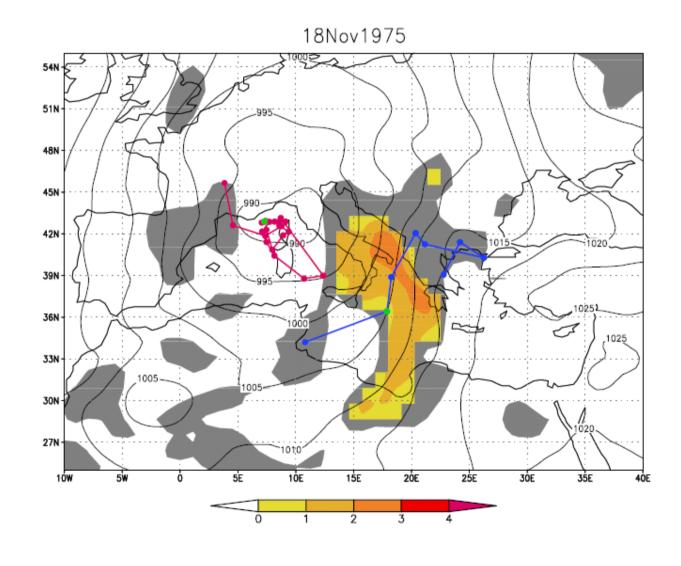
al. 2010).

MSLP, $\nabla^2 p$.

Wind storm Anatol

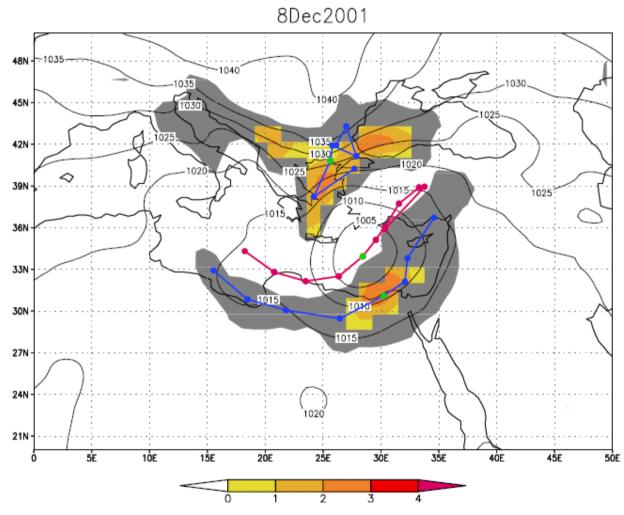


1. Synoptic aspects and Identification



Track of wind storm "Daria" (24.01.1990–26.01.1990);

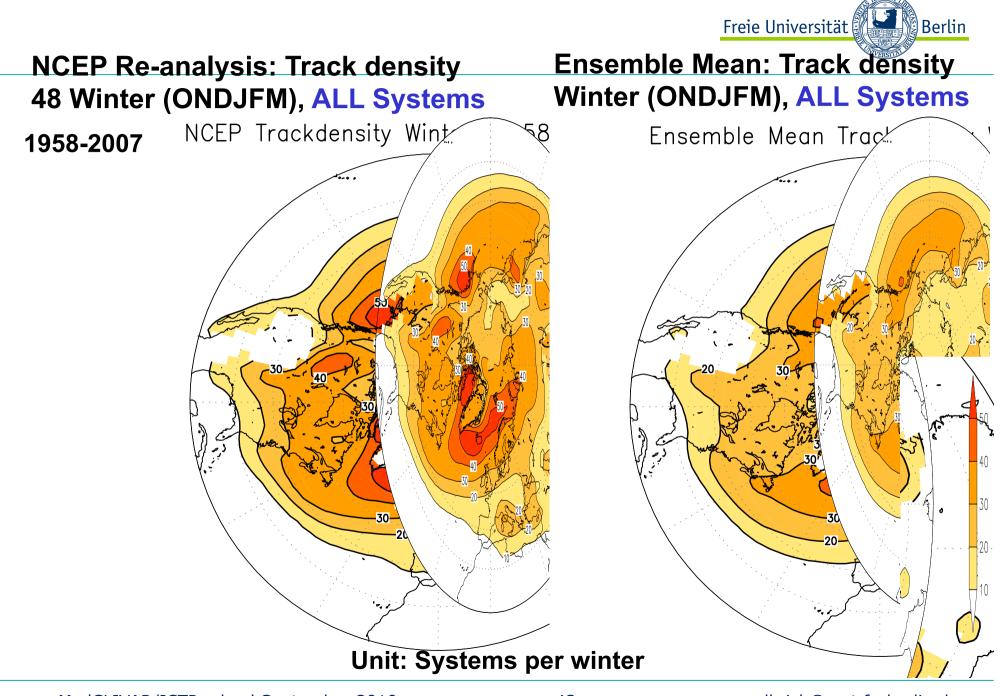
based on wind speed (red) and affected area (shading) Shading: number of times a grid box was affected


