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Fallacies of Observations — r w. van semeten, 1954

However there is always the danger that our observations are
no longer primary data objectively gathered, but are
unconsciously influenced by theoretical conceptions. The
latter may assume a dogmatic character, being no longer mere
working hypothesis providing the guiding principles of our
research; they may become rigid axioms, assuming in our
mental processes the same value as the facts of observation.
In such a situation some scientists are apt to be prejudiced in
their observations by theory, which means frustration of
research. Then




Geology

Taiwan orogeny began
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Regional Setting and
Plate Tectonic
Environment of Taiwan




3-D View of N. Taiwan Plate Structure
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Active subduction
zones under
Taiwan




Some Proposed “End Member” models
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A) Thin skinned with subduction
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SIMOES AND AVOUAC: KINEMATICS OF THE TAIWANESE RANGE
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Joys of True International Scientific Cooperation

. Joint planning and execution of experiments

e Share of facilities and cost of experiments

e Establish mirror databases in the US and in Taiwan
 Availability of auxilliary data in Taiwan (permanent
broadband seismic data, GPS, CWB network data,
map data)

Importance of Built-in Redundancy

Even with careful tests of field techniques
and most demanding negotiations with
multiple agencies we have to replace one
set of critical active source experiments
with a different set




Resulting Dataset

600 Gbytes of land broadband data
185 Gbytes of broadband OBS data

~3000 texans recording sites in windowed and
continuous mode (450 sites) during active source
work

~300 off/onshore stations in continuous mode for
3 months (2 km spacing along transects) — 2 TB

~10,320 km of R/V Langseth MCS data acquisition
~300 SPOBS drops




Current Research

Currently US and Taiwan scientists carry out different
analyses after initial coordination in 2009

Some cross-over data (active source stations recording
earthquake and passive stations recording active
sources) are already benefiting research and more
expected.

A geodynamic “sandbox” was designed by Luc Lavier
for TAIGER team to test models using new results

More coordination to be conducted after initial results
obtained




Highlights on the US Side

Search for intracrustal reflector (Quiros and
Brown)

Offshore/onshore active source and earthquakes
profiling (Okaya, Kuo-Chen and Wu)

SPOBS/MCS mapping of the continental shelf SW
of Taiwan — hints of the “initial conditions” of
collision (Lester, MciIntosh, Avendonck et al.)

S-splitting (Kuo-Chen, Wu and Okaya)

Tomographic imaging of crust and
mantle with TAIGER and other
broadband data (Kuo-Chen and Wu)

Joint analysis of MT, Seismicity, velocity
and geology of Central Range (Wu,
Bertrand et al.)




T3 — Velocity Model
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» Key observed features in the model include:
e Thick (>20 km) presumably continental crust at
the shelf overlain by 2-3 km of sediments
e Sediment thickness maximum (~6 km) underlain
by thin (~ 4 km) crust and shoaling Moho
*Crust thickening away from this point to the south
(crust ~ 10 km thick)




Main Features of TAIGER Tomography
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S-splittng and Tectonics
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Summary

* Ot: <1 sec - ~2 sec.

* Nearly parallel to local
strike

e Large ot for SE eq.

e Small ot for W eq.

Interpretation

Anisotropy of aligned
minerals is the cause
of S-splitting

The sources probably
are in the upper
mantle down to a few
hundred kilometers
Vertical coherence
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Local/Teleseismic Tomography
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Tomographic sections — Perp. to Trend
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Resistivity, Seismicity, Deformation and Mountain Building
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Other types of faulting in the sequence
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Resistivity Across Taiwan Orogen
(Bertrand et al. 2009)

e Central Taiwan (~24°N)

— Central Range east of Lishan Fault is largely a region of high
resistivity (500-1000 Ohm-m) 0-40+ km deep

— Under the Lishan trace is a west-dipping conductive zone
to at least 20 km depth

e Southern Taiwan (S. Cross Isl. Hwy.)

— WCR conductive (<100 Q-m) above 15 km; less conductive
under ECR
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Seismicity (Wu et al., 1987; 2004)

e 1973-1999.9.20: nearly aseismic Central Range east
of Lishan Fault below 10 km from ~23.5°N-24.5°N;

sparse seismicity above 10 km

e This quiescence resumed ~2007

e South of 23.5°N shallow seismic zone active and
widens southward




Seismicity of Central Taiwan

Depth Scale (km)




Thickened Crust under Central
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Vertical Deformation of Taiwan

 Repeated leveling shows that Central Range is the
most rapidly rising area of Taiwan (C.C. Liu, 1977; J.C.
Hu, 2009; Ching et al., 2009) with a rate of ~2 cm/yr

e The above short term rate is higher than the longer

term rate shown by fission-track data (Li et al., 2007)
but the distribution patterns of rapid uplift are
similar




Vertical Uplift (Ching et al. 2010)
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Interpretation of Observations

e A part of the Central Range is ductile and
mechanically weak

e Surprisingly, this part of CR is also relatively dry;
lacking the common weakening agent of water

* |n this part of the CR we have mostly the pre-Tertiary
metamorphic lower crustal rocks




Metamorphism and Dehydration

In the Central Range: two sets of quartz veins, one
associated with pre-Miocene tectonics and one with

the current orogeny

To form these veins a large amount of fluids carrying
disolved quartz to go through the rock

T

ney form as a result of metamorphism
ne first set formed probably during buriel

T

ne second set during rapid ascent

Cyclic hydrofracturing may have happened




Pervasive or
channelized




Fluid Flow in Metamorphism

{a) Otago accretionary prism, regional quartz veins,
fluids replenished by subduction
i(b) Regional quartz veins, northern New England
Regional —

() Up-T, pluton-driven flow, Australia, i
p-T, pluton-driven flow, Australia Channelized

focused into metapelites
id) Regional quartz veins; Connecticut .

(e} Regional quartz veins in hot spot,
New Hampshire
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Fluid Transport in the Crust

channelized/focused
into fractures, faults, ete.




Mode of deformation and dehydration
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Metamorphism, Mobilization and Orogeny

Although dehydrated, the foliated and carbonate

rocks are ductile and weak (e.g. Groom and Johnson,
2006)

These rocks came from lower crust of Taiwan (Jahn,
Yesterday)

The zone has been “mobilized” in orogeny
It must have widened as orogeny progressed
s it still widening?

Is the Lishan conductive zone the current locus of
dehydration? The “metamorphic front”?




Geodynamics of Mountain Building

Metamorphism and mobilization enabled by
weathering (removal of materials at top)

The exhumation pushes upward and sideways

The sideways motion enables thrusting and
deformation of western Taiwan crust

The mobilized belt may grow or stop growing
as orogeny continues or halts
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Topography
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Geodynamics of arc/continent collision
- directed by Luc Lavier -




Conclusion

TAIGER data acquisition exceeded expectation

Enhanced subsurface imaging is achieved with
new data

Data analyses and interpretation still in an
early stage

Fundamental issues of mountain building in
IENEREINE




