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I. Parameterization of seismic source 
 

The description of seismic source we will consider is based on the formalism developed 
by Backus and Mulcahy, 1976. 
 
Statement of the problem.  
Motion equation 
  ,u i i j j  f i          (1.1) 

Hook’s law for isotropic medium 

ijkkijij  2         (1.2)   

Initial conditions 
 ,u u  0 t 0          (1.3) 

Boundary conditions 
0|

0
Sjij n          (1.4) 

Here u – displacement vector; ij – elements of symmetric 3x3 stress tensor; i,j=1,2,3 and the 

summation convention for repeated subscripts is used; 
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  ; ij – elements of 

symmetric 3x3 strain tensor and )(5.0 ,, ijjiij uu  ;   - density; fi – components of 

external force; nj – components of the normal to the free surface S0.  
 
Solution of the problem (1.1)-(1.4) can be given by formula 

yjij

T

i dVftGdtu ),(),,(),(
0

 yyxx 


       (1.5) 

or 

u t d H t f dVi

T

ij j y( , ) ( , , )  ( , )x x y y   
0 



d

      (1.6) 

Here  Gij is the Green’s function,  

H t Gij ij

t

( , , ) ( , , )x y x y   
0

,         (1.7) 

x  and 0 < t < T are the space region and time interval where  is not identically zero. f
 

Seismic sources  
 We will consider internal sources only (earthquakes). In this case any external forces 
are absent. We must then set 0f in equation (1.1), so that the only solution that satisfies 
the homogeneous initial (1.3) and boundary (1.4) conditions, as well as Hook’s law (1.2) will 
be .  Non-zero displacements cannot arise in the medium, unless at least one of the 
above conditions is not true. 

0u

Following Backus and Mulcahy, 1976, we assume seismic motion to be caused by a departure 
from ideal elasticity (from Hook’s law) within some volume of the medium at some time 
interval 0 < t < T. 

Let u(x,t) be the actual displacements, (x,t) - correspondent stresses, if Hook’s law is 
valid, s(x,t) - actual stresses. 
Let the difference  
(x,t) = (x,t) - s(x,t),         (1.8) 
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called the stress glut tensor or moment tensor density, is not identically zero for 0 < t < T  and 
x  
we define as source duration, and  - source region. Within this region and time interval 
(and only there) the tensor is not identically zero as well. ),( txΓ

Replacing (x,t) by s(x,t) in equation (1.1), using definition (1.8) and the absence of 
external forces ( 0f ) we can rewrite the motion equation (1.1) in form 
  ,u si i j j  

or 
  ,u i i j j  g i

i j j



 

         (1.9) 

where 
g i    ,  .         (1.10) 

Equation (1.10) defines the equivalent force g.  Using formula (1.6) with fi replaced by gi , 
definition (1.10) and Gauss theorem we have for displacements 

u t d H t dVi

T

ij k jk y( , ) ( , , ) ( , ),x x y y   
0 

 ,      (1.11) 

where Hij  is differentiated with respect to yk . 
If the inelastic motions are concentrated at a surface , then 

u t d H t di

T

ij k jk y( , ) ( , , ) ( , ),x x y y   
0 

 .      (1.12) 

Relation of stress glut (moment tensor density) with classic definition of moment tensor M : 

y

T

dVtdt


 ),(
0

yΓM   .        (1.13) 

Normalizing moment tensor we define seismic moment M0 :  

M=M0m , where tensor m is normalized by condition , mT is transposed 

tensor m.  
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Stress glut moment for special types of seismic sources 
1. Discontinuity of displacement u at a surface in isotropic medium (stress is continuous): 

)].,()(),()([

)(),(),(

tuntun

ntut

ijji

ijkkij

xxxx

xxx








     (1.14) 

Here n(x) is the normal to the surface and seismic disturbances are given by formula 
(1.12). 
2. In the case of tangential (shear) dislocation we have 

0 kk nu and formula (1.14) takes form 

)].,()(),()([),( tuntunt ijjiij xxxxx       (1.15) 

