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1. Introduction

Wave motion is one of the well-known scientific concepts. Behavior of the waves
on the water surface, as well as propagation of acoustic or light waves are known from
everyday experience. However, it is not easy to define the wave. In general we can say
that it is a form of propagation of a disturbance of some physical field. We know
seismic, electromagnetic, acoustic, gravitational waves. Though, there is no exact
general definition of the waves, because of a variety of their characteristic features in
different cases. For example, we may generally define the wave as a disturbance
(signal), which propagates in a space with a certain velocity, but a form of the signal,
as well as its velocity may vary. However, this definition involves propagation of heat
(disturbance of temperature), but it is well known that the heat is propagated in
another way — not by a wave. Therefore it is preferable to proceed from an intuitive
notion on a wave as on a signal propagating from one to another part of a medium
with a certain finite velocity. This signal may be distorted, may change its intensity
and velocity, but should remain distinguishable. A perturbation arising in a part of the
medium causes returning forces preventing this perturbation, and the forces are of
such kind that they lead to appearance of similar (in general not exactly the same)
perturbation in neighboring points.

Seismic waves arise in solid media due to elastic forces. A main peculiarity of
seismic waves is that there are at least two types of waves (in anisotropic media -
three types), with different velocities and different polarization. This fact is due to
existence of at least two different elastic modules: in isotropic media - compressible
and shear modules. Therefore returning forces are different for different types of
deformation.

A nature of the wave may be explained by consideration of a compressional wave in
a thin rod. The rod may be represented as a set of interacting elements. If one element
is displaced, a force appears between this one and neighboring elements which is
proportional to a relative variation of a distance between them. We can imagine that
the elements are connected by elastic springs, and the force is due to compression or
tension of the springs.
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Let a force due to deformation of the spring be
e
Ax

Motion of the i-th element of mass 72 submits to the Newton’s law:
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In continuous case, when Ax—0, and m=pAx, u=u(x,f), we obtain

. 0’u

pii =K — (1)
ox
This is the simplest one-dimensional wave equation. Its solution is as follows:
K
u=flt-+g+3), ==,
c c o,

where f(&) and g(&) are arbitrary functions, and ¢ is regarded as velocity of the
wave propagation.

If the masses deviate from the equilibrium in perpendicular direction (shear), it
would be the same, but the module K is different (it is less than compression module),
and the velocity of shear wave propagation is less than for the compressional wave.

In continuum (2D or 3D) there are both types of deformation (compression and
shear), therefore two types of waves may propagate.

2. Equation of motion for solid elastic media

Consider an element € of elastic medium bounded by a surface S.

Equation of motion of this element , ’ S
may be written as follows: | )

d’ n
jg”p dt:‘dgz yTndS+ jgij(x)dQ (1)
where F is body force density, T, is stress applied Tn

to the boundary.

Applying Gauss formula to the surface integral, and taking into account that the
stress tensor is symmetric, we finally obtain that

J’u

~=VT+F
4 (2
or
2 0
pa ?:acx N T, +8'cz A F

T

X

where T is stress tensor, or a matrix formed by vector-rows T, T, T.: T=|1 y

T

z



Egs. (2,3) are valid for all types of media: isotropic, anisotropic, inhomogeneous,
anelastic, differing by the relationship between stress and strain. Below we shall
consider some particular cases.

2.1. Homogeneous isotropic medium

In homogeneous isotropic medium the relationship between stress and strain, which
in turn is related with spatial derivatives of displacement, is following:

Ju Ou,
- =Adivuo, —L ! 4
7, ivud, + ”[axj + ™ J 4)

Substituting (4) to (2) (here we neglect the body forces) we obtain

o’ )

The simplest approach to solve this equation (which is valid only for inhomogeneous
medium!) is to represent the unknown vector function in terms of scalar and vector
potentials:

u=Vo+roty
Substituting this representation to (5) we obtain two independent equations for the
potentials:

g 19
Ap=—P _29__"°9 (6a)

(A+2u)Vdiva — urotrotu = p

2 2
_poy_ 19y (6b)

These are the wave equations (scalar and vector): they describe propagation of the
waves with two different velocities a and b. The scalar potential determines the
longitudinal (compressional), or P-wave, vector potential determines the share, or S-
wave.

To solve these equations we should know the initial conditions, i.e. the functions
@(x) and wy(x) at =0.

It is clear that the solutions of (6) are additive, i.e. if ¢, and ¢,are two different
solutions of (6a), then ¢, + ¢, will also be a solution of this equation. It means that
that by superposition of different (elementary) solutions we can construct the
solution, which would fit the given initial conditions. The simplest elementary
solutions are the plane waves.

2.2. Plane waves

At first we shall consider the scalar wave equation
1 9°u

= (7)

c” ot

u=u(x,,x,,x;,t)

Au =

A solution of (7) may be represented in the following general form:

u(x,0) = f(t = (k,x)) +g(+(k,x)) (8
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where f{&) and g(&) are arbitrary functions, and |k|2 =— . So the two terms in the
c

right-hand side of (8) describe the waves propagating in opposite directions with the
velocity c. It is clear that at any moment the solution at the planes (k,x)=const is one
and the same.

For simplicity we shall represent the solution of (6a),(6b) by one term in (8):

1
o(x,1) = f(t— (K ,,X)) |k,,|=;
1
V=) =L
Then
u=u, +ug
where

u, =Vo=—k,/(t-(k,.x) o
u, =rony=mxk)F'(t—(k,x))
The motion in P-wave is directed along the direction of propagation k, whereas in S-
wave it is orthogonal to k.

It is clear that in both cases (P and S waves) the displacement may be represented in

the form
u =1®(z—Mj (10)
C

where n and 1 are unit vectors, and c is a velocity . Using the concept of plane waves
we can show that ¢ may be equal a or b, and in case c=a polarization vector I=n, and
in case of c=b 11is orthogonal to n.
Substituting (10) to (5) we obtain
[(A+ )n(,n) + AJ®"(r — (n,x)/ c) = pc*1®”(¢ — (n,x)/ ¢)
or
(A+ wn(,n) = (pc’ - w)l
2
Define 6 = pe K , then
A+ u
n(l,n) =61 (11)
or Nl=61, where the matrix N=nn’, so that  and 1 are eigenvalue and
eigenvector of the matrix N correspondingly.
It is easy to show that 6 fits the equation
0’ -6%=0,
that has three roots
6,=1 6,=6,=0

Otherwise

c, = //1+2’u:a, c,=Cy = 2oy
P P

The eigenvector corresponding to the first root is I=n, and those corresponding to the
other two roots are mutually orthogonal unit vectors, both orthogonal to n, i.e to the
direction of propagation. Thus the first root corresponds to the longitudinal wave, and




to other ones — to two share waves propagated with one and the same velocity. As
shown below, in anisotropic medium these two roots are different, so that there are
two quasi-share waves propagating with different velocities.

