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1
Basic concepts of computational

geodynamics

1.1 Introduction to scientific computing and
computational geodynamics

Present life without computers is almost impossible: industry and agriculture, government
and media, transportation and insurance are major users of computational power. The ear-
liest and still principal users of computers are researchers who solve problems in science
and engineering or more specifically, who obtain solutions of mathematical models that
represent some physical situation. The methods, tools and theories required to obtain such
solutions are together called scientific computing, and the use of these methods, tools and
theories to resolve scientific problems is referred to as computational science. A majority
of these methods, tools, and theories were developed in mathematics well before the advent
of computers. This set of mathematical theories and methods is an essential part of numer-
ical mathematics and constitutes a major part of scientific computing. The development of
computers signalled a new era in the approach to the solution of scientific problems. Many
of the numerical methods initially developed for the purpose of hand calculation had to be
revised; new techniques for solving scientific problems using electronic computers were
intensively developed. Programming languages, operating systems, management of large
quantities of data, correctness of numerical codes and many other considerations relevant to
the efficient and accurate solution of the problems using a large computer system became
subjects of the new discipline of computer science, on which scientific computing now
depends heavily. Mathematics itself continues to play a major role in scientific computing:
it provides the information about the suitability of a model and the theoretical foundation
for the numerical methods.

There is now almost no area of science that does not use computers for modelling. In
geosciences, meteorologists use parallel supercomputers to forecast weather and to predict
the change of the Earth’s climate; oceanographers use the power of computers to model
oceanic tsunamis and to estimate harmful effects of the hazards on coastal regions; solid
Earth physicists employ computers to study the Earth’s deep interior and its dynamics. The
planet Earth is a complex dynamical system. To gain a better understanding of the evolution
of our planet, several concepts from various scientific fields and from mathematics should
be combined in computational models. Great advances in understanding the Earth as well
as in experimental techniques and in computational tools are transforming geoscience in
general and geodynamics particularly.

Modern geodynamics was born in the late 1960s with the general acceptance of the
plate tectonics paradigm. At the beginning, simple analytical models were developed to
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explain plate tectonics and its associated geological structures. These models were highly
successful in accounting for many of the first order behaviours of the Earth. The necessity
to go beyond these basic models to make them more realistic and to understand better the
Earth shifted the emphasis to numerical simulations. These numerical models have grown
increasingly complex and capable over time with improvements in computational power and
numerical algorithms. This has resulted in the development of a new branch of geoscience:
computational geodynamics.

Characteristic of this new intellectual landscape is the need for strong interaction across
traditional disciplinary boundaries: geodynamics, mathematics and computer science. Com-
putational geodynamics can be defined as a blending of these three areas to obtain a
better understanding of some phenomena through a match between the problem, computer
architecture and algorithms. The computational approach to geodynamics is inherently
multi-disciplinary. Mathematics provides the means to establish the credibility of numeri-
cal methods and algorithms, such as error analysis, exact solutions, uniqueness and stability
analysis. Computer science provides the tools, ranging from networking and visualisation
tools to algorithms matching modern computer architectures.

1.2 Mathematical models of geodynamic problems

Many geodynamic problems can be described by mathematical models, i.e. by a set of partial
differential equations and boundary and/or initial conditions defined in a specific domain.
Models in computational geodynamics predict quantitatively what will happen when the
crust and the mantle deform slowly over geological time, often with the complications of
simultaneous heat transport (e.g. thermal convection in the mantle), phase changes in the
deep interior of the Earth, complex rheology (e.g. non-Newtonian flow, elasticity and plas-
ticity), melting and melt migration, chemical reactions (e.g. thermo-chemical convection),
solid body motion (e.g. idealised continent over the mantle), lateral forces, etc.

A mathematical model links the causal characteristics of a geodynamic process with its
effects. The causal characteristics of the modelled process include, for example, parameters
of the initial and boundary conditions, coefficients of the differential equations, and geo-
metrical parameters of a model domain. The aim of the direct (sometimes called forward)
mathematical problem is to determine the relationship between the causes and effects of the
geophysical process and hence to find a solution to the mathematical problem for a given
set of parameters and coefficients.

An inverse mathematical problem is the opposite of a direct problem.An inverse problem
is considered when there is a lack of information on the causal characteristics (but informa-
tion on the effects of the geophysical process exists). Inverse problems can be subdivided
into time-reverse problems (e.g. to restore the development of a geodynamic process), coef-
ficient problems (e.g. to determine the coefficients of the model equations and/or boundary
conditions), geometrical problems (e.g. to determine the location of heat sources in a model
domain or the geometry of the model boundary), and some others.
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Inverse problems are often ill-posed. Jacques Hadamard, a French mathematician, intro-
duced the idea of well- (and ill-) posed problems in the theory of partial differential equations
(Hadamard, 1902). A mathematical model for a geophysical problem has to be well-posed
in the sense that it has to have the properties of (1) existence, (2) uniqueness and (3) sta-
bility of a solution to the problem. Problems for which at least one of these properties does
not hold are called ill-posed. The requirement of stability is the most important one. If a
problem lacks the property of stability then its solution is almost impossible to compute
because computations are polluted by unavoidable errors. If the solution of a problem does
not depend continuously on the initial data, then, in general, the computed solution may
have nothing to do with the true solution. We should note that despite the fact that many
inverse problems are ill-posed, there are methods for solving the problems (see, for example,
Tikhonov and Arsenin, 1977). While most geodynamic models are concerned with direct
(forward) problems, there is increasing interest in the inverse problem (or data assimilation),
as discussed in Chapter 8.

1.3 Governing equations

In this section we present the basic equations that govern geodynamic processes. The
equations are partial differential equations (PDEs), involving more than one independent
variable. PDEs can be distinguished by the following property. Consider a partial differen-
tial equation in the following form: A�xx + B�xy + C�yy = f (x, y,�,�x,�y), where A,
B and C are constants. Depending on D = B2 − 4AC, a PDE is called elliptic if D < 0,
parabolic if D = 0 or hyperbolic if D > 0. Examples of these in solid Earth dynamics are
the solution of gravitational potential (elliptic), thermal diffusion (parabolic) and seismic
wave propagation (hyperbolic).

Because the mantle behaves basically as a viscous fluid for the geological time scale, the
governing equations describe the flow of highly viscous fluid. The basic conservation laws
used to derive these equations are only briefly summarised (see Chandrasekhar, 1961, and
Schubert et al., 2001, for details).

1.3.1 The equation of continuity

Consider a fluid in which the densityρ is a function of position xj (j = 1, 2, 3 hereinafter). Let
uj denote the components of the velocity. We shall use the notation of Cartesian tensors with
the usual summation convention. Consider the physical law of the conservation of mass:
the rate of change of the mass contained in a fixed volume V of the fluid is given by the
rate at which the fluid flows out of it across the boundary S of the volume. Mathematically
it is expressed as

∂

∂t

∫
V

ρdτ =−
∫
S

ρujdSj , (1.1)
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where τ is the volume element. The use of the Gauss–Ostrogradsky (divergence) theorem
transforms the law of mass conservation into the following equation

∂

∂t

∫
V

ρdτ =−
∫
V

∂

∂xj
(ρuj)dτ . (1.2)

An alternative form of the equation, which is useful for numerical analysis is the Lagrangian
continuity equation:

Dρ

Dt
≡ ∂ρ

∂t
+ uj

∂ρ

∂xj
= −ρ ∂uj

∂xj
, (1.3)

which can also be written in Eulerian form:

∂ρ

∂t
= − ∂

∂xj
(ρuj). (1.4)

For an incompressible fluid, the equation of continuity reduces to:

∂uj

∂xj
= 0, because

∂ρ

∂t
+ uj

∂ρ

∂xj
= Dρ

Dt
= 0. (1.5)

1.3.2 The equation of motion

Consider the physical law of the conservation of momentum: the rate of change of the
momentum contained in a fixed volume V of the fluid is equal to the volume integral of the
external body forces acting on the elements of the fluid plus the surface integral of normal
and shear stresses acting on the bounding surface S of the volume V minus the rate at which
momentum flows out of the volume across the boundaries of V by the motions prevailing
on the surface S. Mathematically it is expressed as

∂

∂t

∫
V

ρuidτ =
∫
V

ρFidτ+
∫
S

σijdSj−
∫
S

ρuiujdSj, (1.6)

where Fi (= gi) is the ith component of external (usually gravity) force per unit of mass;
and σij is the stress tensor. We note that

∂

∂t
(ρui) = ρ ∂ui

∂t
+ ui

∂ρ

∂t
= ρ ∂ui

∂t
− ui

∂

∂xj
(ρuj). (1.7)

If we substitute now expression (1.7) into (1.6), we obtain

∫
V

(
ρ
∂ui

∂t
− ui

∂

∂xj
(ρuj)

)
dτ +

∫
S

ρuiujdSj =
∫
V

ρFidτ+
∫
S

σijdSj . (1.8)
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Integrating by parts the second term of the first volume integral, we obtain

−
∫
V

ui
∂

∂xj
(ρuj)dτ +

∫
S

ρuiujdSj =
∫
V

ρuj
∂ui

∂xj
dτ . (1.9)

Application of the Gauss–Ostrogradsky theorem to the last term in (1.8) gives:∫
S

σijdSj =
∫
V

∂σij

∂xj
dτ . (1.10)

Substituting Eqs. (1.9) and (1.10) in (1.8) we obtain the equation of motion which is valid
for any arbitrary volume V

ρ
∂ui

∂t
+ ρuj

∂ui

∂xj
= ρFi + ∂σij

∂xj
. (1.11)

For linear viscous creep, the stress is related to the rate of increase of strain (strain rate) as

σij = −Pδij + 2ηε̇ij +
(
ηB − 2

3
η

)
δij
∂uk

∂xk

= −Pδij + η
(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3
δij
∂uk

∂xk

)
+ ηBδij

∂uk

∂xk
, (1.12)

where P is the pressure, δij is the Kronecker delta, η is the viscosity, ηB is the bulk viscos-
ity, and ε̇ij is the strain rate tensor. As compaction or dilation is normally accommodated
elastically, ηB is usually assumed to be zero. By substituting the relationship (1.12) into the
equation of motion (1.11) and assuming ηB = 0, we obtain

ρ
∂ui

∂t
+ ρuj

∂ui

∂xj
= ρFi − ∂P

∂xi
+ ∂

∂xj

{
η

(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3
δij
∂uk

∂xk

)}
. (1.13)

For an incompressible, constant-viscosity fluid, equation (1.13) simplifies to

ρ
∂ui

∂t
+ ρuj

∂ui

∂xj
= ρFi − ∂P

∂xi
+ η∇2ui. (1.14)

Equation (1.14) represents the original form of the Navier–Stokes equations.
Now we show that in geodynamical applications the Navier–Stokes equations (1.14)

are transformed into the Stokes equations. Let us define new dimensionless variables and
parameters (denoted by a tilde) as t = t̃l∗/κ∗, x = x̃l∗, u = ũκ∗/l∗, P = P̃η∗κ∗/l2∗ , ρ =
ρ̃ρ∗, and η = η̃η∗, where ρ∗ = 4 × 103 kg m−3, η∗ = 1021 Pa s, l∗ = 3 × 106 m, and
κ∗ = 10−6 m2 s−1 are typical values of the density, viscosity, length and thermal diffusivity
for the Earth’s mantle, respectively. We assume that Fi = (0, 0, g), where g = 9.8 m s−2 is
the acceleration due to gravity.After the replacement of the variables by their dimensionless
form (and omitting tildes), we obtain:

1

Pr
ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= − ∂P

∂xi
+ ∂

∂xj

{
η

(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3
δij
∂uk

∂xk

)}
+ La ρδi3, (1.15)
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where the dimensionless parameter Pr = η∗
ρ∗κ∗ = 2.5 × 1023 is the Prandtl number; and

the dimensionless parameter La = ρ∗gl3∗
η∗κ∗ ∼ 109 is the Laplace number. Note that La =

Ra/(α�T ), where Ra is the Rayleigh number controlling the vigour of thermal convection,
α is the thermal expansivity and �T is the typical temperature variation. Therefore, (1.15)
are reduced to the following elliptic equations called the Stokes equations:

0 = − ∂P

∂xi
+ ∂

∂xj

{
η

(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3
δij
∂uk

∂xk

)}
+ Ra

α�T
ρδi3 (1.16)

or, in dimensional units,

0 = − ∂P

∂xi
+ ∂

∂xj

{
η

(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3
δij
∂uk

∂xk

)}
+ ρFi. (1.17)

For incompressible flow the − 2
3δij

∂uk
∂xk

term is omitted. For constant viscosity and

incompressible flow the second term reduces to η∇2ui as in Eq. (1.14).