Cyclone track (red), wind-cluster track (blue), MSLP field (isolines in hPa) and exceedance of 98th percentileof wind speed (coloured shading in m/s above local 98th percentile)

18 November 1975 06:00. Green dots: current cyclone core and wind cluster centre.

The total area with wind speeds exceeding the 98th percentile over the 2 day period is shown in gray.

The event has caused flooding in Venice.

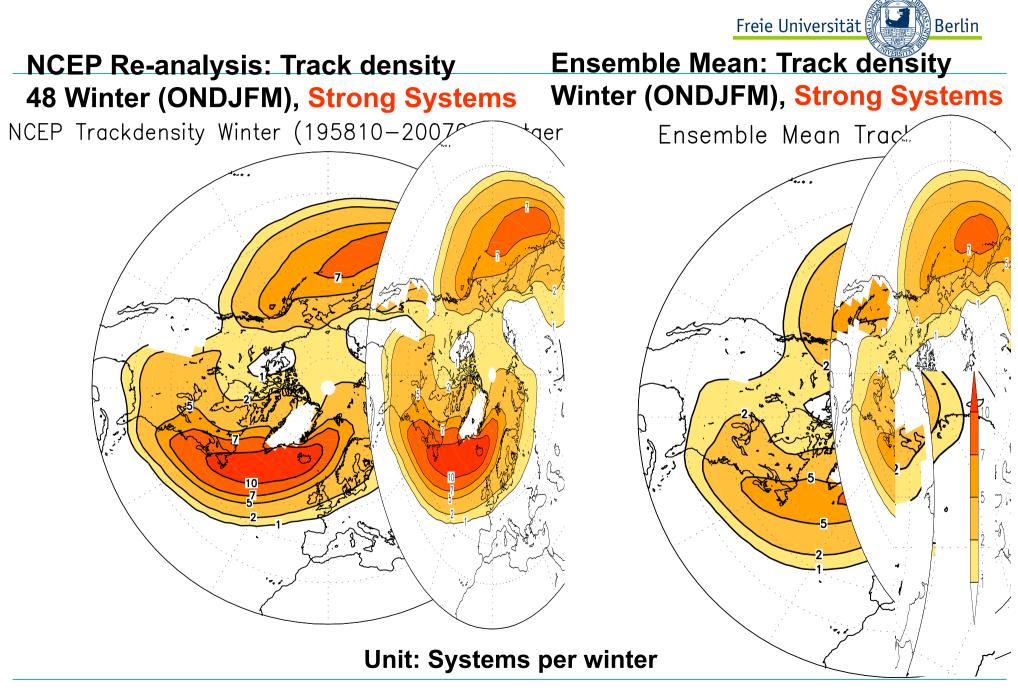

Cyclone track (red), wind-cluster track (blue), MSLP field (isolines in hPa) and exceedance of 98th percentileof wind speed (coloured shading in m/s above local 98th percentile)