2.3. Inhomogeneous plane waves

The concept of plane wave may be extended to complex vectors 1 and n.
A solution of the wave equation (5) in the form (10) assumes n to be a unit vector,
ie.
(n,n)=1 (12)
But n can also be a complex vector, i.e.
n=n, +in,
Obviously, the function ®(¢), as a function of a complex variable {=&+17, should also
be complex, as well as the polarization vector I:
1=1,+i,
O +in) = f(&.m+ig&.m

Since both n an 1 are unit vectors, we have

(n,,n,)—(n,,n,)+2i(n,,n,)=1

(n;,n;)—(n,,n,)=1

(npnz) =0
(lloll)_(lzvlz) =1
1,.1,)=0

As usual, since the displacement u is real, we take only the real part of the complex
solution:
ux,n)=1,f(t-(x,n,)/c, —(x,n,)/c)-l,g(t-(x,n,)/c,—(x,n,)/c) (13)

This formula describes inhomogeneous plane wave. The motion in the
inhomogeneous wave has the following meaning. Temporal behavior of
displacement is one and the same along straight lines determining by intersection of
the planes (x,nj)=const and (x,nmy)=const. Direction of the wave propagation
coincides with the vector m;, the wave propagates along this direction with the

ﬁ. Since n, = 1/1+|n2|2 >1, velocity of the inhomogeneous wave is
1

always less than ¢ (a or b). The wave form and the wave amplitude are changing in
direction of the vector n,. Components of the displacement along vectors 1; and 1, are
changing differently, accordingly to the different functions f and g.

The vectors 1; and 1, in compressional wave coincide with the vectors n; and n,. In
shear wave the vectors 1y and 1, satisfy the relations

(ll’n1)_(12’n2):0
(ll’n2)+(12>n1) =0
Orientation of the vectors n;, n;, 1;, I, are shown below.

velocity V =

(14)



It follows from (14) that

1
cosﬂ=—(n“ 2)
[,
If B=n, we have SV-wave, and in case B=n/2 the wave is SH. It is clear that for SH-
wave 1,=0, and only in this case polarization is linear.

If the function @({) is analytical, then, according to the Cauchi-Riemann relationship
for real and imaginary parts of an analytical function of complex variable {=E+in

Jo dg J  OJg
& A an K
If the motion is harmonic oscillation with frequency o, i.e. if
() = Aexp(iad) = Aexp(iwé — wn) , then
f(&.m)=dAde™™ cos

g(&,m=Ae™* sinaxg

Particle motion in harmonic inhomogeneous waves is elliptic for P and SV waves,
and linear for SH waves (see fig. below )

Particle motion in harmonic
inhomogeneous waves

v

SV SH

= i

In general case the functions /(& 1), g(& 1) may be represented as a superposition of
these solutions, i.e.



=

f(&m= _[ A(w)e™™ cos wédw

¢(&m = [ A@e™ sin wédo

Since time ¢ enters to £ (& =7—(n,,x)/c), then a shape of signal at a fixed point x is

determined by f'and g as functions of & It is clear that the function g as a function of &
(or #) in a given point x is the Hilbert transform of f.

Remind that this theory is true if ®(¢) (and consequently /(£ 7)) as a function of 7 are
analytical functions. However, in practice, we deal with non-analytical signals, which
are equal to zero up to some moment. Nevertheless, usually the theory of
inhomogeneous waves is extended to this case, and g(¢) is assumed to be the Hilbert
transform of non-analytical f(#). This leads to a paradox — the signal in
inhomogeneous wave arrives earlier than should be expected according to the
causality principle. Examples of such signals (bold lines) and corresponding Hilbert
transforms (dashed lines) are shown below. Nevertheless it is possible to use for
practical problems, because the earlier disturbance is not significant.

The functions fand g are not finite in the infinite space due to the exponential term

e ” . Therefore they may be used to represent solutions of the wave motion either
in a finite volume, or in case of sources.

Any wave field may be represented by superposition of plane waves (both
homogeneous and inhomogeneous), which fits the equation of motion (5) and the
following boundary conditions:

e radiation condition, requiring the displacement not to increase at the infinity;
¢ boundary conditions at interfaces in the medium;
e conditions in the points where sources are located.
The Ist and the 3d (and sometimes the 2nd) conditions cannot be satisfied by only

homogeneous plane waves. In such cases the inhomogeneous waves should be
involved.



2.4. Energy flux

2.4.1. Energy density
Total wave energy is a sum of kinetic and potential energy. The density of kinetic

energy is
2

1

Ju
W, :Ep

o
Potential energy is the energy of elastic deformation. The density of the potential
energy is determined as

1
w,= 52%% g
7

. : : 1{ Ou, Ju,
where 7; is stress tensor, and g; is strain tensor: &, =—| —+—|. For
2{dx;, o
homogeneous isotropic medium
1 2 2
w, =5/1(dzvu) +,uZ€il. (15)
ij

2.4.2. Energy density in plane waves

For plane wave u(x,?) =1®(z — (x,n)/ c) the density of kinetic energy is expressed as
W, = § [@']2 - for homogeneous wave

’_ BQ11|2 (f) + |12|2 (g')z) - for inhomogeneous wave

2
(here and below /" and g’ mean % and a_g .

ot

W, = §|11f,_lzg,

The density of potential energy is

W = %{M [, +£2Hl>< n|d)']2} = g[cl)']z =W, -for homogeneous wave.
c

p CZ
For inhomogeneous wave we must replace divu andé¢; in (15) by Rediva and

Ree, . These expressions are different for P, SV and SH waves:

Wp_E{U,ﬁw[(f)u(ﬁ]} for P owave,

\S)

w,= {(f’)2 +4|n1|2|n2|2[(f')2 + (g')2 ]} for SV-wave,

N N

W =2{ry Pl + (@) for SHwave.

P

Taking into account that for P wave |n1| = |l1

, and |n2|:|l2

, as well as 1,=0 for

SH-wave, we may write the expression for total energy density in common form:



W =§{2(f’)2+|n2|2[(f’)2+(g’)2]}+—2ﬂ|n;|2 Ly e@r] e

The first term (%( f))?) is similar to that for homogeneous wave, the second one

describes the energy of elastic deformation due to amplitude variation in the direction
perpendicular to the wave propagation, and the third one includes the part of energy
due to non-linearity of polarization.

It should be noted that the total energy density is not constant as in case of
oscillation. However, it can be explained easily: the energy is transported within the
medium, and the energy conservation law is justified for the whole volume.

In case of harmonic wave u = lexp[ia)(t - (X,n)/c)] the total energy density is
W = pw’ sin® [a)(t —(x,n)/ c)] for homogeneous wave,
and

2 2 2
2w(x, . n 2un, | |1
W = pw* exp(—(X nz)j s1n2[a)(t—(x,n1)/c)]+| d - 4 1|2| |
c 2 pc
for inhomogeneous P, SV and SH waves.
So for homogeneous wave the energy oscillates within a half of period from 0 to
pw*, whereas for inhomogeneous wave it never achieves 0. This can be easily

explained: if the amplitude does not change along the wave front, then at the moments
corresponding to maximum displacement both velocity and strain vanish, whereas this
is not so in case of elliptic polarization and variation of the amplitude in the direction
perpendicular to the wave propagation.

2.4.3. Vector of the energy flux (Poynting vector)

Here we shall derive the expression for the energy flux in general case.
For simplicity we assume that no external forces act in the medium, then the
equation of motion is
VT = pii (17)
Multiply (17) by u:
(VT,u) = piia = La(pi’) _ oW,
2 ot ot
(VT,u)=V(Tu)-(TV,u)
The last term in the right-hand side is

. . . _9(1 J (1 o,
(TV.a)=7,¢, = Cigi€ 1€ = E(Ecikjlgjlgikj = 5(5 Tikgikj = a—tp

Thus a(_)—W =V(Tu)=-Vp p =-Tu - Poynting vector
t

Therefore, if E = I“WdQ , then
Q

L~ [ffapac=-[[p,ds
Q S
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Thus, variation of the energy within a volume Q is equal (with opposite sign) to a flux
of the Poynting vector across its surface.