1.3.3 The heat equation

Consider the physical law of the conservation of energy. Counting the gains and losses of
energy that occur in a volume V of the fluid, per unit time, we have

∂

∂t

∫
V

ρEdτ =
∫
S

uiσijdSj +
∫
V

ρuiFidτ −
∫
S

k
∂T

∂xj
dSj −

∫
S

ρEujdSj+
∫
V

ρHdτ . (1.18)

Here the first term of the right-hand side of the Eq. (1.18) is the rate at which work is done
on the boundary; the second term represents the rate at which work is done on each element
of the fluid inside V by the external forces; the third term is the rate at which energy in the
form of heat is conducted across S; the fourth term is the rate at which energy is convected
across S by the prevailing mass motion (k is the coefficient of heat conduction); and the
fifth term is the rate at which energy is added by internal heat sources. The first and third
terms of Eq. (1.18) can be represented as follows:∫

S

uiσijdSj =1

2

∂

∂t

∫
V

ρu2
i dτ + 1

2

∫
S

ρu2
i ujdSj −

∫
V

ρuiFidτ +
∫
V

dτ , (1.19)

where  = ∂ui
∂xj

σij is the viscous dissipation function, and

∫
S

k
∂T

∂xj
dSj =

∫
V

∂

∂xj

(
k
∂T

∂xj

)
dτ . (1.20)

The energy E per unit mass of the fluid can be written as

E = 1

2
u2

i + cV T , (1.21)
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where cV is the specific heat at constant volume and T is the temperature. This allows the
fourth term of (1.16) to be rewritten as:

−
∫
S

ρEujdSj = −
∫
S

ρ

[
1

2
u2

i + cV T

]
ujdSj = −1

2

∫
S

ρu2
i ujdSj −

∫
V

∂

∂xj
(ρujcV T )dτ .

(1.22)

Substituting Eqs. (1.19)–(1.22) into (1.18), we obtain∫
V

∂

∂t
(ρcV T )dτ =

∫
V

∂

∂xj

(
k
∂T

∂xj

)
dτ +

∫
V

dτ −
∫
V

∂

∂xj
(ρcV Tuj)dτ +

∫
V

ρHdτ .

(1.23)

Since Eq. (1.23) is valid for any arbitrary volume V , we must have

∂

∂t
(ρcV T )+ ∂

∂xj
(ρcV Tuj) = ∂

∂xj

(
k
∂T

∂xj

)
++ ρH . (1.24)

Noting that the left-hand side of the equation is the Lagrangian time derivative D/Dt, and
applying the derivative separately to T and ρ results in:

ρ
D

Dt
(cV T )+ cV T

Dρ

Dt
= ∂

∂xj

(
k
∂T

∂xj

)
++ ρH , (1.25)

which after some manipulation using thermodynamic expressions leads to the form

ρcp
DT

Dt
− αT

DP

Dt
= ∂

∂xi

(
k
∂T

∂xi

)
++ ρH . (1.26)

This is a general form, valid for compressible flow. Various other forms exist. For exam-
ple for incompressible flow, applying the incompressible continuity equation (1.5) to
equation (1.24) results in the simplified form:

ρ
∂

∂t
(cV T )+ ρuj

∂

∂xj
(cV T ) = ∂

∂xj

(
k
∂T

∂xj

)
++ ρH . (1.27)

We note that Eq. (1.27) is a parabolic equation. Equation (1.26) is often written using the
∇ operator as:

ρcp

(
∂T

∂t
+ u · ∇T

)
− αT

(
∂P

∂t
+ u · ∇P

)
= ∇ · (k∇T )++ ρH . (1.28)

1.3.4 The rheological law

In the mid twentieth century, E. C. Bingham introduced the term of ‘rheology’ in colloid
chemistry, which has a meaning of ‘everything flows’ (in Greek παντα ρει), the motto
of the subject from Heraclitus (Reiner, 1964). A rheological law describes a relationship
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between stress and strain (strain rate) in a material. We often hear that the Earth’s mantle
exhibits the rheological properties of a fluid or a solid. The Deborah number, a dimension-
less number expressing the ratio between the time of relaxation and time of observation,
can assist in the understanding of the behaviour of geomaterials. If the time of observation
is very large (or the time of relaxation of the geomaterial under observation is very small),
the mantle is considered to be a fluid and hence it flows. On the other hand, if the time of
relaxation of the geomaterial is larger than the time of observation, the mantle is considered
to be a solid. Therefore, the greater the Deborah number, the more solid the geomaterial (and
vice versa, the smaller the Deborah number, the more fluid it is). In nature, geomaterials
(e.g. rocks comprising the crust, lithosphere and mantle) exhibit more complicated rheo-
logical behaviour than fluid or solid materials. We consider here a few principal rheological
relationships. For detailed information on rock rheology, the reader is referred to Ranalli
(1995) and Karato (2008).

In geodynamic modelling a viscous rheology is extensively used, because the mantle
behaves as a highly viscous fluid at geological time scales. The equation describing the
relationship between the viscous stress and strain rate can be presented in the following form:

τij = C
1
n ε̇ij ε̇

1−n
n , (1.29)

where τij is the deviatoric stress tensor, C is a proportionality factor defined from the
thermodynamic conditions, ε̇ = (0.5ε̇kl ε̇kl)

1/2 is the second invariant of the strain rate
tensor, and n is a power-law exponent. If n = 1, Eq. (1.29) describes a Newtonian fluid
with C/2 as the fluid’s viscosity, which depends on temperature and pressure as discussed
below. For n > 1, Eq. (1.29) represents a non-Newtonian (non-linear) fluid.

At high temperatures (that are a significant fraction of the melt temperature) the atoms and
dislocations in a crystalline solid become sufficiently mobile to result in creep when the solid
is subject to deviatoric stresses. At very low stresses diffusion processes dominate, and the
crystalline solid behaves as a Newtonian fluid with a viscosity that depends exponentially
on pressure and the inverse absolute temperature. The proportionality factor C in (1.29) can
be then represented as:

C(T , P) = C∗dm exp

(
E + PV

RT

)
, (1.30)

where T is the absolute temperature, P is pressure, C∗ is the proportionality factor that
does not depend on temperature and pressure, E is the activation energy, V is the activation
volume, R is the universal gas constant, and d is the grain size. For dislocation creep, grain
size is unimportant and m = 0, but for diffusion creep m is between 2 and 3. At higher
stresses the motion of dislocations becomes the dominant creep process resulting in a non-
Newtonian fluid behaviour described by Eqs. (1.29)–(1.30), with typically n = 3.5.Thermal
convection in the mantle and some aspects of lithosphere dynamics are attributed to these
thermally activated creep processes. The temperature–pressure dependence of the rheology
of geomaterials is important in understanding the role of convection in transporting heat.

During dislocation creep as mentioned above, diffusion-controlled climb of edge dis-
locations is the limiting process. At low temperatures this is extremely slow, but can be
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bypassed at stresses high enough to force dislocations through obstacles, a process known
as low-temperature (Peierls) plasticity. In this case, the exponential proportionality factor
C becomes stress-dependent. A commonly assumed form of the strain rate dependence on
stress is:

ε̇ = A exp

[
−H0

RT

(
1− σ

σP

)2
]

, (1.31)

where σP is the Peierls stress, which is of order 2–9 GPa, and σ is the second invariant of
the stress tensor.

Creep processes can relax elastic stresses in the lower lithosphere. Such behaviour can
be modelled with a rheological law that combines linear elasticity and linear or non-linear
viscosity. A material that behaves elastically on short time scales and viscously on long
time scales, is referred to as a viscoelastic material. The most commonly employed rheol-
ogy to simulate numerically lithosphere dynamics is the viscoelastic (Maxwell) rheology.
According to the Hooke law of elasticity, the elastic strain εij and the deviatoric stress τij
are related as

τij = μεij , (1.32)

whereμ is the shear modulus. For the fluid we assume a linear Newtonian relation between
viscous strain rate and the stress (consider Eq. (1.29) with n = 1 and C = 2η)

τij = 2η
∂εij

∂t
, (1.33)

where η is the fluid viscosity. The Maxwell model for a viscoelastic geomaterial assumes
that the strain rate of the geomaterial is a superposition of the elastic and viscous strain
rates, namely,

∂εij

∂t
= τij

2η
+ 1

μ

∂τij

∂t
or

(
1+ 2tr

∂

∂t

)
τij = 2η

∂εij

∂t
, (1.34)

where tr = η/μ is the viscoelastic relaxation (or Maxwell relaxation) time. We see that on
time scales short compared with the time of relaxation tr the geomaterial behaves elastically,
and on time scales long compared with tr the material behaves as a Newtonian fluid.

Because the effective viscosity of the shallow lithosphere is very high, its deformation is
no longer controlled by dislocation creep; instead it is determined by (at lower pressures)
the movement of blocks of the lithosphere along pre-existing faults of various orienta-
tions and (at higher pressures) deformation accommodated by distributed microcracking.
The dynamic friction along such faults depends only weakly upon the strain rate, and is
often idealised using the rheological model of a perfectly plastic material, which does not
exhibit work-hardening but flows plastically under constant stress. Hence the stress–strain
relationship for the lithosphere obeys the von Mises equations (Prager and Hodge, 1951)

τij = κε̇ij/ε̇, (1.35)
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where κ is the yield limit. The second invariant of the stress, τ = (0.5τklτkl)
1/2, equals

the yield limit for any non-zero strain rate. When τ < κ , there is no plastic deformation
and hence no motion along the faults. A comparison of Eqs. (1.29) and (1.35) shows that
the perfectly plastic rheology can be considered as the limit of non-Newtonian power-law
rheology as n → ∞ (and C = κ). In rocks, the yield stress κ depends on pressure. If κ
increases linearly with pressure, as is commonly assumed, then this gives the Drucker–
Prager yield criterion, κ = a+ bP, where a and b are constants and P is the pressure.

Brittle failure may be treated by the Mohr–Coulomb failure criterion, which expresses
a linear relationship between the shear stress and the normal stress resolved on the failure
plane, which is oriented at a particular angle,

τf = σf tan φ + c, (1.36)

where τf and σf are the shear stress and normal stress acting on the failure plane, φ is the
angle of internal friction and c is the cohesion. It is often more convenient to express this in
terms of the maximum shear stress τmax and σ̄ , the average of the maximum and minimum
principle stresses:

τmax = σ̄ sin φ + c cosφ. (1.37)

In numerical models the Mohr–Coulomb criterion is often approximated by the Drucker–
Prager criterion, with τmax equal to the second stress invariant and pressure used in place
of σ̄ .

Thus, a fluid behaviour of geomaterials is described by Eqs. (1.29)–(1.31), and (1.33),
elastic behaviour by Eq. (1.32), viscoelastic by Eq. (1.34), perfectly plastic by Eq. (1.35)
and brittle by Eq. (1.36)–(1.37). These relationships are used frequently in geodynamic
modelling.

1.3.5 Other equations

The equations of continuity, motion and heat balance compose the basic equations governing
models of mantle and lithosphere dynamics. Together with the basic equations, additional
equations are necessary to describe the behaviour of mantle rocks, namely, equations of
state, rheological law (or equation for viscosity), equation for phase transformations, etc.
In many practical applications, a linear dependence of density on temperature (equation of
state) is assumed:

ρ = ρ0[1− α(T − T0)], (1.38)

where ρ0 is a reference density, α is the coefficient of thermal expansivity and T0 is a
reference temperature. If phase transformations of mantle rocks are considered the state
equation is modified. The viscosity of mantle rocks is the least well-known parameter
used in numerical modelling of geodynamic problems. The mantle viscosity can depend on
temperature, pressure, grain size, content of water or melt, stress, etc. We shall use various
representations of viscosity in our geodynamic model examples (see Chapter 10).
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1.3.6 Boussinesq approximation

Mantle dynamics is controlled by heat transfer, and the mantle properties are normally func-
tions of temperature. The variations in density due to temperature variations are generally
small and yet are the cause of the mantle motion. If the density variation is not large, one may
treat the density as constant in the continuity equation (i.e. the fluid is assumed to be incom-
pressible (Eq. 1.5)) and in the energy equation (e.g. in the unsteady and advection terms)
and treat it as variable only in the gravitational (buoyancy) term of the momentum equation.