3. Instant point tangential dislocation occurred in the point x=0 at time t=0: 
),()(),( 0 xx  tmMt ijij         (1.16) 

where ijjiij ananm   , a u u /| |  and  .||0 u M  

Phenomena of matrix m  
Trm = 0. The eigenvalues of matrix m are: 1, -1 and 0. The eigenvector correspondent to 1 
defines the direction of maximum extension, and the eigenvector correspondent to -1 defines 
the direction of maximum compression. Such a source is called double couple. 
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As it follows from formula (1.12) an instant point double couple excites a 

displacement field of the form 

klliki mtHMtu ),,(),( ,0 0xx  .        (1.17) 

We have for Fourier transforms H(x,y,) and G(x,y,) from equation (1.7): 

ω),,(
iω

1
ω),,( yxGyxH  ,        (1.18) 

where i is the imaginary unit, and  is angular frequency. 
As result the spectrum of displacements is given by formula 

ω),,(
iω

1
ω),( ,0 0xx likkli GmMu  .       (1.19) 

 
Relation between the displacement field and stress glut moments 
 We assume that following product can represent the time derivative of stress glut tensor: 

mxx ),(),( tft  ,         (1.20) 
where  is non-negative function and m is a uniform normalized moment tensor.  f t( , )x

The moment  of spatial degree l and temporal degree n with respect to point q and 

instant of time  is a tensor of order l and is given by formula 

),(),(
...1

qnl
kk l

f
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111
dttqxqxtfdVf n

kkkk

V

nl
kk lll

xq ,    (1.21) 

k1,…,kl=1,2,3. 
Replacing Hij(x,y,t-) in equation (1.11) by its Taylor series in powers of y and in powers of 
we get: 

 0yyx0x 
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 .  (1.22) 

Using formulae (1.18) and (1.22) we have following equation for the spectrum of 
displacements: 

0yyx0x 








 









  ω),,(ω))(i0,(
!!

)1(
ω),(

1

1

1),(
...

0 0
ij

kkk

nnl
kk

l n
jk

n

i Gfm
nl

u
l

l yyy
.  (1.23) 

Here we assume that the point y=0 and the instant t=0 belong to the source region and the 
time of the source activity respectively. 
 When the spectra of displacements ui(x,) and Green’s function Gij(x,y,) have been 
low pass filtered, the terms in equation (1.23) start to decrease with l and n increasing at least 
as rapidly as (T)l+n  (T is the source duration, and T<1), and one might then restrict to 
considering finite sums only. 
 We will take into account in the following sections only the first terms in formula 
(1.23) for . 2 nl
 
II. Source inversion in moment tensor approximation 
 

The first term in (1.23) corresponding to l=0, n=0, describes the spectra of displacements 
ui(x,) excited by an instant point source (compare with formula (1.19) taking into account 
that seismic moment is equal to zero moment of function f(x,t):  M0=f(0,0)). For a source with 
nonzero size and duration this term approximates ui(x,) with high accuracy for  periods 
much longer then source duration. Performing the inversion of long period seismic waves we 
describe the earthquake by an instant point source. As it was mentioned in previous section, 
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an instant point source can be given by moment tensor - a symmetric 3x3 matrix M . Seismic 

moment  is defined by equation M0 M0
1

2 tr( )TM M , where M  is transposed moment 

tensor , and .  Moment tensor of any event can be presented in the 

form  M , where matrix m  is normalized by condition . 

T

Tm m

M

 M

tr( )T

,

M M 

Mij
i j

2

1

3

m0 tr( )  2
We’ll consider a double couple instant point source (a pure tangential dislocation) at a 

depth h. Such a source can be given by 5 parameters: double couple depth, its focal 
mechanism which is characterizing by three angles: strike, dip and slip or by two orthogonal 
unit vectors (direction of principal tension T and direction of principal compression P) and 
seismic moment . Four of these parameters we determine by a systematic exploration of 
the four dimensional parametric space, and the 5-th parameter  - solving the problem of 
minimization of the misfit between observed and calculated surface wave amplitude spectra 
for every current combination of all other parameters. 