On the other hand, aa—f =— I _[chdS and p=We , where ¢ is group velocity, i.e.
S

velocity with which the energy transports: in case of homogeneous wave in isotropic

S . . .. ¢ n
medium it is equal to cn, and in case of inhomogeneous wave it is |——

| [n,|

1 1

The relationship We = —Tu is useful in case of anisotropic media (as will be shown

later), because it provides the expression for group velocity, which differs from phase
velocity.

2.5. Spherical waves

We consider spherically symmetric solution of scalar wave equation
1.
A(PI?% ¢ =9(R,1)
In spherical coordinates
2
Ap= lzi(Rz 8_(pj F— i(sinea—(pj PR J 4
OR) R’sin6 dé 060) R”sin" 6 d¢
For spherically symmetric solution
2
in(Rza_‘P _ | JI°¢p (18)
R* OR oR

PR
or
9o 20¢p 1 9d°¢
+——"=—
OR* ROR a4’ of?
The latter may be represented in the form

0> 1 92
Rp)=———(R
aRz( ®) e atz( ®)

A solution for R¢ is the same as for 1D wave equation, and for the case, when the
wave is expanded from the origin (R=0)

P(R,1) = F(t_TR/a) (19)

It should be noted that (19) represents a solution of (18) everywhere except the point
R=0. But because the wave propagates from R=0, this point may be regarded as a
source, where a body force is applied. Therefore to get the solution, which exists
everywhere including R=0, we must proceed from another equation, notably,

1 9(., aqu 1 9°¢
——| R — |=— —4mo(R)F (¢ 20
RZBR( OR) a’ ot RF) 29)
Then (19) is the solution of (20) valid in the whole space.

It should be noted that a solution in the form of ‘pure’ spherical wave exists only
for compressional waves. For shear wave we cannot have spherical symmetry
because this is impossible for vectors tangential to a spherical surface.

10
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Now we shall represent spherical wave as a superposition of plane waves. For this
purpose it is necessary at first to represent the function F(z) in a form of the Fourier
integral

-F()= o]-ﬁ(a)) exp(iot)do .

It will be sufficient to restrict the analysis by a harmonic wave:
expliw(t—R/a)]
p(R.1) = SR RID)
R
Also we may omit the factor exp(imt), and consider the part of the solution, which
depends only on spatial coordinates:

o(R) = @ 1)

(The sign in the exponent also may be assumed opposite).
(21) is a solution of the equation resulting from (20):

2

Ap+2_p=—4z5(x) 22)

a
Let us represent the solution in a form of 3D spatial Fourier transform:

1

o(x) = o [[[@d explitk,x)ldk, (23)
then , substituting (23) to (22), we obtain the equation for ®(k):
4z
O(k) = 7
k* — —
a
where
k* =(k,k)=k’ +ky2 +k7 (24)
Thus,
exp(iwR/a) 1 rexpli(k, x)]
R [l ke dk k.

—oo 2
k==
a

But the because of (24) the variables &,k ,k. are not independent. Therefore we can

integrate over one of the components of the wave vector, e.g. over k.. The integration
is performed by the use of the theory of residuals, and finally we obtain
exp(ioR/a) _ 1. i jexp[i(kxx +k,y) -7l
R 2r 14
where

dk dk, (25)

a

a)z 1/2
2 2
i=(iz08-2)

and the sign at v is chosen so that Re y>0.
(25) is the Weyl integral, which represents spherical wave as superposition of plane
waves. Since —oo<k <oo, —co<k <oo, the integrand contains not only

homogeneous, but also inhomogeneous plane waves.

11
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The integral (25) may be transformed to the Sommerfeld integral, which represents
spherical wave as a superposition of cylindrical waves. Let us replace the variables:
X =rcos7 k. =kcosg

y=rsinng k,=ksing
Then
exp(ioR/a) _ 1 T”exp[ikr cos(¢—1) - 7/|Z|],a ko
R 2y, 14

2r
Taking into account that 2L Iexp[ikr cos(p—m)lde =J,(kr)
4 0

we obtain
exp(iwR/a) _ °]~Jo (kr) exp(—7|z])
R ; 14
In case of exp(-i@wR/a) it is necessary to take ¥ (complex conjugate) instead of yin

the right-hand side.
This relationship can be extended to a case of non-analitical signals with sharp onset.

If F(w) is Fourier transform of such a signal f{¢), then

kdk

F(w)explio(t—R/ a)
o-ro ] = JF@esption [~
R R
How to understand that a wave with dlscontmuity on the front can be
represented as a superposition of the waves including inhomogeneous waves,
which arise simultaneously along the whole vertical axis? It is easier to analyze
spherical wave as a superposition of cylindrical waves (Sommerfeld integral)
rather than of plane waves.
Let us take 7=0. Then the integral represents the wave field at
the z-axis. The integral becomes

°]-exp( 7|z|)kdk_“’]-" . °]- _ homogeneous . inhomogeneous
waves (y =1& waves (y is real)

0 7/ 0 wla
Now we shall show that contribution of the inhomogeneous waves is compensated by a part
of contribution of homogeneous waves

J, (kr)exp(— 7/|z|) Lk

Contribution of homogeneous waves:
w/a 0 0 —7
[ expCidle), [exp(-iBlap = expl "jz‘/ a)_1

0 lf w/a ‘Z‘

Contribution of inhomogeneous waves:

Iexp( e Dkdk Iexp( {|2pd¢ =
w/a 7/ ‘ ‘

Thus the total contrlbutlon of the inhomogeneous waves is cancelled by a part of the
contribution of homogeneous waves.

12
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2.6. Cylindrical waves

If the wave field is symmetric in respect to a straight line (z-axis), and the field does
not depend on z-coordinate, the wave equation for potentials may be written in
cylindrical coordinates as follows:

2
li(r a_(pj = . o , (c=a) for scalar potential,
ror\_ or) ¢ ot

and similar equations for components of the vector potential with c=b.

This case may be regarded as 2D case, i.e. corresponding to the wave propagation in
a plane z=const. In contradiction to the 1D case, to which a plane wave can be
reduced, and to the 3D case (spherical wave), in 2D case it is impossible to construct a
solution in a general form f{r,f), and it is necessary to express a solution as a function
of ¢ in the form of Fourier integral, and consequently to solve the equation for the
harmonic wave:

10( 09 @ ,
LA e ) I 26
rar(rarj-i_cz(p (262)
or
3¢ 109 ,.
+———+k9=0 26b
o’ ror ¢ (26b)

where k=w/c.
Solution of the eq.(26b) is a combination of the Bessel functions. If the time
function is taken in the form exp(iax), and the wave is expanded from r=0, then
@(r,w) = AH? (kr),

and the solution for ¢(r,?) is following:
o(r,t) = 2l j A(w)H P (ar ] c)exp(ion)dw
ﬂ- —o0

It is clear that, in contradiction to the 1D and 3D cases, the waveform is not remained
unchanged in the process of propagation. This peculiarity was noticed by Hadamard in
his classic studies of the wave equation: he pointed that the behavior of the solution is
different for odd and even numbers of spatial dimension.

At large distances (— >> lj we can use the asympotic representation for the Hankel
c
function, so that the solution can be written as a wave with preserved form and with

1
the amplitude decaying as —:
N7

o(r1) = C exp[iwf/l‘;— r/c)]

Though it seems that cylindrical waves cannot be excited in reality, they are important
in analysis of surface waves and the waves with axial symmetry.