Consider the Stokes equation (1.17) and split the term ρFi = ρgi into two parts: ρ0gi +
(ρ−ρ0)gi. The first part can be included with pressure and the density variation is retained
in the gravitational term. The remaining term can be expressed as:

(ρ − ρ0)gi = −ρ0giα(T − T0). (1.39)

Such simplification of the model is called the Boussinesq approximation. In the strict form
of this, all physical properties except viscosity are constant. The dimensionless mass and
energy conservation equations then become

− ∂P

∂xi
+ ∂

∂xj

{
η

(
∂ui

∂xj
+ ∂uj

∂xi

)}
= RaTδi3,

∂T

∂t
+ uj

∂T

∂xj
= ∂2T

∂x2
j

+ H . (1.40)

If fluid is compressible, compressibility is incorporated in a model using either the extended
Boussinesq approximation, in which the density is still assumed constant in the continuity
equation but the extra terms are included in the energy equation, or the anelastic approx-
imation, in which the density is assumed to vary with position but not with time. Both
approximations are discussed in detail in Section 10.3.

1.3.7 Stream function formulation

The stream function formulation is a way of eliminating pressure and reducing two velocity
components to a single scalar, in two-dimensional geometry. The velocity field v = (u1, u3)

in two dimensions (x1, x3) is related to derivatives of a scalar stream function ψ :

v =
(
∂ψ

∂x3
,− ∂ψ
∂x1

)
. (1.41)

Often, the opposite sign is used. It is easily verified that this satisfies the incompressible
continuity equation (Eq. 1.5). Substituting this into the constant-viscosity Boussinesq Stokes
equation for thermally driven flow,

−∇P + ∇2v = RaTe, (1.42)

where e is the unit vector, and taking the out of plane (y) component of the curl of this
equation yields:

∇4ψ = −Ra
∂T

∂x1
. (1.43)
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Hence, three variables (two velocity components and pressure) have been reduced to one
scalar. This can be solved as a fourth-order differential equation, or split into two second-
order equations:

∇2ω = −Ra
∂T

∂x1
, ∇2ψ = ω, (1.44)

where ω is the vorticity, which is the out of plane (y) component of∇×v. This formulation
can also be used to re-express the variable-viscosity Stokes equation, but a more complicated
expression results (see Malevsky and Yuen, 1992).

1.3.8 Poloidal and toroidal decomposition

A way of simplifying the Stokes and continuity equations in three dimensions is to express
the velocity field in terms of poloidal and toroidal mass flux potentials:

ρv = ∇ × ∇ × (W e)+ ∇ × (Ze), (1.45)

where v = (u1, u2, u3) is the velocity field, W is the poloidal potential, and Z is the toroidal
potential. This automatically satisfies the continuity equation, which is therefore eliminated,
and reduces the three velocity components to two scalars. If the flow is incompressible,
then W and Z become velocity potentials:

v = ∇ × ∇ × (W e)+ ∇ × (Ze). (1.46)

In the case of homogeneous boundary conditions and viscosity that does not vary in the
horizontal directions, there is no source for the toroidal term (see Ricard and Vigny, 1989),
so this further reduces to

v = ∇ × ∇ × (W e). (1.47)

Assuming constant properties and the Boussinesq approximation, by taking the x3-
component of the double curl of the momentum equation (1.42), substituting Eq. (1.47),
and using identities such as ∇ × ∇ × a = ∇ (∇ · a) − ∇2a, the Stokes equation can be
reduced to the simple form:

∇4W = Ra T . (1.48)

The pressure has been eliminated, so the number of variables has been reduced from
four (pressure and three velocity components) to one. A poloidal–toroidal decomposition
can also be used for flow in which viscosity varies (see Christensen and Harder, 1991)
and/or the boundary conditions are not homogeneous (see Hager and O’Connell, 1981),
but then the toroidal component must be retained and the resulting equations become much
more complex.
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1.4 Boundary and initial conditions

The equations given above govern the slow movements of the Earth’s mantle and litho-
sphere. They are the same equations whether the movement is, for example, a thermal
plume rising beneath a particular region, subduction of the lithosphere, a mid-ocean ridge,
convective flow in the upper mantle or whole mantle convection. However, the movements
are different for these cases, although the governing equations are the same. Why? If all
parameters entering the governing equations are the same, the answer is because of the
boundary and initial conditions, which are different for each of the above examples.

For example, rising mantle plumes require mainly free-slip conditions at the boundaries
of a model domain. Meanwhile spreading at a mid-ocean ridge is driven partly by forces
due to distant subduction, so for a local model of a mid-ocean ridge a velocity field should
be imposed at the upper boundary of a model domain. The boundary and initial conditions
dictate the particular solutions to be obtained from the governing equations. Therefore,
once we have the governing equations, then the real driver for any particular solution is the
boundary conditions.

Let us review the proper physical boundary conditions. When the condition on a surface
of the Earth assumes zero relative velocity between the surface and the air immediately at
the surface, we refer to the condition as the no-slip (or rigid) condition. If the surface is
stationary, then

u1 = u2 = u3 = 0. (1.49)

When the velocity at the boundary is a finite, non-zero value and there is no mass flow in
to or out of the model domain, the velocity vector immediately adjacent to the boundary
must be tangential to this boundary. If n is a unit normal vector at a point on the boundary
and uτ is the projection of the velocity vector onto the tangent plane at the same point on
the boundary, the condition at this boundary can be given as

u · n = 0, ∂uτ /∂n = 0. (1.50)

These conditions are called free-slip conditions. The actual surface of the Earth can move
upwards and downwards. The above conditions, in which the upper boundary of the model
domain represents the Earth’s surface and there is no vertical motion at the boundary, are
idealisations made to simplify the model. Modelling an actual free surface that deflects
vertically is more complicated but methods exist, as discussed in Chapter 10.

There is an analogous ‘no-slip’ condition associated with the temperature at the surface.
If the temperature at the surface is denoted by Tu, then the temperature immediately in
contact with the surface is also Tu. If in a given problem the temperature is known, then the
proper condition on the temperature at the upper boundary of the model domain is

T = Tu. (1.51)

On the other hand, if the temperature at the surface is not known, e.g. if it is changing with
time due to heat transfer to the surface, then the Fourier law of heat conduction provides
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the boundary condition at the surface. If we let q̇u denote the instantaneous heat flux to the
surface, then from the Fourier law

q̇u = −
(

k
∂T

∂n

)
u

, (1.52)

where n denotes the direction normal to the surface. The surface rocks are responding to the
heat transfer to the surface, q̇u, hence changing Tu, which in turn affects q̇u. This general,
unsteady heat transfer problem must be solved by treating the viscous flow and the thermal
response of the surface rocks simultaneously. This type of boundary condition is a boundary
condition on the temperature gradient at the surface, in contrast to stipulating the surface
temperature itself as the boundary condition. That is, from Eq. (1.52),

(
∂T

∂n

)
u
= − q̇u

k
. (1.53)

While the above discussion refers to the top boundary of the domain, similar conditions
also apply to the lower boundary, which in global models is the core–mantle boundary.
At the sides, no-slip or free-slip conditions are sometimes assumed, but if the model is
intended to represent the entire mantle then periodic boundaries are most realistic. In local
or regional models, which are often applied to model the crust and/or lithosphere, it is quite
common for material to flow in or out of the domain, either with a prescribed velocity and
temperature or with some other conditions such as prescribed normal stress, but we do not
give mathematical details here.

The boundary conditions discussed above are physical boundary conditions imposed
by nature. Meanwhile in numerical modelling we should sometimes introduce additional
conditions to properly define the mathematical problem under question.

In general, when the value of the variable is given at a boundary of the model domain,
the condition is referred to as a Dirichlet boundary condition. When the gradient of the
variable in a particular direction (usually normal to the boundary) is prescribed to the
model boundary, the condition is called a Neumann boundary condition. Sometimes a
linear combination of the two quantities is given, and in this case the boundary condition
is referred to as a mixed boundary condition.

1.5 Analytical and numerical solutions

Mathematical models of geodynamic processes can be solved analytically or numerically.
Analytical solutions are those that a researcher can obtain by solving mathematical models
by using a pencil, a piece of paper, and his or her own brain activity. Simple mathemati-
cal models allow analytical solutions, which have been (and still are) of great importance
because of their power: the solutions are precise and can be presented by exact formu-
las. However, the usefulness of this power is limited as many mathematical models of
geodynamics are too complicated to be solved analytically.
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Numerical solutions are those that researchers can obtain by solving numerical mod-
els using computational methods and computers. Numerical models allow the solution of
complex problems of geodynamic processes, although the solutions are not exact. In some
geodynamic applications an analytical solution to part of the complex problem can be
implemented into the numerical model to make the model much more effective.

An analytical solution to a specified mathematical problem can be used to verify a numer-
ical solution to the problem; in fact, it is the simplest way to benchmark a numerical code.
Unfortunately, many two- and three-dimensional mathematical problems in geodynamics
have no analytical solutions. But when analytical solutions to such problems are obtained
in some cases, it is like finding water in a desert. For example, an analytical solution to a
three-dimensional model of viscous flow (e.g. describing movements of salt diapirs in sed-
imentary basins) was recently obtained by Trushkov (2002). Considering the equations of
slow viscous incompressible flow coupled with the equation for density advection,Trushkov
(2002) found an exact solution to this set of partial differential equations. This solution can
be used to verify numerical solutions to the problem of gravitational instability.

1.6 Rationale of numerical modelling

Only a few of the differential and partial differential equations describing geodynami-
cal models can be solved exactly, and hence the equations are transformed into discrete
equations to be solved numerically. Although the widespread access to high-performance
computers has resulted in an over-reliance on numerical answers when there are other
possibilities, and a corresponding false sense of security about the possibilities of serious
numerical problems or errors, it is now possible without too much trouble to find solutions
to most equations that are routinely encountered.

The rationale of the numerical modelling is described graphically in Fig. 1.1. The initial
stage of numerical modelling is to describe geodynamic complex reality by a simplifica-
tion of the reality; namely, to introduce the concept of the geodynamic problem, forces
acting on the system (lithosphere, crust, mantle), physical parameters to be used in the
modelling, etc.

A physical model is then developed to which the physical laws can be applied. The next
step in the numerical modelling is to describe the physical model by means of mathematical
equations. The comparison with observations allows the model to be tested (validated). If
the mathematical model is found to be inadequate, it must be changed: the assumed process
is not the correct one, or some significant factors have been missed. The mathematical model
should be properly determined, at least after the numerical values of some still unknown
parameters have been determined (that is, the model is tuned).

Once the mathematical model is developed, proper numerical tools and methods have to
be determined, and relevant numerical codes (software) should be constructed (or otherwise
obtained). The mathematical model should be transformed into the computational model
containing discrete equations to be solved by using computers. An important element of
numerical modelling is verification of the model, namely, the assessment of the accuracy
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Fig. 1.1. Flowchart of numerical modelling.

of the solution to the computational model by comparison with known solutions (analytic
or numerical). Once the computational model is verified, the model can be computed and
numerical results obtained can be tested against observations. If there is good agreement
between the numerical results and observed (field or experimental) data, the model results
can be considered as the model predictions. Sometimes researchers dealing with numerical
modelling make a serious mistake, when all available data have been used to tune the model
and no data have been left to test its validity or, even worse, when the data used for the
model tuning are employed to test model results.

1.7 Numerical methods: possibilities and limitations

By a numerical method we mean a procedure that permits us to obtain the solution to a
mathematical problem with an arbitrary precision in a finite number of steps that can be
performed rationally. The number of steps depends on the desired accuracy. A numerical
method usually consists of a set of directions for the performance of certain arithmetical
or logical operations in predetermined order. This set of directions must be complete and
unambiguous. A set of directions to perform mathematical operations designed to lead to
the solution of a given problem is called an algorithm.

Numerical methods came with the birth of electronic computers. Although many of
the key ideas for numerical solution methods were established several centuries ago, they
were of little use before computers appeared. Interest in numerical methods increased dra-
matically with the development of computer power. Computer solution of the equations
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describing geodynamic processes has become so important that it occupies the attention of
many researchers in geodynamics.

Numerical methods provide possibilities to obtain accurate solutions to geodynamic
problems. However, the numerical results are always approximate. There are reasons for
differences between computed results and observations. Errors arise from each part of the
process used to produce numerical solution (we discuss sources of the errors in Section 1.9):
(i) the physical model is too simplified compared with geodynamic reality; (ii) the equations
(mathematical model) may contain approximations or idealisations; (iii) approximations
are made in the discretisation process; and (iv) in solving the discrete equations, iterative
methods are used and insufficient iterations are taken. Additionally, uncertainty in physical
parameters can lead to differences between computed results and observations.