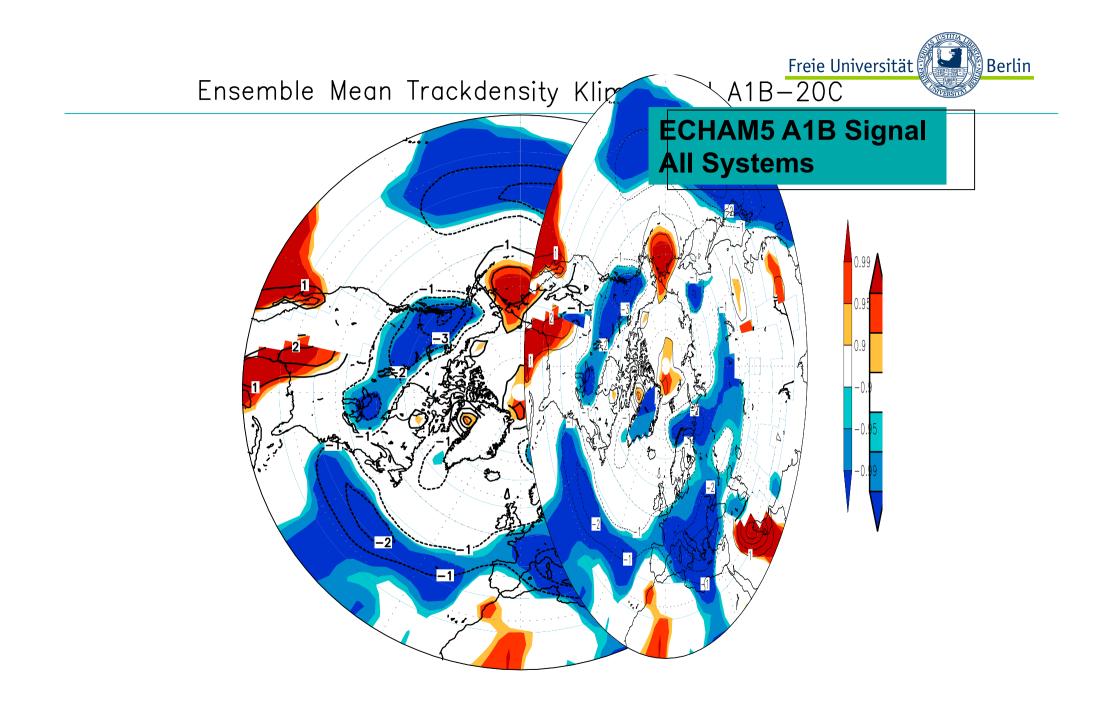
Green dots:

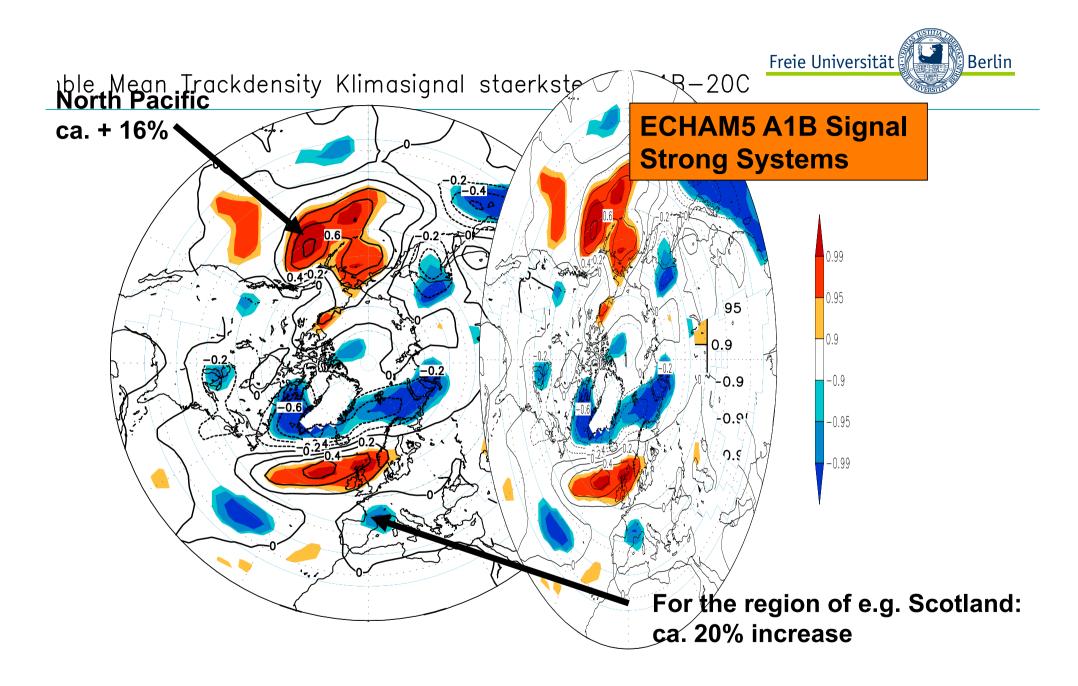
current cyclone core and wind cluster centre.

The total area with wind speeds exceeding the 98th percentile over the 2 day period is shown in gray.