13
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2.6. Anisotropic medium

For anisotropic elastic medium the relationship between stresses and derivatives of
displacement is expressed by the Hooke’s law in the form:
Ty = Ciu€u (27)
(summation over repeated subscripts is assumed here and below). In the similar
notation we may re-write the equation of motion (2):

o7, 2
e @
Substitute (27) into (28):
1 o (odu, Jdu, d’u,
2 o ( ox, o, j AP 29
A solution of this equation also may be represented in a form of plane waves:
u, = liCI)(t - "qcx" J (30)

where n, are components of the unit vector indicating the direction of propagation, and
[; are components of the polarization (unit) vector. Substitute this to (29):

1
ECW (L +lnn;)= pc’l, (31)

This is a system of 3 linear equation respectively the components of the polarizarion
vector [,/,,/; . Determinant of the system should be equated to 0, so we obtain a

cubic equation for ¢’. All three roots of this equations are different (unlike the
isotropic case) and depend on n, i.e. the velocity is different in different directions.
The components of the vector 1 are not related to n as was in isotropic case.

In this case we have no pure ‘longitudinal’ and ‘shear ¢ waves: in so-called ‘quasi-
longitudinal’ wave the polarization vector 1 does not coincide with n, and in two
‘quasi-shear’ waves they are not orthogonal to n.

14
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Example: Transersly isotropic medium

Let z-axis is the axis of symmetry. Then
7. =Ae_ +(A- 2N)gyy +Fe

t,=A4¢e, +(A-2N)e,, +Fe_,
T.=F(e,+¢€,)+Ce
r, =N¢,
T, =Le,
sz = ngx
As before, we look for a solution for plane wave in the form

u= 1c1>(¢ _(n.x)

C

j . Substituting this solution to the wave

equation we obtain the following equation for the velocity ¢
and the polarization vector I:
Ml=c"1,
where M is matrix with elements depending on n and the
modules 4,L,N,F,C. In general case (arbitrary direction of n)
the solution is too complicated, but it is simplified in the
particular cases, when n is directed along or perpendicular to
Z-axis:
e n =1, n =n, =0
&= pc’
Equation for &
E—QL+C)* +L(L+2C)-L*C=0 (32)
has the solutions:
6 =C, & =¢6+=1L,
I,=n, (1,,m)=0, (I,,n)=0, (1,,1,)=0

e n,=0, nl+n, =1
53—(A+N+L)fz+(AN+LA+LN)§—LAN=O (33)
51:14: 52:L> 53:N
I, =n, I,=e, 1,=(nxe))

The most unusual property of the waves in anisotropic medium is that the energy is
transferred not in the direction of propagation. It is difficult to understand for plane
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waves, but can be illustrated on the example of the waves propagating from a point
source. Surfaces of constant phase at two different moments are shown below:

Vector k=n/c is wave vector, and c is phase velocity. But the energy is transported
along the ray q=n’/u, where u is group velocity. The group velocity and the direction
of the energy transfer can be obtained using the vector of energy flux, which in
general case is expressed as follows.

As was shown above,
We=-Tua,
where c is the velocity of the energy transport, i.e. group velocity (denote it u=un’)
Then
un’ =—(T,u)/W (34)
From this relationship we can determine both group velocity and direction of the
energy transport.

16
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3. Propagation of elastic waves in media with boundaries

3.1. Boundary conditions

If the medium contains a boundary or discontinuity at which seismic velocity
changes, the waves reflect or refract, i.e. some new waves are generated on the
boundary. These waves must fit the boundary conditions. Boundary conditions relate
stresses and displacements at the boundaries.

At free surface all stresses applied to the surface (so-called fractions) vanish, i.e. if
the unit normal to the surface S is n, then (T,n)s=0.

Boundary conditions at interfaces between two solids may be different. The most
usual condition is continuity of traction and displacement:

T}:l) _ T}gz)

o (3%)

u? =u
These conditions correspond to the welded contact.
Another case is the so-called sliding contact. This corresponds to the case, when the
media in contact are allowed to slide freely along the boundary. It means that the
tangential component of traction vanishes, whereas normal components of both
traction and displacement are continuous. No restrictions are placed on the tangential
component of displacement:

1 _ A(2)
7’-nrz - Tnn

0 _ A2 _
Tnt - Tnt =0 (36)
ul =y ®

Such contact may be realized if a thin fluid layer is placed between the media.

More general condition is the so-called unwelded contact. This includes (35) and
(36) as particular cases. This contact can be also realized as before: if a thin ‘elastic’
layer with vanishing rigidity (u—0) is placed between the two media. Depending on
the relation between the thickness of the layer 4 and the rigidity i the contact tends to
the welded or to sliding one. To derive the boundary condition on such contact we
have to consider the conditions on both interfaces of the layer, and then assume 2—0,
u—0. The conditions at each interface are assumed as those for the welded contact.

h 1
h H
Y

At the interface I the conditions are as (35):

20 =2
20 e
ur(ll) — ur(,fl)
u® =y

At the interface 2 the displacements and tractions in the layer are

17
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(@)]
,z-(fz) — ,z-(fl) + aTWI h— ,z-(fl)
nm — Ymn an nn
i i aT(fl)
f2) _ (/D nt (02)]
T,/ =17+ e h—1/
i au (f2)
w0 =y
n

. o u . ho
u? =y By U gy
n h—0
H1—0
Eliminating the tractions and displacements in the layer we obtain the

relationship between these quantities in the upper and lower solids:

@O _ A2
2-nn - Tnn

O _ A2
Tnt - Tnt (37)
u(l) — 1/1(2)

n n

(2)
t

0+ mr® =
.| A

where m = lim{— ).
U

h—0
“—0

If m=0 we obtain the welded contact, and if m—co the contact is sliding.
Alternative conditions for unwelded contact may be derived if we assume the layer
between two solids as filled by a viscous fluid.

3.2. Incidence of a plane wave to a plane boundary

It is well known that if a plane wave impinges on a plane boundary, new derivative
waves result. The number of them depends on a type of the boundary and on
polarization of the wave. In all cases we shall assume the boundary to be horizontal
(z=0), and the waveform in the incident plane wave to be

xsino—zcoso
c

so that the plane of incidence is y=0.
1. Free surface.
Scheme of the incident and reflected waves is shown below.
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It is clear that to satisfy the boundary conditions we must assume the wave forms of
the reflected waves the same as for the incident wave, i.e. F(¢). Also the argument of
the function F should be the same at any point x of the boundary z=0. This
requirement leads to the Snell’s law:

sine, _sine; 1

a b c
where the meaning of ¢ is an apparent velocity along the boundary.
If P or SV waves impinges to the surface, the displacements in the reflected P and
SV waves are expressed as

xsing, + zcosa
u, =k,F(t- £ £

)(e, sina, +e, cosa,)

xsinog +zcosol

b
where xp and kg are the reflection coefficients. They are determined from a linear
system derived from the two boundary conditions

7.=0, 7_=0, atz=0

u, =K F(t— )(e, cosorg —e_sina)

The system may be written in the matrix notation:

where the matrix A is following:
A - sin2a,  K0s20y y
—ycos2o, sin2ag )

a
b

and the vector b depends on the incident wave.
If P wave is incident,

b, =4,
b =-4,
If S wave is incident
b, = 4,
by =—4y

The reflection coefficients depend on the angle of incidence. The most interesting case
is when P wave reflected due to incidence of SV wave becomes inhomogeneous. This

. . 1 . .
case arises when sin >—. In this case cos, =4/1—(ysine,)’> becomes
/4

imaginary, and the solution for P wave becomes complex. It is clear that the reflection
coefficients for both P and S wave also become complex. Polarization vector
n=e sino, +e_cosa, forP wave also is complex. The amplitudes of the

coefficients for y = /3 are shown below.
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257

207

SS

\
0.0 T — T T T 1

At overcritical angles (&g >35°) the modulus of the SS coefficient remains equal to

1, but its phase changes, though the wave remains to be homogeneous.