1.8 Components of numerical modelling

Numerical simulations in geodynamics enable one to analyse and to predict the dynamics of
the Earth’s interior. Computers are employed to solve numerically models of geodynamic
processes. The basic elements of the numerical modelling are as follows: (i) a mathematical
model describing geodynamics; (ii) a discretisation method to convert the mathematical
equations into discrete equations to be solved numerically; (iii) numerical method(s) to
solve the discretised equations; (iv) computer code(s) (i.e. software) to be developed or
to be used, if already developed, that solve numerically the discrete equations; (v) com-
puter hardware, which performs the calculations; (vi) results of numerical modelling to be
visualised, analysed and interpreted by (vii) geoscientist(s).

Models of geodynamical processes described by partial differential (or integro-
differential) equations cannot be solved analytically except in special cases. To obtain an
approximate solution numerically, we have to use the discretisation method, which approx-
imates the differential equations by a set of algebraic equations, which can then be solved
on a computer. The approximations are applied to small domains in space and/or time so
the numerical solution provides results at discrete locations in space and time. Much as the
accuracy of observations depends on the quality of the tools used, the accuracy of numerical
solutions depends on the quality of the discretisations used.

When the governing equations are known accurately, solutions of any desired accuracy
can be achieved. However, for many geodynamic processes (e.g. thermo-chemical convec-
tion, mantle flow in the presence of phase transformations and complex rheology) the exact
equations governing the processes are either not available or numerical solution of the full
equations is not feasible. This requires the introduction of models. Even if we solve the
equations exactly, the solution would not be a correct representation of reality. In order to
validate the models, we have to rely on observations. Even when the exact treatment is
possible, models are often needed to reduce the cost.

Discretisation errors can be reduced by using more accurate interpolation or approxima-
tions or by applying the approximations to smaller regions, but this usually increases the time
and cost of obtaining the solution. Compromise is usually needed. We shall present some
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schemes in detail but shall also point out ways of creating more accurate approximations.
Compromises are also needed in solving the discretised equations. Direct solvers, which
obtain accurate solutions, are seldom used in new codes, because they are too costly. Itera-
tive methods are more common but the errors due to stopping the iteration process too soon
need to be taken into account. The need to analyse and estimate numerical errors cannot be
overemphasised.

Visualisation of numerical solutions using vectors, contours, other kinds of plots or
movies (videos) is essential to interpret numerical results. However, there is the danger that
an erroneous solution may look good but may not correspond to the true solution of a math-
ematical problem. It is especially important in the case of geodynamic problems because
of the complex dynamics of the Earth components (crust, mantle and core). Sometimes
incorrect numerical results are interpreted as physical phenomena. Users of commercial
software should be especially careful, as the optimism of salesmen is legendary. Colour
figures of results of numerical experiments sometimes make a great impression but are of
no value if they are not quantitatively correct. Results must be examined critically before
they are believed.

We follow Ferziger and Peric (2002) in the description of the components of numerical
modelling.

Mathematical model. The starting point of numerical modelling is a mathematical model,
i.e. the set of partial differential or integro-differential equations and boundary conditions.
The equations governing a thermo-convective viscous flow in the Earth’s mantle have been
presented in Section 1.4. An appropriate model should be chosen for a geodynamic applica-
tion (e.g. incompressible, viscous, two- or three-dimensional, etc.). As already mentioned,
this model may include simplifications of the exact conservation laws. A solution method
is usually designed for a particular set of equations.

Coordinate systems. The conservation equations can be written in many different forms,
depending on the coordinate system. For example, one can select Cartesian, cylindrical,
spherical and some others. The choice depends on the target problem, and may influence
the discretisation method and grid type to be used.

Discretisation method. After selecting the mathematical model, one has to choose a suit-
able discretisation method, i.e. a method of approximating the differential equations by a
set of algebraic equations for the variables at some set of discrete locations in space and
time. There are many approaches, but the most popular at this time are finite difference,
finite element and finite volume methods. Spectral methods were popular in the past, partic-
ularly for three-dimensional modelling, but their use is decreasing due to limitations. Other
methods, like boundary element and discrete element methods are also used in geodynamic
modelling, but less often.

Each type of method yields the same solution if the grid is very fine. However, some
methods are more suitable to some classes of problems than others. The preference is often
determined by the attitude of the developer. We shall discuss the pros and cons of the various
methods later.

Numerical grid. This defines the discrete locations at which the unknowns are to be
calculated. The grid is essentially a discrete representation of the geometric domain, on
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which the problem is to be solved. It divides the solution domain into a finite number of
sub-domains (e.g. elements, control volumes, points, etc.)

Structured (regular) grids consist of families of grid lines with the property that members
of a single family do not cross each other and cross each member of the other families only
once. The position of any grid point within the domain is uniquely identified by a set of two
(in two-dimensional spaces) and three (in three-dimensional spaces) indices, e.g. (i, j, k).
This is the simplest grid structure, since it is logically equivalent to a Cartesian grid. Each
point has four nearest neighbours in two dimensions (2-D) and six in three dimensions (3-
D).An example of a structured two-dimensional grid is illustrated in Fig. 1.2a. The simplest
example of a numerical grid is an orthogonal grid.

For complex model domain geometries, unstructured grids are most appropriate. Such
grids are best adapted to the finite element or finite volume approaches. The elements may
have any shape, and there is no restriction on the number of neighbour elements or nodes.
In practice, grids made of triangles or quadrilaterals in 2-D (see Fig. 1.2b), and tetrahedral
or hexahedral in 3-D are most often used. Such grids can be generated automatically by
existing algorithms (see Section 4.8).

Finite approximations. Following the choice of grid type, approximations should be
selected to be used in the discretisation process. In a finite difference method, approx-
imations for the derivatives at the grid points have to be selected. In the finite element
method, one has to choose the shape functions (elements) and weight functions. The choice

(a)

(b)

Fig. 1.2. Examples of two-dimensional structured (a) and unstructured (b) grids.
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of the discretisation process influences the accuracy of the approximation. It also affects the
difficulty of developing the solution method, coding it, debugging it, and the speed of the
code. More accurate approximations involve more nodes and give fuller coefficient matri-
ces.Acompromise between simplicity, ease of implementation, accuracy and computational
efficiency has to be made.

Solution method . Discretisation yields a large set of equations, and the method of solu-
tion depends on the problem. For non-stationary geodynamic processes, numerical methods
for solving initial value problems for ordinary differential equations should be employed.
At each time step a set of algebraic equations has to be solved. When the equations
are non-linear, an iteration scheme is used to solve them. We present some solvers in
Chapters 6 and 7.

Convergence criteria. When iterative methods are employed to solve discrete equations,
convergence criteria should be established. Usually, there are two levels of iterations: inner
iterations, within which the linear equations are solved, and outer iterations, that deal with
the non-linearity and coupling of the equations. Deciding when to stop the iterative process
on each level is important from the accuracy and efficiency points of view.

1.9 Properties of numerical methods

Numerical solution methods have certain important properties; they are summarised below
following Ferziger and Peric (2002).

Consistency. The difference between the discretised and exact equations is called the
truncation error. For a method to be consistent, the truncation error must become zero
when the mesh spacing tends to zero. The truncation error is usually proportional to a
power of the grid spacing �x and/or the time step �t. If the principal term of an equation
is proportional to (�x)n or (�t)n we call the method an nth-order approximation; n > 0 is
required for consistency. Even if the approximations are consistent, it does not necessarily
mean that the solution of the set of discrete equations will become the exact solution to the
differential equation in the limit of small step size. For this to happen, the solution method
has to be stable.

Stability. A numerical solution method is stable if it does not magnify the errors that
appear in the course of numerical solution process. For unsteady problems, stability guar-
antees that the method produces a bounded solution whenever the solution of the exact
equation is bounded. For iterative methods, a stable method is one that does not diverge. Sta-
bility can be difficult to analyse, especially when solving non-linear and coupled equations
with prescribed boundary conditions. There are few stability results for complicated dis-
crete problems, so we should rely on experience and intuition. It is common to estimate
the stability of a method for linear problems with constant coefficients without boundary
conditions. The results obtained in this way can often be applied to more complex problems.

Convergence. A numerical method is said to be convergent if the solution of the discre-
tised equations tends to the exact solution of the differential equation as the grid spacing
tends to zero. For many non-linear problems in geodynamics, which are strongly influenced
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by boundary conditions, the convergence (as well as stability) of a method is difficult to
demonstrate. Therefore, convergence is usually checked using numerical experiments, i.e.
repeating the calculation on a series of successively refined grids. If the method is stable and
if all approximations used in the discretisation process are consistent, it is usually found that
the solution converges to a grid-independent solution. For sufficiently small grid sizes, the
rate of convergence is governed by the order of the principal truncation error component.
This allows one to estimate the error in the solution.

Conservation. Since the equations to be solved are conservation laws, the numerical
scheme should also respect these laws. This means that, at steady state and in the absence of
sources, the amount of a conserved quantity leaving a closed volume is equal to the amount
entering that volume. Conservation is an important property of the solution method, since it
imposes a constraint on the solution error. If conservation of mass, momentum and energy
are insured, the error can only improperly distribute these quantities over the solution
domain. Non-conservative schemes can produce artificial sources, changing the balance
both locally and globally. However, non-conservative schemes can be consistent and stable
and therefore lead to correct solutions in the limit of very fine grids. The errors due to
non-conservation are in most cases significant only on relatively coarse grids. Meanwhile
it is difficult to estimate the size of the grid at which these errors are small enough, and
hence conservative schemes are preferred.

Boundedness. Numerical solution should lie within proper bounds. Physically non-
negative quantities (like density and viscosity) must always be positive. In the absence
of sources, some equations (e.g. the heat equation for the temperature when no heat sources
are present) require that the minimum and maximum values of the variable be found
on the boundaries of the domain. These conditions should be inherited by the numerical
approximation.

Accuracy. This is the most important property of numerical modelling. Numerical solu-
tions of geodynamic problems are only approximate solutions. In addition to the errors
that might be introduced in the course of the development of the solution algorithm, in
programming or setting up the boundary conditions, numerical solutions always include
three kinds of systematic error.

– Modelling errors, which are defined as the difference between the actual process and the
exact solution of the mathematical model (modelling errors are introduced by simplifying
the model equations, the geometry of the model domain, the boundary conditions, etc.).

– Discretisation errors, defined as the difference between the exact solution of the conser-
vation equations and the exact solution of the algebraic system of equations obtained by
discretising these equations.

– Iteration errors, defined as the difference between the iterative and exact solutions of the
algebraic system of equations.

It is important to be aware of the existence of these errors, and even more to try to
distinguish one from another. Various errors may cancel each other, so that sometimes a
solution obtained on a coarse grid may agree better with the experiment than a solution on
a finer grid – which, by definition, should be more accurate.
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1.10 Concluding remarks

The success in numerical modelling of geodynamical processes is based on the following
basic, but simple, rules.

(i) ‘People need simplicity most, but they understand intricacies best’ (B. Pasternak,
writer). Start from a simple mathematical model, which describes basic physical laws
by a set of equations, and then develop to more complex models. Never start from a
complex model, because in this case you cannot understand the contribution of each
term of the equations to the solution of the model.

(ii) Use analytical methods at first (if possible) to solve the mathematical problem. If it is
impossible to derive an analytical solution, transform the mathematical problem into
a discrete problem.

(iii) Study the numerical methods behind your computer code. Otherwise it becomes dif-
ficult to distinguish true and erroneous solutions to the discrete problem, especially
when your problem is complex enough.

(iv) Test your model against analytical and/or asymptotic solutions, and simple model
examples. Develop benchmark analysis of different numerical codes and compare
numerical results with laboratory experiments. Remember that the numerical tool you
employ is not perfect, and there are small bugs in every computer code. Therefore the
testing is the most important part of your numerical modelling.

(v) Learn relevant statements concerning the existence, uniqueness and stability of the
solution to the mathematical and discrete problems. Otherwise you can solve an
improperly posed problem, and the results of the modelling will be far from the
true solution of your model problem.

(vi) Try to analyse numerical models of a geophysical phenomenon using as little as possi-
ble tuning of model parameters.Two tuning parameters already give enough possibility
to constrain a model well with respect to observations. Data fitting is sometimes quite
attractive and can take one far from the principal aim of numerical modelling in
geodynamics: to understand geophysical phenomena and to simulate their dynam-
ics. If the number of tuning model parameters are greater than two, test carefully the
effect of each of the parameters on the modelled phenomenon. Remember: ‘With four
exponents I can fit an elephant’ (E. Fermi, physicist).