M0

M0

Under assumptions mentioned above the relation between the spectrum of  displacements 
 and moment tensor M  can be  expressed  by formula (1.19) rewritten below in 

slightly different form:  
ui ( , )x 

)],,([
i

1
),( 





 yxx ij

l
jli GMu

y
                               (2.1) 

i,j = 1,2,3 and the  summation  convention for repeated subscripts is used. Gij ( , , )x y   in 

equation (2.1) is the spectrum of Green function for the chosen model of medium and wave 
type (see Levshin, 1985; Bukchin, 1990), y - source location. We will discuss the inversion of 
surface wave spectra, so Gij ( , , )x y  is the spectrum of surface wave Green function. We 

assume that the paths from the earthquake source to seismic stations are relatively simple and 
are well approximated by weak laterally inhomogeneous model (Woodhouse, 1974; Babich et 
al., 1976). The surface wave Green function in this approximation is determined by the near 
source and near receiver velocity structure, by the mean phase velocity of wave, and by 
geometrical spreading. We assume that waves propagate from the source to station along 
great circles. Under these assumptions the amplitude spectrum | | defined by formula 
(2.1) does not depend on the average phase velocity of the wave. In such a model the errors in 
source location do not affect the amplitude spectrum (Bukchin, 1990). The average phase 
velocities of surface waves are usually not well known. For this reason as a rule we use only 
amplitude spectra of surface waves for determining source parameters under consideration. 
We use observed surface wave phase spectra only for very long periods. Correcting the 
spectra for attenuation we use laterally homogeneous model for quality factor.  

ui ( , )x 

 
Surface wave amplitude spectra inversion 
     If all characteristics of the medium are known, the representation (2.1) gives us a system of 
equations for parameters defined above. Let us consider now a grid in the space of these 4 
parameters. Let the models of the media be given. Using formula (2.1)  we  can  calculate  the  
amplitude spectra of surface waves at the points of  observation for every possible 
combination of values of the varying  parameters.  Comparison of calculated and observed 
amplitude spectra give us a residual for every point of observation, every wave and every 
frequency . Let  be any observed value of the spectrum, i = 1,…,N; -   

corresponding residual of | |. We define the normalized amplitude residual by 
formula  

 ( )i

)

 u i( ) ( , )x 

u

 amp
( )i

i( ) ( ,x
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The optimal values of the parameters that minimize amp we consider as estimates of these 
parameters. We search them by a systematic exploration of the four-dimensional parameter 
space. To characterize the degree of resolution of every of these source characteristics we 
calculate partial residual functions. Fixing the value of one of varying parameters we put in 
correspondence to it a minimal value of the residual amp on the set of all possible values of 
the other parameters. In this way we define one residual function on scalar argument and two 
residual functions on vector argument corresponding to the scalar and two vector varying 
parameters: , and  h h )  T T )  P P ) . The value of the parameter for which the 
corresponding function of the residual attains its minimum we define as estimate of this 
parameter. At the same time these functions characterize the degree of resolution of the 
corresponding parameters. From geometrical point of view these functions describe the lower 
boundaries of projections of the 4-D surface of functional  on the coordinate planes. A 
sketch illustrating the definition of partial residual functions is given in figure 1.  
 
 

 
 
Here one of 4 parameters is picked out as ‘parameter 1’, and one of coordinate axis 
corresponds to this parameter. Another coordinate axis we consider formally as 3-D space of 
the rest 3 parameters. Plane  is orthogonal to the axis ‘parameter 1’ and cross it in a point p0 
. Curve L is the intersection of the plane and the surface of functional . As one can see 
from the figure the point (p0) belong to the boundary of projection of the surface of 
functional and at the same time it corresponds to a minimal value of the residual on the 
set of all possible values of the other 3 parameters while ‘parameter 1’ is equal to the value p0. 
So, as it is accepted in engineering we characterize our surface by its 4 projections on 
coordinate planes. 
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    It is well known that the focal mechanism cannot be uniquely determined from surface 
wave amplitude spectra. There are four different focal mechanisms radiating the same surface 
wave amplitude spectra. These four equivalent solutions represent two pairs of mechanisms 
symmetric with respect to the vertical axis, and within the pair differ from each other by the 
opposite direction of slip.  
     To get a unique solution for the focal mechanism we have to use in the inversion additional 
observations. For these purpose we use very long period phase spectra of surface waves or 
polarities of P wave first arrivals. 
 