If, as was defined above, f(x,y) and g(x,y) are real and imaginary parts of the the
function of a complex variable F(z)=F(x+iy) , then displacement in the reflected P
wave at overcritical angles is

u,(tx,z) =Re{(/c1 +ir, ) (f(t -2, 277 sin? oy D) +ig(t—=,2 [y sin® ay —1))(e, ysina, +ie. ¥’ sin” & —1}
CcC C c C

For harmonic wave

a .
—=/7*sin? ag-1)
c

u,(t,x,z)= Re{(l(1 +ix, )(cos[@(t — Xy +isin[o(f - 1)])(ex}/sin ag +ie |y’ sin® oy — 1)}e
c c

Particle motion in P wave for different angles of incidence is shown in the next figure.
The motion is elliptic, prograde (as a rolling ball), and z-axis of the ellipse increases
with the angle of incidence.

e
O 4
64°
Particle motion in
inhomogeneous
750 reflected SP-wave
80°

If P wave is incident, reflection coefficients are always real. The behavior of the
coefficients with the angle of incidence is shown below.

20
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2. Interface between two solids.
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If P or SV is incident to the boundary, four waves arise: reflected P and SV, and
transmitted P and SV. In case of incidence of SH wave only two waves arises:
reflected and transmitted SH. Reflection and transmission coefficients are determined
from a system of linear equations resulting from the boundary conditions.

NS
- \ S (1)

\\\\ /\\ P

=

o \\ NP reflected/
incident -, transmitted
waves NS waves

P
P. %/

S (2)

The system of equations for P-SV reflection/transmission coefficients in case of

welded contact between the media (see the scheme above) has the following form:

()

Api
()
A Xsi —_p®
(i) ’
ZPZ
()
As2
where
—cosa, sinf3,
sin ¢, cosf,
A=|u i
) 1
—sin2¢, —cos2p,
a, I
—pa,cos2ff pb sin2p

-cosa, -sing,
-sina, cosf3,
2 §in 2, - 4 cos 28, |
a, b,

p,a, cos2f3, p,b, sin2f3,
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and the vector b; in the right-hand side depends on the incident wave: it is formed by
the i-th column of the matrix A according to the rule b =a ,(-1)’ (i=1(2) if P(S)
wave is incident from the medium (1) , i=3(4) if P(S) wave is incident from the
medium 2); the angles o and B correspond to P and S waves.

As mentioned above, the boundary conditions can be of different type, depending
on the physical properties of the boundary. It is interesting to compare the coefficients
for unwelded contact for different values of m. It is convenient to choose a
dimensionless parameter instead of m, e.g. m = wmy, / b, , where g and b, are rigidity

and shear wave velocity in the medium where the incident wave propagates.

P-wave reflection coefficient

P-wave transmission coefficient

V,=7.8, Vs=4.5

P P

14 NC Ve=8.2, V=4.8

\ \
0 20 40 60 80
angle of incidence, deg.

B

12— P ;

1+ 0
08
06|
0.4

e
02
i I I I I
0-0 20 40 60 80

angle of incidence, deg.

S wave reflection coefficient

S-wave transmission coefficient

0.8 -

0.6 -

0.4 —

0.2+

0

\ \ \ \
20 40 60 80
angle of incidence, deg.

7 S
0.8
| P
0.6 |
0.4 5 N
1 2
0.2
1 0
0 I I I I
0 20 40 60 80

angle of inciidence, deg.

The figure above shows the reflection/transmission coefficients as functions of the
angle of incidence for different values of 7 (remember that 72 = 0 corresponds to the
welded contact, and m = oo to the sliding contact).
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3.3. Head waves

If spherical wave is incident on a plane boundary, and a velocity of one of the
reflected/transmitted waves is larger then that of the incident wave, a so-called head
wave 1s formed on the boundary in addition to the transmitted and reflected waves. It
is easier to understand generation of the head wave proceeding from the concept of the
wave fronts. Let the disturbance in the source begins at =0, then the surface =7/,
where 7 is a distance from the source and ¢ is wave velocity, separate the disturbed
and non-disturbed areas. This surface is called the wave front.

Let the source be placed in the half-space 1, the source radiates P-wave, and a>> a.
At the boundary z=0 transmitted and reflected P and S waves are produced. The front
of the reflected P wave is spherical, as of the incident wave, and the fronts of all other
waves are spheroidal. While the front of the incident wave crosses the boundary

. . a )

under the angle less than critical (sina!’ <L), the wave fronts can be drawn as in
a,

the fig.a. The fronts are closed in one point, which the disturbance reaches at a given

moment. At the moments, when the angle of incidence exceeds the critical one, the

picture of the wave fronts changes: the front of transmitted wave breaks away from

this point and propagates in the half-space 2 along the boundary with larger velocity

a b

P, p

1 . 1

1 \ % ;1 \ / 1\ &1 > ’2,07
O

2 S, 2 S, 4 A

P,

(fig.b).

In this case a part of the boundary between points A and O turns to be disturbed. This
disturbance is radiated to the half-space I in a form of so-called head waves with
conical fronts. The waveform of the head wave (y/?)) is the integral of the waveform
of the incident wave (f(?)):

w(t)= [f(Ddr y() = [f(D)de

Amplitude of the head wave is determined by the formula:

(0)
rV+R 1
Wit~ - )tanary),
a a
r = 1 2
Uhead r 13/2 \/7
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where I is the coefficient of head wave generation, which is expressed in terms of
reflection/transmission coefficients in the points A and B. If the types of incident,
grazing and head waves are indicated by indices m,n,q, then

P,
Loy = =Ko sin 2«
'Oq q

3.4. Rayleigh waves

In a half space with free surface exists a specific solution, which represents a
superposition of inhomogeneous plane P and S waves. If we look for a solution in a
form of a plane wave, the plane of incidence being y=0 (for simplicity we assume the
dependence on time to be harmonic) then, according to the general representation of
the inhomogeneous waves, we may write

2

uP(t,x,z)zAlﬁex—iez a—z—I]exp[ia)(t—x/c)]exp(—a)z Lz—iz)
c c ¢’ a

b’ b _ 11
u,(t,x,z) = Bl ie [——1+—e, |explio(t —x/c)]exp| —az,|———
c c ¢ b

Replacing these expressions to the boundary conditions at the free surface z=0 we
obtain a linear system for the amplitudes 4 and B of P and S waves. This system is
homogeneous, therefore if non-zero solution exists, the determinant of the system
should be equal to zero. This is

02 ’ C2 6‘2
(2-[)—2} -4 l—a—z 1_b_2:0

Thus, the superposition of the waves (38) with 4 and B satisfying the boundary
conditions (up to a constant multiplier) represent a wave propagating along x-axis and
decaying exponentially along vertical direction.

Velocity of this wave along x-axis varies from 0.874b up to 0.9565 for all possible

(38)

values of b/a (from 1 to 0). It does not depend on frequency.