(vii) Make your numerical model as accurate as possible, but never put the aim to reach a
great accuracy. ‘Undue precision of computations is the first symptom of mathematical
illiteracy’ (N. Krylov, mathematician).

How complex should a numerical model be? ‘A model which images any detail of the
reality is as useful as a map of scale 1:1’ (J. Robinson, economist). This message is quite
important for geoscientists who study numerical models of complex geodynamical pro-
cesses. Geoscientists will never create a model that represents the Earth dynamics in full
complexity, but we should try to model the dynamics in such a way as to ‘simulate’ basic
geophysical processes and phenomena.
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23 1.10 Concluding remarks

Does a particular model have a predictive power? Each numerical model has a predic-
tive power, otherwise the model is useless. The predictability of the model varies with its
complexity. Remember that a solution to the numerical model is an approximate solution to
the equations, which have been chosen in the belief that they describe dynamic processes
of the Earth. Therefore, a numerical model predicts dynamics of the Earth as well as the
mathematical equations describe this dynamics.
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a b s t r a c t

We consider an inverse (time-reverse) problem of thermal evolution of a viscous inhomogeneous incom-
pressible heat-conducting fluid describing dynamics of the Earth’s mantle. Present observations of geo-
physical fields (temperature, velocity) are incorporated in a three-dimensional dynamic model to
determine the initial conditions of the fields. We present and compare numerical techniques for solving
the inverse problem: backward advection, variational (adjoint), and quasi-reversibility methods. The
methods are applied to restore the evolution of the mantle structures such as rising plumes and
descending lithospheric plates.
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1. Introduction

Many geodynamic problems can be described by mathematical
models, i.e., by a set of partial differential equations and boundary
and/or initial conditions defined in a specific domain. A mathemat-
ical model links the causal characteristics of a geodynamic process
with its effects. The aim of the direct mathematical problem is to
determine the relationship between the causes and effects of the
geodynamic process and hence to find a solution to the mathemat-
ical problem for a given set of parameters and coefficients. An in-
verse problem is the opposite of a direct problem. An inverse
problem is considered when there is a lack of information on the
causal characteristics (but information on the effects of the geo-
physical process exists). Inverse problems can be subdivided into
time-reverse or retrospective problems (e.g., to restore the devel-
opment of a geodynamic process), coefficient problems (e.g., to
determine the coefficients of the model equations and/or boundary
conditions), geometrical problems (e.g., to determine the location
of heat sources in a model domain or the geometry of the model
boundary), and some others. In this paper, we will consider

time-reverse (retrospective) problems of thermal evolution of the
Earth’s interior.

The Earth’s mantle is heated from the Earth’s core and from in-
side due to decay of radioactive elements. Since thermal convec-
tion in the mantle is described by heat advection and diffusion,
one can ask: is it possible to tell, from the present temperature
estimations of the Earth, something about the Earth’s temperature
in the geological past? Even though heat diffusion is irreversible in
the physical sense, it is possible to predict accurately the heat
transfer in the past without contradicting the basic thermody-
namic laws.

The inverse retrospective problem of thermal convection in the
mantle is an ill-posed problem, since the backward heat problem,
describing both heat advection and conduction through the mantle
backwards in time, possesses the properties of ill-posedness [1]. In
particular, the solution to the problem does not depend continu-
ously on the initial data. As for the existence and uniqueness of
the solution to the backward heat problem, they are proven for
several specific cases (we discuss it below). The authors do not
know any proven statements about existence and uniqueness of
the solution either to the direct or to the inverse thermal convec-
tion problem in three-dimensional cases.

To restore thermal structures in the mantle (e.g., ascending
plumes, that is, hot mantle rocks rising through the surrounding
colder rocks, and descending lithospheric plates, that is, cold
and hence dense rocks subsiding into the hotter mantle) in the
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geological past, data assimilation techniques can be used to con-
strain the initial conditions for themantle temperature and velocity
from their present observations. The initial conditions so obtained
can then be used to run forward models of mantle dynamics to re-
store the evolution of mantle structures. Data assimilation can be
defined as the incorporation of observations (in the present) and
initial conditions (in the past) in an explicit dynamic model to pro-
vide time continuity and coupling among the physical fields (e.g.,
velocity, temperature). The basic principle of data assimilation is
to consider the initial condition as a control variable and to opti-
mize the initial condition in order to minimize the discrepancy be-
tween the observations and the solution of the model.

If heat diffusion is neglected, the present mantle temperature
and flow can be assimilated using the backward advection (BAD)
into the past. Two- and three-dimensional numerical approaches
to the solution of the inverse problem of the Rayleigh–Taylor insta-
bility were developed for a dynamic restoration of diapiric struc-
tures to their earlier stages (e.g. [2–5]). The mantle flow was
modeled backwards in time from present-day mantle density het-
erogeneities inferred from seismic observations (e.g. [6,7]). Both
direct (forward in time) and inverse (backward in time) problems
of the heat (density) advection are well-posed. This is because the
time-dependent advection equation has the same form of charac-
teristics for the direct and inverse velocity field (the vector velocity
reverses its direction, when time is reversed). Therefore, numerical
algorithms used to solve the direct problem of the gravitational
instability can also be used in studies of the time-reverse problems
by replacing positive time-steps with negative ones.

In sequential filtering a numerical model is computed forward
in time for the interval for which observations have been made,
updating the model each time where observations are available.
The sequential filtering was used to compute mantle circulation
models [8,9]. Despite sequential data assimilation well adapted
to mantle circulation studies, each individual observation influ-
ences the model state at later times. Information propagates from
the geological past into the future, although our knowledge of the
Earth’s mantle at earlier times is much poor than that at present.

The variational (VAR) data assimilation method has been pio-
neered by meteorologists and used very successfully to improve
operational weather forecasts (e.g. [10]). The data assimilation
has also been widely used in oceanography (e.g. [11]) and in hydro-
logical studies (e.g. [12]). However, the application of the method
to problems of geodynamics (dynamics of the solid Earth) is still
in its infancy. The use of VAR data assimilation in models of geody-
namics (to estimate mantle temperature and flow in the geological
past) has been put forward by Bunge et al. [13] and Ismail-Zadeh
et al. [14,15] independently in 2003. The VAR approach by Is-
mail-Zadeh et al. [15] is computationally less expensive, because
it does not involve the Stokes equation into the iterations between
the direct and adjoint problems, and this approach admits the use
of temperature-dependent viscosity. The VAR data assimilation
algorithm was employed to restore numerically models of present
prominent mantle plumes to their past stages [16] and to recover
the structure of mantle plumes prominent in the past from that
of present plumes weakened by thermal diffusion [17]. The VAR
method was recently used to study dynamics models of thermal
plumes and lithospheric plates in the mantle (e.g. [18,19]).

The use of the quasi-reversibility (QRV) method [20] implies the
introduction into the backward heat equation of the additional
term involving the product of a small regularization parameter
and a higher order temperature derivative. The data assimilation
in this case is based on a search of the best fit between the forecast
model state and the observations by minimizing the regularization
parameter. The modified QRV method was recently introduced in
geodynamic modeling and employed to assimilate data in models
of mantle dynamics [21,22].

The advances in numerical modeling and in data assimilation
attract an interest of the geophysical community dealing with
dynamics of the mantle structures. The aim of this paper is to re-
view the VAR and QRV data assimilation methods introduced by
the authors and to compare them with the BAD method used
widely in geodynamic modeling for years.

2. Mathematical statement of the problem and numerical
approach

We assume that the Earth’s mantle behaves as a Newtonian
incompressible fluid with a temperature-dependent viscosity and
infinite Prandtl number [23]. The mantle flow is described by heat,
motion, and continuity equations [23,24]. To simplify the govern-
ing equations, we make the Boussinesq approximation keeping
the density constant everywhere except for buoyancy term in the
equation of motion [25].

In the three-dimensional (3-D) model domain
X = [0,x1 = 3h] � [0,x2 = 3h] � [0,x3 = h], we consider the boundary
value problem for the flow velocity (it includes the Stokes equation
and the incompressibility equation subject to appropriate bound-
ary conditions)

rP ¼ divðgðTÞEÞ þ RaTe; x 2 X; ð1Þ
divu ¼ 0; x 2 X; ð2Þ
u � n ¼ 0; @us=@n ¼ 0; x 2 @X; ð3Þ
and the initial-boundary value problem for temperature (it includes
the heat equation subject to appropriate boundary and initial
conditions)

@T=@t þ u � rT ¼ r2T þ f ; t 2 ½0; #�; x 2 X; ð4Þ
r1T þ r2@T=@n ¼ T�; t 2 ½0; #�; x 2 @X; ð5Þ
Tð0;xÞ ¼ T0ðxÞ; x 2 X: ð6Þ
Here x = (x1,x2,x3) are the Cartesian coordinates; T, t, u, P, and g are
dimensionless temperature, time, velocity, pressure, and viscosity,
respectively; E = eij(u) = {oui/oxj + ouj/oxi} is the strain rate tensor;
ui are the velocity components; e = (0,0,1) is the unit vector; r is
the gradient operator; div is the divergence operator; f is the heat
source; n is the outward unit normal vector at a point on the model
boundary; us is the projection of the velocity vector onto the tan-
gent plane at the same point on the model boundary; [t = 0, t = #]
is the model time interval; r1 and r2 are some piecewise smooth
functions or constants such that r2

1 þ r2
2 – 0.

The Rayleigh number is defined as Ra ¼ agqrefDTh
3g�1

refj�1,
where a is the thermal expansivity, g is the acceleration due to
gravity, qref and gref are the reference typical density and viscosity,
respectively; DT is the temperature contrast between the lower
and upper boundaries of the model domain; and j is the thermal
diffusivity. Length, temperature, and time are normalized by h,
DT, and h2j�1, respectively. The physical parameters of the fluid
(temperature, velocity, pressure, viscosity, and density) are as-
sumed to depend on time and on space coordinates. The mantle
behaves as a Newtonian fluid on geological time scales, and a
dimensionless temperature-dependent viscosity law [26] given by

gðTÞ ¼ exp
M

T þ G
� M
0:5þ G

� �

is used in the modeling, where M = [225/ln(r)] � 0.25ln(r), G = 15/
ln(r) � 0.5 and r is the viscosity ratio between the upper and lower
boundaries of the model domain. We consider the impermeability
condition with perfect slip on oX. The perfect slip, no slip (u = 0)
or their combinations are used as boundary conditions in modeling
of geodynamic processes [26]. In fact, our knowledge about the con-
ditions of motion at boundaries of a geological domain is limited.
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Meanwhile, the perfect slip (symmetry) condition approximates
well conditions at boundaries of a geological domain in many prac-
tical case studies. When the rates of the Earth’s surface motion are
available, the data are used to constrain the conditions at the upper
boundary of a numerical model.

Choosing r1, r2, and T* in a proper way we can specify temper-
ature or heat flux at the model boundaries. Surface temperatures
and heat flux are known in many geological domains, and therefore
the use of the data is straightforward in geodynamic modeling. By
Cu = {x : (x e oX) \ (x3 = l3)}, Cl = {x : (x e oX) \ (x3 = 0)}, and Cv ¼
[i¼1;2fx : ðx 2 XÞ \ ðxi ¼ 0Þg [ fx : ðx 2 XÞ \ ðxi ¼ liÞg, we denote
the parts of the model boundary that Cu [ Cl [ Cv ¼ @X. We as-
sume the constant temperature at the horizontal boundaries and
zero heat flux at vertical boundaries of the model domain:
r1(t,x) = 1, r2(t,x) = 0, and T*(t,x) = 0 at (t,x) e [0,#] � Cu;
r1(t,x) = 1, r2(t,x) = 0, and T*(t,x) = 1 at (t,x) e [0,#] � Cl; and
r1(t,x) = 0, r2(t,x) = 1, and T*(t,x) = 0 at (t,x) e [0,#] � Cv.

The direct problem of thermo-convective flow is formulated as
follows: find the velocity u = u(t,x), the pressure P = P(t,x), and the
temperature T = T(t,x) satisfying boundary value problem (1)–(3)
and initial-boundary value problem (4)–(6). We can formulate
the inverse problem in this case as follows: find the velocity, pres-
sure, and temperature satisfying boundary value problem (1)–(3)
and the final-boundary value problem which includes Eqs. (4)
and (5) and the final condition:

Tð#;xÞ ¼ T#ðxÞ; x 2 X; ð7Þ
where T0 is the temperature at time t = #.