Joint inversion of surface wave amplitude and phase spectra 
   Using formula (2.1) we can calculate for chosen frequency range the phase spectra of 
surface waves at the points of observation for every possible combination of values of the 
varying  parameters. Comparison of calculated and observed phase spectra give us a residual 

for every point of observation, every wave and every frequency . We define the 

normalized phase residual by formula  

 ph

( )i



    
 

p h p hh
i

i

, , ) / N
N

/

T P 



















1 2

1

1 2


.      (2.3) 

 
We determine the joint residual  by formula 
     1 1 1( ) (p h a m p ) .        (2.4) 

To characterize the resolution of source characteristics we calculate partial residual functions 
in the same way as was described above. 
 
Joint inversion of surface wave amplitude spectra and P wave polarities 

Calculating radiation pattern of P waves for every current combination of parameters we 
compare it with observed polarities. The misfit obtained from this comparison we use to 
calculate a joint residual of surface wave amplitude spectra and polarities of P wave first 
arrivals. Let be the residual of surface wave amplitude spectra, - the residual of P 

wave first arrival polarities (the number of wrong polarities divided by the full number of 
observed polarities), then we determine the joint residual 

 a m p  p

 by formula 
     1 1 1( ) (p a m )p

 

.       (2.5) 

For this type of inversion we calculate partial residual functions to characterize the resolution 
of parameters under determination in the same way as it was described for two first types. 

Before inversion we apply to observed polarities a smoothing procedure (see Lasserre et 
al., 2001), which we will describe here briefly. 

Let us consider a group of observed polarities (+1 for compression and -1 for dilatation) 
radiated in directions deviating from any medium one by a small angle. This group is 
presented in the inversion procedure by one polarity prescribing to this medium direction. If 
the number of one of two types of polarities from this group is significantly larger then the 
number of opposite polarities, then we prescribe this polarity to this medium direction. If no 
one of two polarity types can be considered as preferable, then all these polarities will not be 
used in the inversion. To make a decision for any group of n observed polarities we calculate 
the sum , where n+ is the number of compressions and  is the number 
of dilatations. We consider one of polarity types as preferable if |m| is larger then its standard 
deviation in the case when +1 and -1 appear randomly with this same probability 0.5. In this 
case n+ is a random value distributed following the binomial low. For its average we have 

, and for dispersion 

m n n 

n. 05

n n n  

M n( ) D n n( ) .  0 25 . Random value m is a linear function of n+ 
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such that m n n2

M n n( )

. So following equations are valid for the average, for the dispersion, 

and for the standard deviation  of value m  

M m n n( )      0 ,   D m D n n( ) ( ) 4 ,   and  ( )m n . 2

As a result, if the inequality m| n  is valid then we prescribe +1 to the medium direction if 
, and -1 if m  0 m  0

f dV f ( , )
0

 


x

f dV
V

( ,
0
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f d
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f dV
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0
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0( ) / 0M

M f0
0 0 ( , )
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III. Second moments approximation. Characteristics of source shape and evolution in 
time. 
 
     We present here a technique based on the description of seismic source distribution in 
space and in time by integral moments (see Bukchin et al., 1994; Bukchin, 1995; Gomez, 
1997 a, b). We assume that the time derivative of stress glut tensor can be represented in 
form (1.20). Following Backus and Mulcahy, 1976 we will define the source region by the 
condition that function  is not identically zero and the source duration is the time 
during which nonelastic motion occurs at various points within the source region, i.e.,  
is different from zero. 



f t( , )x
f t( , )x

     Spatial and temporal integral characteristics of the source can be expressed by 
corresponding moments of the function  (Backus, 1977a; Bukchin et al., 1994). These 
moments can be estimated from the seismic records using the relation between them and the 
displacements in seismic waves, which we will consider later. In general case stress glut rate 
moments of spatial degree 2 and higher are not uniquely determined by the displacement field 
(Pavlov, 1994; Das & Kostrov, 1997). But in the case when equation (1.20) is valid such 
uniqueness takes place (Backus, 1977b; Bukchin, 1995). 