V2

Motion in the Rayleigh wave is elliptic, retrograde at the surface and at shallow
depths, but becomes to be prograde at large depths. The figure shows variation of the
vertical (w) and horizontal () components with depth.
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Ratio of horizontal and vertical amplitudes in Rayleigh waves at the surface is equal

41— (c/b)? . . 1
to ————=——==" It depends also only on the ratio b/a. For b/a varying from — to 0

21— (c/a)’ V2

this ratio varies from 0.786 to 0.541. For b/a= € it is equal to 0.681.

NG

Rayleigh wave can be generated by a point source in the half-space, because the
spherical wave radiated by such source may be represented as a superposition of both
homogeneous and inhomogeneous plane waves. So it contains the waves with the
apparent velocity equal to the velocity of Rayleigh wave.

3.5. Love waves

Inhomogeneous SH wave cannot exist in a half-space with free surface, because it
is impossible to satisfy the boundary condition by only one wave — this can be done
only if its amplitude is equal to zero. But if we have a layer with S wave velocity less
than in the underlying half-space, than the waves can propagate along the boundary,
amplitude of which decays with depth in the half-space. These are Love waves.

Love wave is formed by homogeneous waves within the layer and by
inhomogeneous waves in the half-space. Therefore the apparent velocity of Love

s . 1 singg sina
wave should be within the limits b, <c¢ <b,< because — = 3 = 3 52 and
¢ | 2

. b . .
1>sineg, >—. These waves should satisfy the boundary conditions at the free
2

surface and at the interface.
Again we shall construct the solution as a superposition of plane waves.
In the layer (homogeneous plane waves)

1 1
V, = dexpliot —= -z |———)]+ Bexplio(t — =+ 2z |— ——)]
C | C ) c

In the half-space (inhomogeneous waves)

X 1 1
V, =Cexplio(t——+iz f———
2 pliex c c? b22 )]

It should be noted that in this case polarization vector is real (directed along y-axis),
because the real part (l;) is orthogonal to z-axis. So, if we recall the relationship
between the components (16), we can see that cos#=0 , so that 1,=0.

These waves should satisfy the boundary conditions at the free surface and at the
interface.

At the free surface (z=0)

av . , 1 1 .
sz = U, _& =—-luw b—z—c—z(A —B) exp[za)(t —.X/C)] =0
1

where from 4A=B. So the solution in the layer may be written as

V, =24 cos[a)z b%—é%)exp[ia)(t—x/c)]

1
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At the interface z=H

Vi(H)=V,(H) = 2Acos(a)H bl iz :c@q{ ol /Lz bLzJ

! 2

1 2 1 1 1 1 1 1
Tz(y)(H):TZ(y)(H) — -ZAIUIC()DSIH[QJH 72 7 Clu2 2 exp( wH T b}

It follows from these equations that

N

1 1

t[Hl 1J oy T 59)
oH |—-— | =——
n b} ¢’ I 1
b2 72

This is dispersion equation for Love wave velocity: unlike to Rayleigh waves in a
half-space the velocity depends on frequency.

It 1s easy to show analytically that b, <c <b, (as concluded above from simple
physical consideration). In fact, only in this case left and right sides of the dispersion
equation are real.

It is also easy to show that for a given ¢ there are infinite numbers of frequencies
satisfying the dispersion equation. In fact,

1 1
1 ILLZ cZ b22
OH = ————atan| ——= |+kn, k=123...
1 1 1 1
E_? H bT 7

Also we can show that for any given @ there are finite number of c. The Eq. (39) may
be written as
f2(c.@) = £,()
A graph for the right-hand side is drawn number of roots increases with increase of
by solid line. And the graph of the left- .
hand side behaves as tan - at the values of

n , |
argument 5 + kit tends to *eo. But the !

rate of change depends on m. At the figure
below the graphs for the left-hand side are
shown for two different values of . It is
clear that for small ® there is only one
root, and the

Dispersion curves of phase ( ¢ ) and group () velocities afgxhown below.

| b
b1 c 2
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frequency

4. Waves in anelastic media

4.1. Constitutive equations

Real solids are not perfectly elastic. This causes seismic processes (waves, oscillations) to
attenuate with time due to various energy-loss mechanisms. The most usual explanation of these
mechanisms is internal friction between microscopic particles of the material, which leads to
transformation of mechanical energy to heat.

The simplest description of attenuation due to ‘friction’ can be developed for an oscillating mass
on a spring: this is a phenomenological model for seismic attenuation.

4\/\/\/—m%f

Let x be a deviation of the mass from the equilibrium. The force f is friction opposing the
motion of the mass. Denote K a measure of the spring’s stiffness.
The motion of the mass is

mi—F=0
If friction is absent, and oscillation results only from elastic force, F'=-kx,

mi+kx=0,
and we obtain harmonic oscillation:
x=Asin(ax+¢), wo=NK/m
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However, if there is a friction between the moving mass and the underlying surface, and this force
is proportional to the velocity of mass, so that the total force is

F=—kx—x,
then the oscillation attenuate'
XxX=e 8

where f = \/7 N

Motion in a sohd fits the equatlon

0’)2

&2

where T is stress tensor. To solve this equation for any particular case it is necessary to express
the stress in terms of displacement and its derivatives. In perfectly elastic medium this relation is
expressed by the Hooke’s law. As shown above, in the case of homogeneous isotropic medium
the equation of motion is reduced to the following

VT=p

2*u

o’

(A+2u)Vdiva— protrotu = p

The solution is non-attenuated wave.

In realistic media the relationship between stress and strain is more complicated than that
corresponding to the Hooke’s law. Various properties of realistic materials lead to different
relationships between stress and strain,— so-called constitutive equations, — which describe
behavior of the material when a stress is applied. A constitutive equation defines rheological
model.

We consider the main rheological models used for analysis of oscillations and waves in solids.

Kelvin-Voight (viscoelastic) model. This model assumes existence of viscous coupling between
particles in addition to elastic forces. Viscous forces are proportional to the velocity of strain. The
relationship between stress and strain is as follows:

o,
ﬂ81k+77 &t
00 oe,
= A0 +2 ue, 2
+2ue; +1’ &JF n—- o

(0 = divu)
This model can be represented by a simple mechanical analogue: elastic element (spring) and
viscous element (a piston pressed into viscous fluid) connected in parallel. If we apply a stress to
such system at some moment, the strain arises not immediately, but increases gradually. The same
happens if the stress is suddenly taken away: the strain would vanish gradually.
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o

The relationship between stress and strain may be written in another form:

H

T = [8+Td—g)
—/,l sdt

The strain under constant stress relaxes:
—t/T,
£ = 80(1 —e )

T, is the relaxation time. For small 7, we obtain the Hooke's law.

Maxwell model. This model is a particular case of the so-called after-effect models, in which the
stress 1s assumed to relate not only with the strain at the same moment, but also with the history
of strain behavior at previous time:

Ty = pey — Jp(E)ey (1 - E)dE (40)

¢@(&) is the so-called creeping function. Various rheological models correspond to various
creeping function.

If (&)= Tﬂexp(—f /'T,) (for pressure the Hooke's law is kept), we obtain the Maxwell model.