3. Variational (VAR) method for data assimilation

In this section, we describe a variational approach to 3-D
numerical restoration of thermo-convective mantle flow (see de-
tails in [16]). The variational data assimilation is based on a search
of the best fit between the forecast model state and the observa-
tions by minimizing an objective functional (a normalized residual
between the target model and observed variables) over space at
each time step. To minimize the objective functional over time,
an assimilation time interval is defined and an adjoint model is
typically used to find the derivatives of the objective functional
with respect to the model states.

The method for variational data assimilation can be formulated
with a weak constraint (a generalized inverse) where errors in the
model formulation are taken into account [13] or with a strong
constraint where the model is assumed to be perfect except for
the errors associated with the initial conditions [15,16]. The gener-
alized inverse of mantle convection considers model errors, data
misfit and the misfit of parameters as control variables. Unfortu-
nately the generalized inverse presents a tremendous computa-
tional challenge and is difficult to solve in practice, and therefore,
the strong constraint makes the problem computationally
tractable.

We consider the following objective functional:

JðuÞ ¼ kTð#; �;uÞ � vð�Þk2; ð8Þ
where k�k denotes the norm in the space L2(X) (the Hilbert space
with the norm defined as kyk ¼ R

X y2ðxÞdx� �1=2). Since in what fol-
lows the dependence of solutions of the thermal boundary value
problems on initial data is important, we introduce these data
explicitly into the mathematical representation of temperature.
Here Tð#; �;uÞ is the solution of the problem (4)–(6) at the final time
#, which corresponds to some (unknown as yet) initial temperature
distribution u(x); v(x) = T(#,x;T0) is the known temperature distri-
bution at the final time, which corresponds to the initial tempera-
ture T0(�). The functional has its unique global minimum at value
u � T0 and J(T0) � 0, rJ(T0) � 0. The uniqueness of the global mini-

mum of the objective functional follows from the uniqueness of the
solution of the relevant boundary value problem for the heat equa-
tion and from a strong convexity of the functional [29]. Therefore, if
a solution to the backward heat problem exists, the solution is
unique.

To find the minimum of the functional we employ the gradient
method (k = 0, . . .,k�, . . .):

ukþ1 ¼ uk � bkrJðukÞ; u0 ¼ eT ; ð9Þ

bk ¼
JðukÞ=krJðukÞk; 0 6 k 6 k�;
1=ðkþ 1Þ; k > k�;

�
ð10Þ

where eT is an initial temperature guess, and k* is a natural number.
The minimization method belongs to a class of limited-memory
quasi-Newton methods [27], where approximations to the inverse
Hessian matrices are chosen to be the identity matrix. The gradient
of the objective functional rJ(uk) decreases steadily with the num-
ber of iterations providing the convergence, although the absolute
value of J(uk)/krJ(uk)k increases with the number of iterations,
and it can result in instability of the iteration process. To enhance
the rate of convergence and to stabilize the solution at the same
time, we perform initially several iterations (k* = 5) using bk =
J(uk)/krJ(uk)k and then replace the expression by bk = 1/(k + 1) as
described in (10).

Let us assume that the gradient of the objective functional
rJ(uk) is computed with an error and krJd(uk) �rJ(uk)k < d,
where rJd(uk) is the computed value of the gradient and d is a
constant. We introduce the function u1 ¼ u0 �

P1
k¼1bkrJðukÞ,

assuming that the infinite sum exists, and the function u1
d ¼

u0 �
P1

k¼1bkrJdðukÞ as the computed value of u1. For stability of
the iteration method (9), the following inequality should be met:

ku1
d �u1k ¼

X1
k¼1

bkðrJdðukÞ � rJðukÞÞ
�����

�����
6

X1
k¼1

bkkrJdðukÞ � rJðukÞk 6 d
X1
k¼1

bk:

If bk = 1/kp and p > 1, the sum
P1

k¼1bk is finite. We use p = 1, but the
number of iterations is limited, and therefore the iteration method
is conditionally stable, although the convergence rate of these iter-
ations is low.

The minimization algorithm requires the calculation of the gra-
dient of the objective functional, rJ. This can be done through the
use of the adjoint problem for the problem (4)–(6) with the rele-
vant boundary and initial conditions. In the case of the heat prob-
lem, the adjoint problem can be represented in the following form:

@W=@t þ u � rWþr2W ¼ 0; x 2 X; t 2 ð0; #Þ; ð11Þ
r1Wþ r2@W=@n ¼ 0; x 2 @X; t 2 ð0; #Þ; ð12Þ
Wð#; xÞ ¼ 2ðTð#;x;uÞ � vðxÞÞ; x 2 X: ð13Þ
We showed that the solution to the adjoint problem (11)–(13) is the
gradient of the objective functional (8): W(0, �) =rJ(u) [15].

Implementation of minimization algorithms requires the evalu-
ation of both the objective functional (8) and its gradient rJ. Each
evaluation of the objective functional requires an integration of the
model problem (4)–(6), whereas the gradient is obtained through
the backward integration of the adjoint problem (11)–(13). The
performance analysis shows that the CPU time required to evaluate
the gradient J is about the CPU time required to evaluate the objec-
tive functional itself, and this is because the direct and adjoint heat
problems are described by the same equations. Information on the
properties of the Hessian matrix (r2J) is important in many as-
pects of minimization problems [28]. To obtain sufficient condi-
tions for the existence of the minimum of the problem, the
Hessian matrix must be positive definite at T0 (optimal initial
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temperature). However, an explicit evaluation of the Hessian ma-
trix in our case is prohibitive due to the number of variables.

We describe now the algorithm for numerical solution of the
inverse problem (1)–(6) of thermal convection in the mantle using
the VAR method. A uniform partition of the time axis is defined
at points tn = # � dtn, where dt is the time step, and n successively
takes integer values from 0 to some natural number m = #/dt.
At each subinterval of time [tn+1, tn], the search of the temperature
T and flow velocity u at t = tn+1 consists of the following basic
steps:

Step 1. Given the temperature T = T(tn,x) at t = tn we solve a set
of linear algebraic equations derived from (1)–(3) in order to
determine the velocity u.
Step 2. The ‘advective’ temperature Tadv = Tadv(tn+1,x) is deter-
mined by solving the advection heat equation backward in
time, neglecting the diffusion term in (4). This can be done by
replacing positive time-steps by negative ones. Given the tem-
perature T = Tadv at t = tn+1 Steps 1 and 2 are then repeated to
find the velocity uadv = u(tn+1,x;Tadv).
Step 3. The heat equation (4) is solved with the boundary
condition (5) and the initial condition uk(x) = Tadv(tn+1,x),
k = 0,1,2, . . .,m forward in time using velocity uadv in order to
find T(tn,x;uk).
Step 4. The adjoint equation of (11) is then solved backward in
time with the boundary condition (12) and the initial condition
W(tn,x) = 2(T(tn,x;uk) � v(x)) using velocity u in order to deter-
mine rJ(uk) =W(tn+1,x;uk).
Step 5. The coefficient bk is determined from (10), and the tem-
perature is updated (i.e. uk+1 is determined) from (9).
Steps 3–5 are repeated until

dun ¼ JðunÞ þ krJðunÞk2 < e; ð14Þ
where e is a small constant. Temperature uk is then considered
to be the approximation to the target value of the initial temper-
ature T(tn+1,x). And finally, Step 1 is used to determine the flow
velocity u(tn+1,x;T(tn+1,x)). Step 2 introduces a pre-conditioner
to accelerate the convergence of temperature iterations in Steps
3–5 at high Rayleigh number. At low Ra, Step 2 is omitted and
uadv is replaced by u. After these algorithmic steps, we obtain
temperature T = T(tn,x) and flow velocity u = u(tn,x) correspond-
ing to t = tn, n = 0, ...,m. Based on the obtained results, we can use
interpolation to reconstruct, when required, the entire process
on the time interval [0,#] in more detail.
Thus, at each subinterval of time we apply the VAR method to

the heat equation only, iterate the direct and conjugate problems
for the heat equation in order to find temperature, and determine
backward flow from the Stokes and continuity equations twice (for
‘advective’ and ‘true’ temperatures). The solution of the backward
heat problem is therefore reduced to solutions of series of forward
problems, which are known to be well-posed [29].

Although the VAR data assimilation technique described above
can theoretically be applied to many problems of mantle and lith-
osphere dynamics, a practical implementation of the technique for
modeling of real geodynamic processes backward in time (to re-
store the temperature and flow pattern in the past) is not a simple
task. Smoothness of the input (present) temperature and of the tar-
get (initial) temperature in the past is an important factor in back-
ward modeling.

Samarskii et al. [30] studied a one-dimensional (1-D) backward
heat diffusion problem and showed that the solution to this prob-
lem becomes noisy if the initial temperature guess is slightly per-
turbed, and the amplitude of this noise increases with the initial
perturbations of the temperature guess. They suggested using a
special filter to reduce the noise and illustrate the efficiency of

the filter. This filter is based on the replacement of iterations (9)
by the following iterative scheme:

Bðukþ1 �ukÞ ¼ �bkrJðukÞ; ð15Þ
where By = y �r2y. Unfortunately, employment of this filter in-
creases the number of iterations to obtain the target temperature
and it becomes quite expensive computationally, especially when
the model is three-dimensional. In practice, our approach to this
problem was to run the model backward to the point of time when
the noise becomes relatively large. Another way to reduce the noise
is to employ high-order adjoint [31] or regularization (e.g. [20,32])
techniques.

4. Quasi-reversibility (QRV) method for data assimilation

In this section, we describe a quasi-reversibility approach to 3-
D numerical restoration of thermo-convective mantle flow (see de-
tails in [21]). The principal idea of the quasi-reversibility method is
based on the transformation of an ill-posed problem into a well-
posed problem [20]. In the case of the backward heat equation, this
implies an introduction of an additional term into the equation,
which involves the product of a small regularization parameter
and higher order temperature derivative. The additional term
should be sufficiently small compared to other terms of the heat
equation and allow for simple additional boundary conditions.
The data assimilation in this case is based on a search of the best
fit between the forecast model state and the observations by min-
imizing the regularization parameter. The regularized backward
heat problem has the unique solution [20,36,40].

The transformation to the regularized backward heat problem is
not only a mathematical approach to solving ill-posed backward
heat problems, but has some physical meaning: it can be explained
on the basis of the concept of relaxing heat flux for heat conduction
(e.g. [33]). The classical Fourier heat conduction theory provides
the infinite velocity of heat propagation in a region. The instanta-
neous heat propagation is unrealistic, because the heat is a result
of the vibration of atoms and the vibration propagates in a finite
speed [34]. To accommodate the finite velocity of heat propaga-
tion, a modified heat flux model was proposed by Vernotte [33]
and Cattaneo [35].

To solve the inverse problem by the QRV method we suggested
to consider the following regularized backward heat problem to
define temperature in the past from the known temperature
T0(x) at present time t = # [21]:

@Tb=@t � ub � rTb ¼ r2Tb þ f � bKð@Tb=@tÞ; t 2 ½0; #�; x 2 X;

ð16Þ
r1Tb þ r2@Tb=@n ¼ T�; t 2 ð0; #Þ; x 2 @X; ð17Þ
r1@

2Tb=@n2 þ r2@
3Tb=@n3 ¼ 0; t 2 ð0; #Þ; x 2 @X; ð18Þ

Tbð#;xÞ ¼ T#ðxÞ; x 2 X; ð19Þ
whereKðTÞ ¼ @4T=@x41 þ @4T=@x42 þ @4T=@x43, and the boundary value
problem to determine the fluid flow:

rPb ¼ �div½gðTbÞEðubÞ� þ RaTbe; x 2 X; ð20Þ
divub ¼ 0; x 2 X; ð21Þ
ub � n ¼ 0; @ðubÞs=@n ¼ 0; x 2 @X: ð22Þ
Hereinafter we refer to temperature T0 as the input temperature for
the problem (16)–(22). The core of the transformation of the heat
equation is the addition of a high-order differential expression
K(oTb/ot) multiplied by a small parameter b > 0. Note that Eq. (18)
is added to the boundary conditions to properly define the regular-
ized backward heat problem. The solution to the regularized back-
ward heat problem is stable for b > 0, and the approximate solution
to (16)–(22) converges to the solution of (1)–(5) and (7) in some
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spaces, where the conditions of well-posedness are met [36]. Thus,
the inverse problem of thermo-convective mantle flow is reduced to
determination of the velocity ub = ub(t,x), the pressure Pb = Pb(t,x),
and the temperature Tb = Tb(t,x) satisfying (16)–(22).