Cyclone weak according to MSLP, 2 extreme wind areas

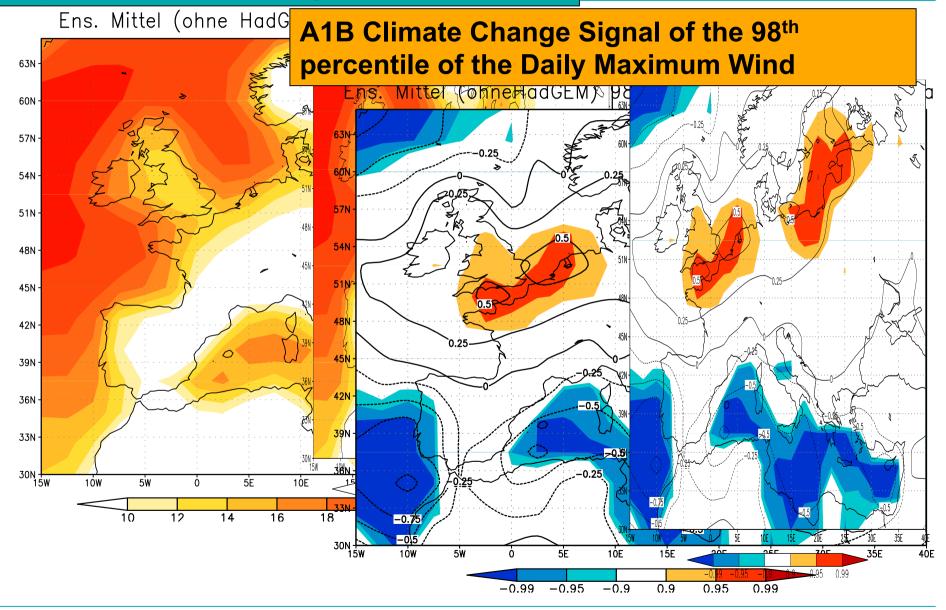

Definition: Extreme Cyclone Systems


```
Systems with a Laplacian of MSLP (\nabla^2 p) above the 95<sup>th</sup> percentile,
```


i.e. only the upper 5% of the distribution are recognised here

NCEP or ERA40 re-analysis: most of the historical relevant winter storms are included

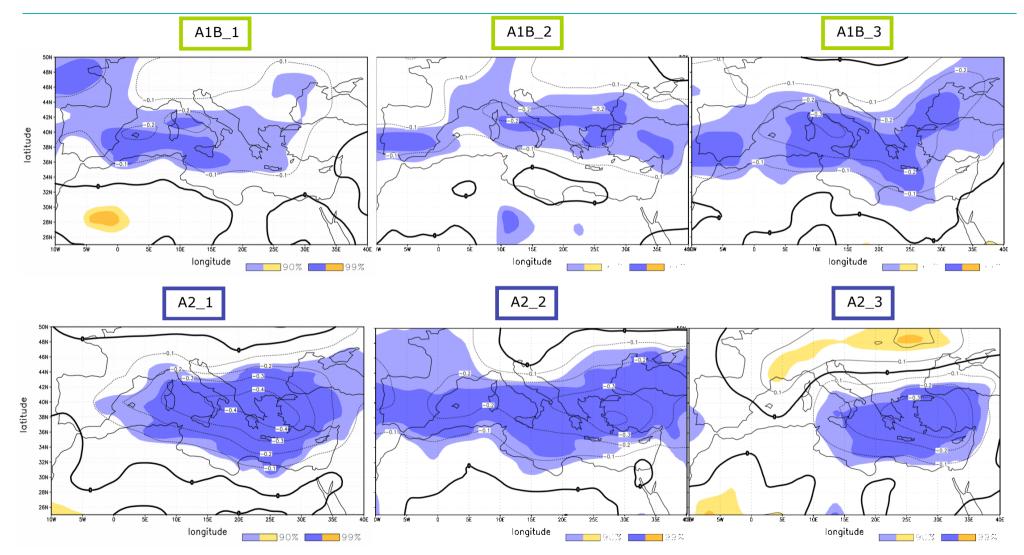
(as far as storms are resolved by re-analysis data)





98th percentile of the Daily Maximum Wind

TRENDS IN WIND STORM FREQUENCY



Linear trends in wind track density 2001-2100 Units: wind events/10winter seasons/(deg.lat)²

MedCLIVAR/ICTP school September 2010

TRENDS IN STORM PRODUCING CYCLONE FREQUENCY

Linear trends in cyclone track density 2001-2100 Units: cyclones/10winter seasons/(deg.lat)²

MedCLIVAR/ICTP school September 2010

ulbrich@met.fu-berlin.de