Substituting this function to the formula (40) and integrating by parts, we obtain
dr 1 _ de
dt T i
The constant T;1s the relaxation time of stress under a constant strain:
T=1,exp(—t/T,)
The Maxwell model is valid only for shear strain. The figure below shows the mechanical
analogue of the Maxwell model, as well as behavior of strain under a constant stress,
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Standard linear solid. This model combines the both dissipation mechanisms, so that the

relationship between stress and strain is following:

1+Td—7— (g+Td—€)
g H ¢ dt

Mechanical analogue of this model is shown below:

In this model the strain is relaxed under a constant stress, and the stress is relaxed under a

constant strain.
4.2. Propagation of harmonic waves.

It is possible to derive the equation of motion in a form
d’u
L(w=p%
only in some particular cases of anelasticity, - for example for viscoelastic medium. But
it is easy to study propagation of harmonic waves in any linear model.
Let us consider harmonic oscillation in various rheological models:
u=u(r)exp(iawt)
Time dependence of strain is of the same form:
e=¢&(r)exp(iat)
For Kelvin-Voight model
7(r,t) = u(1+iaT,)e(r)exp(iot) = u(1+iwT, )e(r,t)

For Maxwell model
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(I+iwT, )z (r,t) = i, £(r,t)
iwT, ue(r,t)

T 1) =
0 == ar)
For standard linear solid:
(I+iaT))
T(r,t)=U———_E(r,t¢

This for all cases the relationship between stress and strain is formally coincides with the Hooke's

law, but the elastic modules are complex and depend on frequency. The frequency dependence is

different for different models. Therefore in analysis of wave propagation of harmonic waves in

anelastic media we may formally use the inferences obtained for perfectly elastic medium.
Consider propagation of a plane harmonic wave along x-axis:

A(x,t)= A, explia(t—x/V)]
If the modules are complex, the wave velocity ' should be also complex:
1 i

|
V V() V

*

Then

A(x,0) = 4, exp(— Iﬁ”) explio(i—x/ V()]  (41)

This shows that the wave attenuates with distance, and its velocity depends on frequency:
V =V (w). Attenuation and dispersion are the main properties of the waves propagating in
anelastic media.
Using the wave number £ we can represent the plane wave in the form
A(x,t) = A, expli(wt — kx)]
where the wave number k is complex: k = k —ik ", so that the attenuation is determined by the
exponential term exp(-k x), being the attenuation coefficient. It depends on frequency.
Quality factor. Instead of the attenuation coefficient £ seismologists use the characteristics,
A
which is called the quality factor Q. It is a measure of energy loss at a distance k™' = Ey where
A is the wave length:
o = AE _ exp(—2k"x) —exp[—2k " (x +k7")]
E exp(=2k"x)
The larger Q,, the more proximate the medium to the perfectly elastic. Because

*

. k
=1-exp(-2k" /1K) =2=—. (42)

*

T then 0 =T and fly, k" =——— Thus, the term describing th
=, cn =— , anda conscquently, = . S, ¢ term descrioin c
VT 7 quently ovr: ™ 8

attenuation is exp(—ﬁ). In inhomogeneous medium, where both velocity and Q are functions

) . T (ds
of coordinates, it is exp| 7 @ .
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Now we show how the quality factor Q is expressed in terms of the real and imaginary parts of
the complex modules, and how to relate it with the relaxation times. Consider a shear wave. The
complex velocity is expressed through the complex shear module as follows:

[ *z\ﬁ(l_ﬂ_J
urig” "\ u\ " 2u

*

L 2k .,
It follows from Q = that O~ =

20
V—l
modules for different rheological models we can write the quality factor as a function of

frequency and relaxation times:

:%' Knowing the expressions for complex

For Kelvin-Voight's model ~ Q™' = @T, .
For Maxwell model QO=daT,
o, -T,)

For standard linear solid 0= 3
I+w°T,T,

It seems that Q should noticeably change with frequency. However seismological observations
indicate that Q does not practically depend on frequency over a large range of frequencies. This is
because of a variety and scale of attenuation processes in real materials. The most general model

is the standard linear solid, for which the frequency dependence of Q7' is as follows:

1
I.T

ETT

i [, [1)
the value of Q7' at this frequency is equal to EL ?5 - FTJ The superposition of numerous

Debye peaks for various relaxation processes , each with a different frequency range, produces a
broad, flattened absorption band.

The peak in Q' is known as a Debye peak. 1t corresponds to the frequency @, = , and
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5. Diffraction of elastic waves

In the wide sense diffraction is deviation from geometroseismic propagation of the waves. The
laws of geometrical seismic are true when a family of the rays is regular: the rays cover the space
completely and they do not form shadow zones. Diffraction occurs near the boundaries of shadow
zones. We shall consider three examples of diffraction for short periodic waves.

5.1. Caustic
Caustic is an envelope of the rays. It divides the space to illuminates zone and shadow zone. The

rays cover the illuminated zone, where two rays cross a given point: coming to and off the caustic
(see the figure below)

illuminated zone

caustic

shadow zone
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The examples of caustics are shown below

Incidence of plane wave to
a boundary of the medium Transmission of plane wave across
with increasing velocity

a curved boundary of homogeneous media

\

I‘-.. \ \,I

PP wave

The wave field cannot be discontinuous; therefore we may expect a perturbation in the shadow
zone in the vicinity of the caustic. In fact, asymptotic solution of the wave equation (or equation
of motion of elastic medium) in a narrow vicinity of the caustic describes a wave propagating
along the caustic, whose amplitude varies in the direction perpendicular to the caustic as the Airy
function. The amplitude of such a wave depends on frequency, velocity and effective radius of
curvature of the caustic (effective curvature is a sum of curvatures of the caustic and the ray
tangent to the caustic). In 2D case the wave field in the vicinity of the caustic is determined by the
formula

U(n,s;t)=CA{—(R22j a)z”nJexp(a)(t—T(s)) (43)
C

where s is a distance along the caustic, # is a distance perpendicular to the caustic (n<0 in the
shadow zone) , R is effective radius of curvature of the caustic, #(s) is travel time along he
caustic.

Airy function oscillates at negative

argument and decays approximately Ai(x)
exponentially at positive argument. /\ /\ /\ \\
T v' \/w T
-10 -5

! X
5

5.2. Diffraction at sharp edges

Now we shall analyze the waves diffracted at sharp ends of boundaries. An example is
the case when a plane wave impinges to an opaque boundary :
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The edge can be regarded as a source for diffracted waves.

Analysis of the wave field including the diffracted waves is based on the representation
theorem that expresses the wave field within some volume in terms of displacement and
stress on the boundary of the volume.

Representation theorem

Since the diffracted waves depend on frequency we may consider only harmonic waves.
At S given are a displacement Us and a traction 7, . The displacement Us and the
traction T, cause a wave field within Q. For simplicity we suppose that no body forces
act within this volume. The wave field in € satisfies the equation

VT + po’U =0 (44)
Define the Green function g'” (x,€), which is a solution of the equation
Vil + @’ pg? =-6(x-8)e, (45)

where 17 is the stress tensor corresponding to the Green function.
Let T and V correspond to any two different solutions of (44), T being a symmetric
tensor. Then according to the Gauss formula we obtain

[div(TV)dV = [(TV,n)ds (46)

For symmetric tensor we have (TV,n)=(T,,V) . Then
jdiv(TV)dV = j(rn,V)dS
14 N
Now we apply (46) to the following combination
[(@iv(zr0) - div(Tg) v = [((x2.0) - (T,.g"))ds
Q

S
The terms in the left-hand side may be transformed as

div(TV) = (V,TV) = (VT,V) +(TV, V)
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Denote

1, = [(V2,U) = (VT,u?) s
N
1, = [((x*V.0) = (TV,u"))ds
N
To transform /; we replace V1" u VT from the equations of motion:

[l po’ @’ U) - (U,e,)0(x~ &) + par* (g7, V) k2 = ~(UE.1)e,)

Now we shall transform I :

U U U

. U)=7,—+7, —+7,.—+
ok & &k

U , U ) U )

Tyx 0-5‘_ + Tyy @/ + TJ’Z 0’12 +
dU . aU . dU .