We seek a maximum of the following functional with respect to
the regularization parameter b:

d� kTðt ¼ #; �; Tbk ðt ¼ 0; �ÞÞ � vð�Þk ! max
k

; ð23Þ
bk ¼ b0q

k�1; k ¼ 1;2; . . . ;R; ð24Þ
where Tk ¼ Tbk ðt ¼ 0; �Þ is the solution to the regularized backward
heat problem (16)–(18) at t = 0; T(t = #, �;Tk) is the solution to the
heat problem (4) and (5) at the initial condition T(t = 0, �) = Tk at time
t = #; v is the known temperature at t = # (the input data on the
present temperature); small parameters b0 > 0 and 0 < q < 1 are de-
fined below; and d > 0 is a given accuracy. When q tends to unity,
the computational cost becomes large; and when q tends to zero,
the optimal solution can be missed.

The prescribed accuracy d is composed from the accuracy of the
initial data and the accuracy of computations. When the input
noise decreases and the accuracy of computations increases, the
regularization parameter is expected to decrease. However, esti-
mates of the initial data errors are usually inaccurate. Estimates
of the computation accuracy are not always known, and when they
are available, the estimates are coarse. In practical computations, it
is more convenient to minimize the following functional with re-
spect to (24)

kTbkþ1
ðt ¼ 0; �Þ � Tbkðt ¼ 0; �Þk ! min

k
; ð25Þ

where misfit between temperatures obtained at two adjacent itera-
tions must be compared. To implement the minimization of tem-
perature residual (23), the inverse problem (16)–(22) must be
solved on the entire time interval as well as the direct problem
(1)–(6) on the same time interval. This at least doubles the amount
of computations. The minimization of functional (25) has a lower
computational cost, but it does not rely on a priori information.

We describe now the numerical algorithm for solving the in-
verse problem of thermal convection in the mantle using the
QRV method. Consider a uniform temporal partition tn = # � dtn
(as defined in Section 3) and prescribe some values to parameters
b0, q, and R (e.g., b0 = 10�3, q = 0.1, and R ¼ 10). A sequence of the
values of the regularization parameter {bk} is defined according to
(24). For each value b = bk model temperature and velocity are
determined in the following way.

Step 1. Given the temperature Tb = Tb(t, �) at t = tn, the velocity
ub = ub(tn, �) is found by solving problem (20)–(22). This velocity
is assumed to be constant on the time interval [tn+1, tn].
Step 2. Given the velocity ub = ub(tn, �), the new temperature
Tb = Tb(t, �) at t = tn+1 is found on the time interval [tn+1, tn] sub-
ject to the final condition Tb = Tb(tn, �) by solving problem
(16)–(19).
Step 3. Upon the completion of Steps 1 and 2 for all
n = 0,1, . . .,m, the temperature Tb = Tb(tn, �) and the velocity
ub = ub(tn, �) are obtained at each t = tn. Based on the computed
solution we can find the temperature and flow velocity at each
point of time interval [0,#] using interpolation.
Step 4a. The direct problem (4)–(6) is solved assuming that the
initial temperature is given as Tb = Tb(t = 0, �), and the tempera-
ture residual (23) is found. If the residual does not exceed the
predefined accuracy, the calculations are terminated, and the
results obtained at Step 3 are considered as the final ones.
Otherwise, parameters b0, q, and R entering Eq. (24) are modi-
fied, and the calculations are continued from Step 1 for new set
{bk}.

Step 4b. The functional (25) is calculated. If the residual between
the solutions obtained for two adjacent regularization parame-
ters satisfies a predefined criterion (the criterion should be
defined by a user, because no a priori data are used at this step),
the calculation is terminated, and the results obtained at Step 3
are considered as the final ones. Otherwise, parameters b0, q,
and R entering Eq. (24) are modified, and the calculations are
continued from Step 1 for new set {bk}.

In a particular implementation, either Step 4a or Step 4b is used
to terminate the computation. This algorithm allows (i) organizing
a certain number of independent computational modules for vari-
ous values of the regularized parameter bk that find the solution to
the regularized problem using Steps 1–3 and (ii) determining a
posteriori an acceptable result according to Step 4a or Step 4b.

Stability of the solution to (16)–(19) is difficult to analyse.
Samarskii and Vabischevich [36] estimated the stability of the
solution to 1-D regularized backward heat problem with respect
to the initial condition expressed in the form Tbðt ¼ t�; xÞ ¼ T�

b:

kTbðt;xÞkþbk@Tbðt;xÞ=@xk6CðkT�
bkþbk@T�

b=@xkÞexp½ðt� � tÞb�1=2�;

where C is a constant. According to this estimation, the natural log-
arithm of errors will increase in a direct proportion to time and in-
versely to the root square of the regularization parameter.

5. Numerical methods

To solve the heat problem (4)–(6) and the regularized heat
problem (16)–(19), finite differences are used to derive discrete
equations. We employ (i) the characteristic-based semi-Lagrangian
(CBSL) method [37,38] to calculate the derivatives of the convec-
tive term in the heat equation (4); (ii) the total variation diminish-
ing (TVD) method [39] to calculate the derivatives of the
convective term in the regularized heat equation (16); (iii) central
differences to approximate the derivatives of the diffusion and reg-
ularizing terms in (4) and (16), respectively; and (iv) the two-lay-
ered additively averaged scheme to represent the 3-D spatial
discrete operators associated with the diffusion and regularizing
terms as 1-D discrete operators, and the component-wise splitting
method to solve the set of the discrete equations [40].

The Eulerian finite-element method is employed to solve the
Stokes problems (1)–(3) and (20)–(22). The numerical approach
is based on the representation of the flow velocity by a two-com-
ponent vector potential [41] eliminating the incompressibility
equation from the relevant boundary value problems. This poten-
tial is approximated by tri-cubic splines, which allows one to effi-
ciently interpolate the velocity field. Such a procedure results in a
set of linear algebraic equations with a symmetric positive-definite
banded matrix. We solve the set of discrete equations by the con-
jugate gradient method [42]. A detailed description of the numer-
ical methods used in the modelling is presented in appendices of
[21].

To stabilize the numerical solution to time-dependent advec-
tion-dominated problems, several techniques were introduced
(e.g. [43,44]). When oscillations arise, the numerical solution will
have larger total variation of temperature (that is, the sum of the
variations of temperature over the whole computational domain
will increase with oscillations). The TVD method (we employ in
the modelling) is designed to yield well-resolved, non-oscillatory
discontinuities by enforcing that the numerical schemes generate
solutions with non-increasing total variations of temperature in
time, thus no spurious numerical oscillations are generated [45].
The TVD method describes convection problems with large tem-
perature gradients very well, because it is at most first-order accu-
rate at local temperature extrema [46].
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Accuracy of the numerical solution to the 3-D Stokes equation
coupled with the advection equation was checked by comparing
the solution with the partial analytical solution to the problem
[47]. Because the 3-D spatial discrete operator associated with
the diffusion term of the heat equation was split into 1-D discrete
operators, Korotkii and Tsepelev [48] tested the stability of the sol-
ver in a 1-D case. Accuracy of the numerical solutions to the Stokes
and heat problems was tested by the following procedure: (i) em-
ploy a trial continuously differentiable function and insert it in-
stead of the unknown function; (ii) obtain the right-hand side of
the governing equation and solve numerically the equation with
the right-hand side so obtained; and (iii) finally compare the
numerical solution with the trial function [41].

6. Applications of data assimilation methods

6.1. Restoration of mantle plumes: synthetic case study

Thermal plumes in the Earth’s mantle evolve in three distin-
guishing stages: (i) immature, i.e., an origin and initial rise of the
plumes; (ii) mature, i.e., plume–lithosphere interaction, gravity
spreading of plume head and development of overhangs beneath
the bottom of the lithosphere, and partial melting of the plume
material; and (iii) overmature, i.e., slowing-down of the plume rise
and fading of the mantle plumes due to thermal diffusion [17]. The
ascent and evolution of mantle plumes depend on the properties of
the source region (that is, the thermal boundary layer) and the vis-
cosity and thermal diffusivity of the ambient mantle. The proper-
ties of the source region determine temperature and viscosity of
the mantle plumes. Structure, flow rate, and heat flux of the
plumes are controlled by the properties of the mantle through
which the plumes rise. While properties of the lower mantle
(e.g., viscosity, thermal conductivity) are relatively constant during
about 150 million years lifetime of most plumes [23], source region
properties can vary substantially with time as the thermal basal
boundary layer feeding the plume is depleted of hot material. Com-
plete local depletion of this boundary layer cuts the plume off from
its source. Laboratory [49] and numerical experiments forward in
time [17] show that thermal plumes start disappearing from bot-
tom up due to a week feeding of plumes by the hot material from
the boundary layer.

To compare how three techniques for data assimilation can re-
store the prominent state of the thermal plumes in the past from
their ‘present’ weak state, we develop initially a forward model
from the prominent state of the plumes (Fig. 1a) to their diffusive
state in 100 million years (Fig. 1b). To do it we solve numerically
Eqs. (1)–(6) in the domainX (where h = 2800 km), which is divided
into 50 � 50 � 50 rectangular finite elements to approximate the
vector velocity potential by tri-cubic splines; a uniform grid
148 � 148 � 148 is employed for approximation of temperature,
velocity, and viscosity.

We apply the QRV, VAR, and BADmethods to restore the plumes
from their weak state and present the results of the restoration and
temperature residuals (between the initial temperature for the for-
ward model and the temperature assimilated to the same age) in
Fig. 1. The VAR method (Fig. 1d and g) provides the best perfor-
mance for the diffused plume restoration. The BAD method
(Fig. 1e and h) cannot restore the diffused parts of the plumes, be-
cause temperature is only advected backward in time. The QRV
method (Fig. 1c and f) restores the diffused thermal plumes, mean-
while the restoration results are not so perfect as in the case of VAR
method. Although the accuracy of the QRV data assimilation is low-
er compared to the VAR data assimilation, the QRVmethod does not
require any additional smoothing of the input data and filtering of
temperature noise as the VAR method does.

The iteration scheme (9) and (10) of the VAR method provides
the solution of high accuracy because of the following reasons.
The function v(�) is not an arbitrary function, but it is the solution
to (4)–(6). The adjoint problem (11)–(13) is solved by the same
numerical method and the same numerical code as the direct prob-
lem (4)–(6). To improve the solution accuracy (as well as the solu-
tion convergence), we introduce preconditioned velocity uadv

reducing errors associated with an inaccuracy in determination
of v(�).

6.2. Restoration of a descending lithosphere: geophysical case study

In this section, we present a quantitative model of the thermal
evolution of the descending lithospheric slab in the SE-Carpathians
using the QRV method for assimilation of present crust/mantle
temperature and flow in the geological past [22]. The model of
the present temperature of the crust and upper mantle is esti-
mated from body wave seismic velocity anomalies [50] and heat
flux data [51] and is assimilated into Miocene times (22 mil-
lion years ago).

To minimize boundary effects, the studied region
(650 � 650 km2 and 440 km deep, see Fig. 2a) has been bordered
horizontally by 200 km area and extended vertically to the depth
of 670 km. Therefore we consider a rectangular 3-D domain
X = [0,x1 = l1 = 1050 km] � [0,x2 = l2 = 1050 km] � [0,x3 = h = 670 -
km] for assimilation of present temperature and mantle flow be-
neath the SE-Carpathians.

Our ability to reverse mantle flow is limited by our knowledge
of past movements in the region, which are well constrained only
in some cases. In reality, the Earth’s crust and lithospheric mantle
are driven by mantle convection and the gravitational pull of dense
descending slabs. However, when a numerical model is con-
structed for a particular region, external lateral forces can influence
the regional crustal and uppermost mantle movements. Yet in or-
der to make useful predictions that can be tested geologically, a
time-dependent numerical model should include the history of
surface motions. Since this is not currently achievable in a dynam-
ical way, we prescribe surface motions using velocity boundary
conditions.

The heat flux through the vertical boundaries of the model do-
mainX is set to zero. The upper and lower boundaries are assumed
to be isothermal surfaces. The present temperature above 440 km
depth is derived from the seismic velocity anomalies and heat flow
data. We use the adiabatic geotherm for potential temperature
1750 K [52] to define the present temperature below 440 km
(where seismic tomography data are not available). Eqs. (16)–
(22) with the specified boundary and initial conditions are solved
numerically.