f t( , )x

    Following equations define the spatio-temporal moments of function of total degree 

(both in space and time) 0, 1, and 2 with respect to point q and instant of time 
f t( , )x

t
V

( , )0 0 

f( , ) ( ) )0 1

Vi
( , ) ( ,1 1 

d q dt

dt

dt

t f dV f t xi
V

i i
( , ) ( ) ( , )( )1 0

0

q x  


t t dt)   f dV f
V

( , ) ( ) ( , )(0 2

0

  


x

f t x q t dti i)( )( ) 

 

 

      

(

,

t t )2 

 f t x q x qij i i j j
( , ) ( ) , )( )( )2 0  

     Using these moments we will define integral characteristics of the source. Source location 
is estimated by the spatial centroid q  of the field  defined as c f t( , )x

q fc
( ) 1 0,  ,           (3.2) 

where  is the scalar seismic moment. 
Similarly, the temporal centroid  c  is estimated by the formula 

 c 
,0 1( ) ( ) /f M00  .                                    (3.3) 

The source duration is estimated by  t 2   , where 
   f ,( )

c( ) /0 2
0

q( )
c( ) / 0M

M  .                                 (3.4) 
The spatial extent of the source is described by matrix W, 
W f 2 0,  .                                   (3.5) 
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The mean source size in the direction of unit vector r is estimated by value 2 , defined by 
formula 

lr

lr
2  r WrT ,                                           (3.6) 

where is the transposed vector. From (3.5) and (3.6) we can estimate the principal axes of 
the source. There directions are given by the eigenvectors of the matrix W. The square of the 

r T

length of the minor semi-axis is equal to the least eigenvalue, and the square of the length of the major 
semi-axis is equal to the greatest eigenvalue. 
     In the same way, from the coupled space time moment of order (1,1) the mean velocity v 
of the instant spatial centroid (Bukchin, 1989) is estimated as 
v w /    ,                                        (3.7) 

where   . w f q ( )
c c( , ) /1 1

0
, M

     The relation between integral estimates and real characteristics of source duration and 
spatial extent depends on the distribution of moment rate density in time and over the fault. 
Figure 2 illustrates this relation in the case of Gaussian distributions. In this case 99% 
confidence duration is 2.5 times larger then the integral estimate, and 99% confidence axis 
length is 3 times larger then correspondent integral estimate.  
 

 
 

Fig. 2. Relation between integral estimates and real characteristics of source duration and 
spatial extent. 
  
       Now we will consider the low frequency part of the spectra of the ith component of 
displacements in Love or Rayleigh wave ui ( , )x  . It is assumed that the frequency   is 
small, so that the duration of the source is small in comparison with the period of the wave, 
and the source size is small as compared with the wavelength. It is assumed that the origin of 
coordinate system is located in the point of spatial centroid (i.e. ) and that time is 
measured from the instant of temporal centroid, so that 

qc qc  0
 c  0 . With this choice the first 

degree moments with respect to the spatial origin x=0 and to the temporal origin t=0 are zero, 
i.e.  and .  f 0( ) ( )1 0,  0 f ,( ) ( )0 1 0 0
      Under this assumptions, taking into account in formula (1.23) only the first terms for 

 we can express the relation between the spectrum of displacements  and the 
spatio-temporal moments of the function by following formula (Bukchin,1995) 

2 nl ui ( , )x 
f t( , )x

u M M G f M Gi jl
l

ij mn jl
m n l

ij( , )
i

( , , )
i

( ) ( , , )( , )x x 0 0
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00 x 0
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 x 0


 ,    (3.8) 

i,j,l,m,n = 1,2,3 and the  summation  convention for repeated subscripts is used.  Gij ( , , )x y   

in equation (3.8) is the spectrum of Green function for the chosen model of medium and wave 
type. We assume that the paths from the earthquake source to seismic stations are well 
approximated by weak laterally inhomogeneous model. Under this assumption, as it was 
mentioned above, the amplitude spectrum | ui ( , )x  | defined by formula (3.8) does not depend 
on the average phase velocity of the wave, and the errors in source location do not affect the 
amplitude spectrum. 
     If all characteristics of the medium, depth of the best point source and seismic moment 
tensor are known (determined, for example, using the spectral domain of longer periods) the 
representation (3.8) gives us a system of linear equations for moments of the function 

of total degree 2. But as we mentioned considering moment tensor approximation the 
average phase velocities of surface waves are usually not well known. For this reason, we use 
only amplitude spectrum of surface waves for determining these moments, in spite of non-
linear relation between them. 