T, Y +7, +7_—==

@} 74 &
= AdivgdivU + % z Vil

Because of symmetry of this expression in respect to U and g , we see that I, =0.
So finally

(UE)e,) = [T, (x,).8°(x5.8) - (¥(x5. 8. U, DS (47)

This is the representation theorem for harmonic waves.

Green function for isotropic homogeneous medium

To apply the formulas (43) and (47) for determining the wave field it is necessary to
know the Green tensor g?(x,&,7). It should be noted that the Green tensor can be

determined in different ways, depending on the boundary conditions at S. In case of a
bounded volume it is convenient to assume either displacement or traction equal to zero
at S, depending on which characteristics of the field (displacement or traction) is given
at S. In case of unbounded medium it is sufficient to take into account the radiation
condition. In general case of the medium the Green function can be determined only
approximately, but in homogeneous isotropic medium the exact expression for the Green
function exists. It can be easily obtained from the Stokes’ formula for the wave field
excited by a point force located in the origin of coordinates. Remind that we consider
harmonic waves and omit the time factor exp(imt).

1 | 2cos@ sing  |*¢ i cosd _
u(x,?) = € €, ITGXp(—lCOT)dT+ ——exp(—iwR /a)e, —
dmp| R R 2 4mpa” R
0 ‘ (48)
sin
exp(—iwR /b)e
47mpb* R o )

b

The Green function g ? (x,&,) is obtained from (48) if we replace R = |x -&

cosf = (e, .e,).
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The first term in the right-hand side of (48) decays with distance more rapidly than the
last two ones, so usually, if the source is far away from the point of observation, it is
sufficient to consider only the second and the third terms.

Application of the representation theorem to analysis of diffracted waves

In this section we shall consider a simple example how the representation theorem is
applied to the problems of diffraction of the waves. We shall analyze the waves
diffracted at sharp ends of boundaries. The simplest example is the case when a plane
wave impinges to an opaque half-plane screen, which does not transmit P-wave, placed
along xy-plane at —co < x,<—X, —oo<y<oo.

A plane wave is incident normally to this plane along positive direction of z-axis. We
shall determine the wave field in the point x=0, z=H.

x N o

7

The incident wave is expressed as
U(x) =e_ exp(ikz) (49)
where k=w/a. This is valid in the half-space z<0. The stress at z=0 is

T, =(A+2u) o
0z

= ik(A +2u)exp(ikz) . But the outward normal to the boundary z=0

is —z, therefore at the boundary T, =-T, =(0, 0, —ik(1+2u)). The displacement at
z=0 is U=(0,0,1).
For this particular case formula (47) has the following form:

U.M)= [ [T, g7 (x5, M)~ (33 (x5, M), U by (50)
iy
To use the formula (50) we have to determine the Green’s function and the
corresponding stress. Assuming the frequency to be sufficiently high (the wavelength
much smaller than the distance from the ‘source’ M to the boundary) we may keep only
the main term in the Green’s function (decaying as 1/R). Then the field of P wave
excited by a unit force placed at M and directed along z-axis is

g (8)=

H
exp(ikr)(e_,e, e, = ————exp(ikr)e,
dmpa’s p(ikr(e..e,) dmpatr’ p(ikr)

2

. 1 . H
8. (8) = ————exp(ikr)—-
4rpa“r r
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z
nz

To calculate 7. we take into account that for high frequencies (and for large k) it is

sufficient to differentiate in respect to » only the exponential term. Then

. 3
T ik 5 exp(ikr)(/lE +2u H—3j
r r

- 4rpa“r
Substituting all these expressions to (50) we obtain

00 oo 2 3 .
U.(M)= 4”/1)612 [ [— k(A + 2/,1)1;1—2 - ik[lg +2u H} D eXpi’kr) dxdy
o X

r

To estimate this integral we use the method of stationary phase. The stationary point is
x, =y, =0. In this point »=H. According to the method of stationary phase we

represent the phase function as series in the vicinity of the stationary point and keep only
terms of the second order. Then we obtain

U.(M)= —M exp(ikH) j exp(ikr,, y* 1 2)dy Iexp(ierxxz / 2)dx =
4rmpa H - ¥
_ _ ) (51)
__ 2Z‘H 2’ZH exp(z’kH)_ )j( exp(ike? /2 H )dx

. . 1
(It is taken into account that . =r,, =—).
7 H
The integral j exp(ikx® / 2H)dx can be expressed through the Fresnel integral
-X

F(z)= j exp(iz’® /2)dt

0

D]exp(ikxz /2H)dx = @(F(oo) -F(- k;; )j (52)

-X

Substituting (52) to (51), and taking into account that F'(ec) = \/%, F(-z)=-F(z) we

finally obtain

—ir/4
V2

[mH . . . Lo
where R, = 7[7 is the Fresnel radius. The modulus of this function is shown below.

U.(M)= exp(ikH)B+ © F(X/RF)}

1/2
J X/R.
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Thus, under the edge (X=0) the amplitude of the transmitted wave is twice as less of the
amplitude of the incident wave. When the screen is moved to the left (X>0) the

amplitude increases and exceeds that of the incident wave. If the screen is moved to the
right, the amplitude decreases gradually to zero.

It is also possible to estimate a phase of the total transmitted wave. The total field may
be represented as a superposition of ‘pure’ transmitted wave and diffracted wave. If the
transmitted field is deducted from the total field, we obtain a field of the diffracted wave.
It can be shown that a phase of this wave is approximately equal to
kR+7/4, where R is a distance from the point M to the edge of the screen. Thus the edge
of the screen may be regarded as a source of the diffracted wave.

5.3. Diffraction at smooth boundaries

If there is an opaque obstacle with
smooth boundary, a shadow zone is
formed behind it.

Diffraction effects are different in a
narrow vicinity of the shadow boundary
(so-called semi-shadow) and in a deep
shadow. Analysis of the waves in the
semi-shadow is rather complicated, so
that we restrict our consideration only

by the effects in the deep shadow.

The boundary ray in the point tangent
to the obstacle (P) is doubled: a part
continues to propagate ahead forming a
boundary of geometrical shadow, and
another part is sliding along the

boundary of the obstacle. In the process
of sliding the wave losses its energy:
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in each point the rays go off the boundary, and propagate later according to the
geometrical seismic. Decay of the sliding wave amplitude at a segment from P to Q is
determined by the following factor

/@ _ 1/3Q ds
j(Q)eXp[ o JR2/3C]/3J

where j is geometrical spreading at the surface of the obstacle, R is effective radius of
curvature of the surface, ¢ — wave velocity. Thus we may calculate the amplitude in the
point Q, and then use formulas of the ray theory.

Similar pattern of the rays, and consequently behavior of the diffraction wave field, is
observed when the rays are tangent to a wave guide (low velocity zone).

/ /
/ /

/sﬁadqw/zone

-

~ ~
N AN
AN AN
\ \
\ \
\ \ \

Consideration of these three examples shows that the diffraction effects can be
substantially different.
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