The numerical models, with a spatial resolution of
7 km � 7 km � 5 km, were run on parallel computers. To estimate
the accuracy of the results of data assimilation, we employ the
temperature and mantle flow restored to the time of 22 mil-
lion years ago as the initial condition for a model of the slab evolu-
tion forward in time, run the model to the present, and analyze the
temperature residual (the difference between the present temper-
ature and that predicted by the forward model with the restored
temperature as an initial temperature distribution). The maximum
temperature residual does not exceed 50�.

A sensitivity analysis was performed to understand how stable
is the numerical solution to small perturbations of input (present)
temperatures. The model of the present temperature has been
perturbed randomly by 0.5–2% and then assimilated to the past
to find the initial temperature. A misfit between the initial tem-
peratures related to the perturbed and unperturbed present tem-
perature is rather small (2–4%) which proves that the solution is
stable.
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Fig. 2a presents the 3-D thermal image of the slab and pattern of
contemporary flow induced by the descending slab. Note that the
direction of the flow is reversed, because we solve the problem
backward in time: cold slab move upward during the numerical
modeling. The 3-D flow is rather complicated: toroidal (in horizon-
tal planes) flow at depths between about 100 and 200 km coexists
with poloidal (in vertical planes) flow. The geometry of the re-
stored slab is shown in Fig. 2b–d. The numerical results were com-
pared to that obtained by the backward advection of temperature
(using the BAD method): the maximum temperature residual in
the case of the BAD assimilation is found to be about 360�. The ne-
glect of heat diffusion leads to an inaccurate restoration of mantle
temperature, especially in the areas of low temperature and high
viscosity. The similar results for the BAD data assimilation have

been obtained in the synthetic case study (see Fig. 1e and h). The
VAR method was not employed to assimilate the present temper-
ature, because computations in this case become quite time-con-
suming due to the unavoidable need to smooth the solution and
to filter temperature noise.

7. Comparison of the methods for data assimilation

In this section, we compare the VAR, QRV, and BAD methods in
terms of solution stability, convergence, and accuracy, time inter-
val for data assimilation, analytical and algorithmic works, and
computer performance (see Tables 1 and 2). The VAR data assimi-
lation assumes that the direct and adjoint problems are con-
structed and solved iteratively forward in time. The structure of

Backward

Present

Past

BADQRV VAR

0.12

0.08

0.04

0 0 0

4.5e-03

3.0e-03

1.5e-03

0.48

0.32

0.16

Forward

a

b

C d e

f g h

Fig. 1. Model of mantle plume evolution forward in time (a and b; r = 20). Assimilation of the mantle temperature and flow to the time of 100 million years ago and
temperature residuals between the temperature model in the past (a) and the temperature assimilated to the same age starting from the present temperature model (b),
using the QRV (c and f; b = 10�7), VAR (d and g), and BAD (e and h) methods, respectively.
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the adjoint problem is identical to the structure of the original
problem, which considerably simplifies the numerical implemen-
tation. However, the VAR method imposes some requirements
for the mathematical model (i.e., a derivation of the adjoint prob-
lem). Moreover, for an efficient numerical implementation of the
VAR method, the error level of the computations must be adjusted
to the parameters of the algorithm, and this complicates
computations.

The QRV method allows employing sophisticated mathematical
models (because it does not require derivation of an adjoint prob-
lem as in the VAR data assimilation) and hence expands the scope
for applications in geodynamics (e.g., thermo-chemical convection,

phase transformations in the mantle). It does not require that the
desired accuracy of computations be directly related to the param-
eters of the numerical algorithm. However, the regularizing opera-
tors usually used in the QRV method enhance the order of the
system of differential equations to be solved.

The BAD is the simplest method for data assimilation in models
of mantle dynamics, because it does not require any additional
work (neither analytical nor computational). The major difference
between the BAD method and two other methods (VAR and QRV
methods) is that the BAD method is by design expected to work
(and hence can be used) only in advection-dominated heat flow.
In the regions of high temperature/low mantle viscosity, where

Fig. 2. Model of a descending lithosphere. 3-D thermal shape of the lithospheric slab and contemporary flow induced by the slab descending in the mantle (a). Snapshots of
the 3-D thermal shape of the slab and pattern of mantle flow 11 million years ago (b), 16 million years ago (c), and 22 million years ago (d). Upper panel: top view; lower
panel: side view from the SE toward NW. Arrows illustrate the direction and magnitude of the flow. The marked sub-domain of the model domain (a) presents the region
around the Vrancea shown in b–d. The surfaces marked by blue, dark cyan, and light cyan illustrate the surfaces of 0.07, 0.14, and 0.21 temperature anomaly dT, respectively,
where dT = (Thav � T)/Thav, and Thav is the horizontally averaged temperature. The top surface presents the topography. (For interpretation of the references in color in this
figure legend, the reader is referred to the web version of this article.)

Table 1
Comparison of methods for data assimilation in models of mantle dynamics.

QRV VAR BAD

Method Solving the regularized backward heat problem
with respect to parameter b

Iterative sequential solving of the direct and
adjoint heat problems

Solving of heat advection equation
backward in time

Solution’s stability Stable for parameter b to numerical errors and
conditionally stable for parameter b to arbitrarily
assigned initial conditions (numerically)

Conditionally stable to numerical errors
depending on the number of iterations
(theoretically) and unstable to arbitrarily
assigned initial conditions (numerically)

Stable theoretically and numerically

Solution’s
convergence

Numerical solution to the regularized backward
heat problem converges to the solution of
the backward heat problem in the special
class of admissible solutions

Numerical solution converges to the exact
solution in the Hilbert space

Not applied

Solution’s accuracy Acceptable accuracy for both synthetic
and geophysical data

High accuracy for synthetic data Low accuracy for both synthetic and geophysical
data in conduction-dominated mantle flow

Time interval for data
assimilation

Limited by the characteristic thermal
diffusion time

Limited by the characteristic thermal
diffusion time and the accuracy of the
numerical solution

No specific time limitation; depends on
mantle flow intensity

Analytical work Choice of the regularizing operator Derivation of the adjoint problem No additional analytical work
Algorithmic work New solver for the regularized equation

should be developed
No new solver should be developed Solver for the advection equations is to

be used
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heat is transferred mainly by convective flow, the use of the BAD
method is justified, and the results of numerical reconstructions
can be considered to be satisfactory. Otherwise, in the regions of
conduction-dominated heat flow (due to either high mantle viscos-
ity or high conductivity of mantle rocks), the use of the BAD meth-
od cannot even guarantee any similarity of reconstructed
structures. If mantle structures are diffused significantly, the
remaining features of the structures can be only backward ad-
vected with the flow.

If a thermal feature created, let us say, hundreds million years
ago has completely diffused away by the present, it is impossible
to restore the feature, which was more prominent in the past.
The time to which a present thermal structure in the upper mantle
can be restored should be restricted by the characteristic thermal
diffusion time, the time when the temperatures of the evolved
structure and the ambient mantle are nearly indistinguishable
[16]. In fact, the time duration for which data assimilation methods
can provide reasonable results is much shorter than the character-
istic thermal diffusion time interval. The time interval for the VAR
data assimilation depends strongly on smoothness of the input
data and the solution. The time interval for the BAD data assimila-
tion depends on the intensity of mantle convection: it is short for
conduction-dominated heat transfer and becomes longer for
advection-dominated heat flow. We note that in the absence of
thermal diffusion the backwards advection of a low-density fluid
in the gravity field will finally yield a uniformly stratified, inverted
density structure, where the low-density fluid overlain by a dense
fluid spreads across the lower boundary of the model domain to
form a horizontal layer. Once the layer is formed, information
about the evolution of the low-density fluid will be lost, and hence
any forward modeling will be useless, because no information on
initial conditions will be available.

The QRV method can provide stable results within the charac-
teristic thermal diffusion time interval. However, the length of
the time interval for QRV data assimilation depends on several fac-
tors. Samarskii and Vabishchevich [36] estimated the temperature
misfit between the solution to the backward heat conduction prob-
lem and the solution to the regularized backward heat conduction
equation and evaluated the time interval 0 6 t 6 t* of data assimi-
lation for which the temperature misfit would not exceed a pre-
scribed value. The time duration of data assimilation depends on
a regularization parameter, errors in the input data, and smooth-
ness of the temperature function.

Computer performance of the data assimilation methods can be
estimated by a comparison of CPU times for solving the inverse
problem of thermal convection. Table 2 lists the CPU times re-
quired to perform one time-step computations on 16 processors.
The CPU time for the case of the QRV method is presented for a gi-
ven regularization parameter b; in general, the total CPU time in-
creases by a factor of R, where R is the number of runs required
to determine the optimal regularization parameter b*. The numer-
ical solution of the Stokes problem (by the conjugate gradient
method) is the most time consuming calculation: it takes about

180 s to reach a high accuracy in computations of the velocity po-
tential. The reduction in the CPU time for the QRV method is at-
tained by employing the velocity potential computed at bi as an
initial guess function for the conjugate gradient method to com-
pute the vector potential at bi+1. An application of the VAR method
requires to compute the Stokes problem twice to determine the
‘advected’ and ‘true’ velocities [16]. The CPU time required to com-
pute the backward heat problem using the TVD solver is about 3 s
in the case of the QRV method and 2.5 s in the case of the BAD
method. For the VAR case, the CPU time required to solve the direct
and adjoint heat problems by the semi-Lagrangian method is
1.5 � n, where n is the number of iterations in the gradient method
used to minimize the cost functional (Eq. (8)).

8. Conclusion

Data assimilation methods are useful tools for improving our
understanding of the thermal and dynamic evolution of the Earth’s
structures. We have presented the VAR and QRV methods for data
assimilation and their realizations with the aim to restore the evo-
lution of the Earth’s thermal structures. We have obtained reason-
able scenarios for the evolution of mantle structures since the
geological past, which are based on the measurements of the
Earth’s temperature, heat flux, and surface motions. The basic
knowledge we have gained from the case studies is the dynamics
of the Earth interior in the past, which could result in its present
dynamics.

The VAR and QRV methods have been compared to the BAD
method. It is shown that the BAD method can be employed only
in models of advection-dominated mantle flow (that is, in the re-
gions where the Rayleigh number is high enough, >107), whereas
the VAR and QRV methods are suitable for the use in models of
conduction-dominated flow (lower Rayleigh numbers). The VAR
method provides a higher accuracy in restoration of mantle struc-
tures compared to the QRV method, but it encounters the problem
of increasing noise (without proper smoothing of data and numer-
ical solutions). Meanwhile the QRV method can be applied to
assimilate both smooth and non-smooth data. Depending on a geo-
dynamic problem one of the three methods can be employed in
solving of inverse retrospective problems of Earth’s mantle
dynamics.

The present mantle temperature estimated from seismic
tomography, the surface movements based on geodetic measure-
ments, and initial and boundary conditions bring uncertainties in
data assimilation. The seismic tomography imaging of the Earth
and geodetic measurements have their own uncertainties and lim-
itations. The conditions at the boundaries of the model domain
used in the data assimilation are, of course, an approximation to
the real temperature, heat flux, and movements, which are practi-
cally unknown and, what is more important, may change over time
at these boundaries. The results of data assimilation will hence de-
pend on the model boundary conditions. Moreover, errors associ-
ated with the knowledge of the temperature (or heat flux)
evolution or of the regional horizontal surface movements can
propagate into the past during data assimilation.

A part of the scientific community may maintain scepticism
about the inverse retrospective modeling of thermal evolution of
the Earth interior. This scepticism may partly have its roots in
our poor knowledge of the Earth’s present structure and its physi-
cal properties and related uncertainties which cannot allow for rig-
orous numerical paleoreconstructions of the evolution of Earth’s
mantle structures. An increase in the accuracy of seismic tomogra-
phy inversions and geodetic measurements, improvements in the
knowledge of gravity and geothermal fields, and more complete
experimental data on the physical and chemical properties of

Table 2
Performance of data assimilation methods.

Method CPU time for one time step (circa, in s)

Solving the Stokes
problem using
50 � 50 � 50 finite
elements

Solving the backward heat
problem using 148 � 148 � 148
finite difference mesh

Total

BAD 180 2.5 182.5
QRV 100–180 3 103–183
VAR 360 1.5n 360 + 1.5n
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mantle rocks will facilitate reconstructions of thermal structures in
the Earth’s mantle.
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