f t( , )x

     Let us consider a plane source. All moments of the function of total degree 2 can be 
expressed in this case by formulas (3.2)-(3.7) in terms of 6 parameters: - estimate of 
source duration, lmax - estimate of maximal mean size of the source,  l - estimate  of  the 
angle between the direction  of maximal size and strike axis, lmin - estimate of minimal mean 
size of the source, v - estimate of the absolute value of instant centroid mean velocity v and v 
-  the angle between v and strike axis. 

f t( , )x
 t

     Using the Bessel inequality for the moments under discussion we can obtain the following 
constrain for the parameters considered above (Bukchin, 1995): 

1
sincos

2
min

2

2
max

2
22 







 





ll
tv ,                             (3.9) 

where is the angle between major axis of the source and direction of v. 
Assuming that the source is a plane fault and representation (1.20) is valid let us consider a 
rough grid in the space of 6 parameters defined above. These parameters have to follow 
inequality (3.9). Let models of the media be given and the moment tensor be fixed as well as 
the depth of the best point source. Let the fault plane (one of two nodal planes) be identified. 
Using  formula (3.8)  we  can  calculate  the  amplitude spectra of surface waves at the points 
of observation for every possible combination of values of the varying  parameters. 
Comparison of calculated and observed amplitude spectra give us a residual  for every 
point of observation, every wave and every frequency 

( )i

 . Let  be any observed 

value of the spectrum, i = 1,…,N; - corresponding residual of | |. We define the 
normalized amplitude residual by formula  

u i( ) ( , )r 
u i( ) ( ,r  ( )i )

2/1
N

1

2
N

1

2

minmax |,(),,,, 
























 









i

i

i

i
l ullt rvv .  (3.10) 

The optimal values of the parameters that minimize  we consider as estimates of these 
parameters. We search them by a systematic exploration of the six dimensional parameter 
space. To characterize the degree of resolution of every of these source characteristics we 
calculate partial residual functions in the same way as was described in previous section. We 
define 6 functions of the residual corresponding to the 6 varying parameters:   t t ) , 

, ,  l l
m a x m a x )  l l

m in m in )   l l ) , )vv  and )vv
  . The value of the parameter 

for which the corresponding function of the residual attains its minimum we define as 
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estimate of this parameter. At the same time these functions characterize the degree of 
resolution of the corresponding parameters.  
 
IV. Example of application 

We illustrate the technique by results of its application for a study of the main shock and 
largest aftershocks of the 2010 Chilean earthquake off-shore (Satriano, 2010). The study is in 
progress. 

 
Main shock, 27.02.2010, 06:34:10, Mw = 8.8 

At the first step inverting long period (from 250 s to 500 s) records of fundamental Love 
and Rayleigh modes we obtained parameters characterizing the event in point instant double-
couple approximation: seismic moment, focal mechanism, and source depth. The records 
were processed by the frequency-time and polarization analysis package FTAN (Lander, 
1989). We selected 20 Love wave records and 22 Rayleigh wave records of a good quality 
from IRIS, GEOSCOPE and GEOFON stations. Their azimuthal distribution is given in 
figure 3.  

 

 
 

Fig.3. Distribution of stations used for moment tensor inversion. Dark triangles mark 
fundamental Rayleigh modes, light triangles mark fundamental Love modes. The star marks 
the epicenter. 
 

To improve the resolution we used polarities of direct P-waves as additional information. 
In the source region and under the receivers, we used the 3SMAC model (Ricard et al. 1996) 
for the crust and the PREM model below. We used the quality factor given by the PREM 
model for attenuation correction. The moment tensor describing the source in instant point 
source approximation is obtained by joint inversion of surface wave amplitude spectra and 
first arrival polarities at worldwide stations (Lasserre et al. 2001). The solution gives a 
mechanism described by the following values of strike, dip and slip: 15°, 15°, 105° 
respectively (see figure 4). The source depth resolution curve is shown in the same figure. The 
estimate of source depth takes values from 15 to 25 km. The estimated value of seismic 
moment is equal to 0.18·1023 N·m. 
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Fig. 4. Double couple solution with polarities of direct P-waves superimposed 
and source depth resolution curve. 

 
Determining 2-nd moments of moment tensor density we consider the nodal plane dipping 

to the east as a fault plane. We fixed focal mechanism and seismic moment obtained in instant 
point source approximation. The source depth is recomputed when determining the source 
2nd-order moments. Its final estimate takes values from 15 km to 20 km.  

The duration and the geometry of the source is estimated from the amplitude spectra of 
fundamental Love and Rayleigh modes in the period band from 200 to 300 seconds. We 
selected 19 Love wave records and 21 Rayleigh wave records of a good quality.  

 

 
 

Fig.5. Distribution of stations used for 2nd moments. Dark triangles mark fundamental 
Rayleigh modes, light triangles mark fundamental Love modes. The star marks the epicenter. 
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The distribution of stations used for this inversion is shown in figure 5. The residual 
functions for the integral estimates of the source are given in figure 6. 

The inversion yields the integral estimate of duration being about 50 s, a characteristic 
source length (major axis length) of 160 km. The minor axis length is poorly resolved, lying 
between 0 and 50 km. The average instant centroid velocity estimate is about 2.4 km/s. The 
angles giving the major axis and velocity vector orientations are measured clockwise on the 
footwall starting from the strike axis. They are consistent with each other and correspondent 
residual functions attain their minimum values at 0°. 

 

 
 

Fig. 6. Residual functions for source integral characteristics. 
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The propagation of rupture may be characterized by directivity ratio d proposed by 
McGuire (2002). This parameter is defined as the ratio of the average velocity of the instant 
centroid over the apparent rupture velocity equal to lmax/t. For a unilateral rupture where slip 
nucleates at one end of a rectangular fault and propagates to the other at a uniform rupture 
velocity with a uniform slip distribution, d = 1. For a symmetric bilateral rupture that initiates 
in the middle and propagates to both ends of a fault at uniform rupture velocity with uniform 
slip distribution, d = 0. Predominantly bilateral ruptures correspond to  while 
predominantly unilateral ruptures correspond to 

5.00  d
15.0  d . We find d = 0.75 for our model.  

This value shows predominantly unilateral (northward) rupture propagation. 
The relation between integral estimates and real characteristics of source duration and 

spatial extent depends on the distribution of moment rate density in time and over the fault. In 
the case of Gaussian distributions the 99% confidence duration is 2.5 times larger then the 
integral estimate, and 99% confidence axis length is 3 times larger then correspondent integral 
estimate. Multiplying the integral estimate of duration by factor 2.5 we get for source process 
duration the value being equal to 125s. Multiplying the integral estimates for principal axes 
length by factors 3 we get for major axis size 480 km, and for minor axis less than 150 km. 

 

 
 

Fig. 7. The first 3 days aftershocks distribution and ellipse describing the characteristic source 
dimensions. 
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The comparison of estimates for principal axes lengths with aftershocks distribution is 
presented in figure 7. We consider aftershocks occurred in the first three days after the 
earthquake. The axes of ellipse in the figure are equal to estimated principal axes lengths 
multiplied by 3. As one can see the ellipse delineates the most of the aftershock region. 

 
Largest aftershocks 
    Seismic waves radiated by most of aftershocks propagated on the background of wave field 
radiated by the preceding much stronger events. As result the seismic records are difficult to 
interpret, and for four of studied aftershocks, including the strongest one (Mw=7.5) occurred 
in 1.5 hours after the main shock, there are no solutions in the Global CMT catalog.  
   We interpreted these noisy seismograms and isolated surface waves by filtering them in 
frequency-time domain.  
   The map of 16 studied aftershocks is shown in figure 8. Results of inversion are given in the 
table 1. 

 
 

Fig. 8. Map of studied aftershocks. Black circles mark epicenters of thrust faults, white  
circles mark epicenters of normal faults, the star mark epicenter of the main shock. 
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Date Time Latitude Longitude Mw Depth, km Focal 
mechanism

27.02.2010 08:01:24 37.754 S 75.104 W 7.5 26  

27.02.2010 17:24:31 36.314 S 73.160 W 5.9 30  

27.02.2010 19:00:07 33.422 S 71.829 W 6.1 35-40  

28.02.2010 11:25:36 34.903 S 71.617 W 6.2 65-70  

03.03.2010 17:44:25 36.610 S 73.360 W 6.0 30  

04.03.2010 01:59:50 33.238 S 72.220 W 6.0 41  

05.03.2010 09:19:38 36.535 S 73.253 W 5.9 30  

05.03.2010 11:47:08 36.570 S 73.139 W 6.7 25  

11.03.2010 14:39:44 34.259 S 71.929 W 6.8 0-10  

11.03.2010 14:55:27 34.282 S 71.837 W 6.8 15  

11.03.2010 15:06:03 34.218 S 71.889 W 6.2 25  

15.03.2010 11:08:29 35.785 S 73.339 W 6.2 10  

16.03.2010 02:21:58 36.217 S 73.257 W 6.7 10-25  

28.03.2010 21:38:28 35.387 S 73.385 W 6.1 6  

02.04.2010 22:58:10 36.216 S 72.788W 5.9 40  

03.05.2010 23:09:38 38.271 S 74.309 W 6.1 36-56  

 
Table 1. Origins and solutions for largest aftershocks           
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Strongest aftershock, 27.02.2010, 08:01:24, Mw = 7.5 
As an example we consider in more detail the strongest aftershock occurred 1.5 hours after 

the main shock. The seismograms are very complicated by the presence of waves radiated by 
the preceding main shock. USGS didn’t report any solution for this event. Their estimate for 
the hypocenter depth is equal to 37.9 km. We filtered the seismograms by the frequency-time 
and polarization analysis package FTAN to isolate fundamental Love and Rayleigh modes. 
Example of filtering is given in figure 9. 
 

 
Fig.9. Example of filtering of vertical component of station TRIS. Raw and cleaned 
FTAN diagrams are shown in figures (a) and (b) respectively. The raw record is shown 
by thin line in figure (c), the cleaned fundamental Rayleigh wave is shown by thick line. 
 

Inverting isolated long period (from 50 s to 140 s) amplitude spectra of fundamental Love 
and Rayleigh modes we obtained four equivalent double-couples radiating the same surface 
wave amplitude spectra.  The selection between these four an optimal double-couple could be 
performed by analysis of polarities of direct P-waves, but these polarities can’t be picked up 
because the P-waves are propagating  on the background of seismic waves radiated by the 
preceding much stronger main shock. We selected for surface wave amplitude spectra 
inversion 7 Love wave records and 10 Rayleigh wave records of a reasonable quality from 
IRIS, GEOSCOPE and GEOFON stations. Their azimuthal distribution is given in figure 10. 
Our solution gives four focal mechanisms presented in figure 11. The left upper double-

couple  (P1: 20, 25, 105; P2: 184, 66, 83) is very similar to the double-couple obtained 

for the main shock. Analysis of surface wave phase spectra in period band from 100 s to 140 s 
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confirms the selection of mentioned solution as an optimal. The estimated value of seismic 
moment is   0.2 1021 Nm. That corresponds to Mw=7.5. Our estimate of best double-couple 
depth is equal to 30 km and shown in figure 12. Here the depth is measured from the free 
surface. The water layer in the source epicenter is about 4 km (model 3SMAC).  

  

 
 

Fig.10. Distribution of stations used for moment tensor inversion. Dark triangles mark 
fundamental Rayleigh modes, light triangles mark fundamental Love modes. The star marks 
the epicenter. 

 

 
 

Fig. 11. Four equivalent best double-couples. 
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Fig.12. Best double-couple depth residual function. 

 

The study will be continued. The aftershocks will be discussed integrating GPS  and 
seismological information on the co-seismic slip distribution. 
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