

2167-26

Advanced School on Direct and Inverse Problems of Seismology

27 September - 8 October, 2010

The study of fluid induced and triggered seismicity Theory

Torsten Dahm

Institut fuer Geophysik Universitaat Hamburg Germany

The study of fluid-induced and triggered seismicity: Theory

ICTP Course 2010

Torsten Dahm

torsten.dahm@zmaw.de

Institut für Geophysik, Universität Hamburg, Germany

Z/////

Overview

- Lecture A: Theory fundamentals, brittle failure, earthquake occurrence
- Lecture B: Case studies
 - Long-term, low pressure injection
 - Hydrofracturing & magmatic diking
 - Hydrocarbon field depletion
- Lecture C: Practical issues & methods

Lecture A; theory

I. Introduction to the problemII. Elastic and brittle deformationIII.Porous media: fluid flow and pore

pressure

IV.Earthquake trigger and seismicity modelsV. Single fractures: fundamental solutions

Examples of fluid-related seismicity

<u>natural:</u> • magmatic dike-intrusion (vertical, lateral, horizontal)

- deep degassing through the crust
- water intrusions into glaciers (downward)
- natural hydraulic fracturing (e.g. vein formation)
- rain-induced seismicity

.... initiated by "reservoir" instability or natural inflow

man-made: • h

- hydraulic fracturing from boreholes
- massiv fluid-injections (waste, CO2, etc.)
- fluid extraction from hydrocarbon reservoirs
- water reservoir filling (impoundment)

the fluid flow and loading is induced by humans

Rifting episodes (Krafla 75 - 81): 10-70 km scale

Hydrofracture induced swarms related to Hot Fractured Rock (HFR) experiments

Universität Hamburg Zentrum für Marine und Atmosphärische Wissenschaften Bundesstrasse 53 D-20146 Hamburg Germany

Rainfall-triggered earthquake activity

1D fluid diffusion model indicates tiny pressure changes of < 0.3 kPa at 4 km depth (diffusivity: D=3.3 m^2/s) High correlation to seismicity observed !

from Hainzl et al., 2006: GRL 33, L19303, doi: 10.1029/2006GL0276427

/

Earthquakes related to reservoir impoundment

Surface loading and triggered earthquakes in the Koyana-Warna region, W-India

Extended seismic zone with M<6.3 in 1967. 2D fluid diffusion model explains pressure changes of < 200 kPa at 6 km depth (15% of load)($k_z = 2$ m/day, permeability E-15 m²) from Pandey & Chadha, 2003: PEPI 139, 10.1016/j.pepi.2003.08.003

ð

II) Elastic and brittle deformation:

a brief review

2////

stress-strain curve uniaxial compression experiment

elastic strain stress relation (sum. convention)

shear modul

Poisson's ratio

$$2\mathcal{N}\epsilon_{ij} = \frac{-\nu}{1+\nu}\sigma_{kk}\delta_{ij} + \sigma_{ij}$$

strain tensor

stress tensor (tension >0)

see e.g. textbooks on seismology

Mohr circle representation of normal and shear stress on a fault

Universität Hamburg · Zentrum für Marine und Atmosphärische Wissenschaften · Bundesstrasse 53 · D-20146 Hamburg · Germany

III) Porous media: some basics

Z///4/

$$2\mathcal{N}\epsilon_{ij} = \sigma_{ij} - \frac{\nu}{1+\nu}\sigma_{kk}\delta_{ij} + \frac{(1-2\nu)}{1+\nu}\dot{\alpha}\Delta P_f\delta_{ij}$$

elastic equation additional term

..... introducing effective stress
$$\sigma_{ij}^{\text{eff}} = \sigma_{ij} + \alpha \Delta P_f \delta_{ij}$$

$$2\mathcal{N}\epsilon_{ij} = \dots = \sigma_{ij}^{\text{eff}} - \frac{\nu}{1+\nu}\sigma_{kk}^{\text{eff}}\delta_{ij}$$

Poroelastic response: drained or undrained?

e.g. short time after loading

e.g. long time after loading

poro-elastic modules (among others)

Biot's constant
$$\alpha = \frac{\Delta V_p}{\Delta V} = \frac{\text{change in pore volume}}{\text{change in total volume}}$$
 (drained)
Skempton coeff. $B = \frac{dP_p}{d\sigma} = \frac{\text{change in pore pressure}}{\text{change in confining stress}}$ (undrained)
subscript "u"

μ.

pore pressure gradients cause flow

with $Q = \frac{2\mathcal{N}(\nu_u - \nu)}{\alpha^2(1 - 2\nu)(1 - 2\nu_u)}$ and Q > 0permeability

2. force equilibrium (static):

$$\frac{\partial \sigma_{ij}}{\partial x_j} + f_i = 0$$

external force

seepage force (from f=0):

$$\alpha \frac{\partial \Delta P_f}{\partial x_i} = \frac{\partial \sigma_{ij}^{\text{eff}}}{\partial x_j}$$

pore pressure gradients cause flow: summary in words

- Pressure diffusion and poroelastic deformation is coupled
- Uncoupled special case is analogue to thermal diffusion problems
- •Pore pressure change, matrix deformation and seepage force may affect stability of rocks

Example: post-seismic ground movement related to pore pressure gradients

Jonnson et al. (2003): Nature 424, 10 July

Observed and predicted uplift & water level change

InSAR uplift (postseismic))

pore pressure change and water level in wells

Universität Hamburg · Zentrum für Marine und Atmosphärische Wissenschaften · Bundesstrasse 53 · D-20146 Hamburg · Germany

Interpretation

- Earthquake related poroelastic effects became evident since deformation and pore pressure was measured simultaneously
- Pore pressure transients and poroelastic effects controlled the postseismic deformation in the first few month
- Pore pressure transients in shallow crust cannot explain long lasting aftershock sequences in Iceland

IV) Earthquake trigger and seismicity models

2////

How are earthquakes triggered ? The internal friction concept (Coulomb failure)

Rupture is

UHI L

- driven by applied shear stress
- resisted by cohesive strength and normal stress

... frictional strength from "sliding experiments"

from Pollard & Fletcher (2005)

UН

Ĥ

Universität Hamburg · Zentrum für Marine und Atmosphärische Wissenschaften · Bundesstrasse 53 · D-20146 Hamburg · Germany

Coulomb stress and Coulomb failure criteria

$$\sigma_c = |\sigma_s| + \mu_i(\sigma_n + P_p)$$

Coulomb stress

$$\sigma_c \leq S_0$$
 "stable if Coulomb stress is smaller than So"

- Shear and normal stress depend on local stress and fault orientation
- P depends on local stress and pore pressure
- The internal friction is rate and state and moisture dependent

Note: Terzaghi's effective stress controls failure

failure point in tri-axial compression depends on confining stress and pore pressure Pp

$$\sigma_i^{\text{eff}} = \sigma_i + P_p$$

... does not depend on Biots constant α !

Coulomb stress as a function of principal effective stress and fault orientation

$$\sigma_{c} = \left| +\frac{1}{2} (\sigma_{1}^{\text{eff}} - \sigma_{3}^{\text{eff}}) \sin 2\Theta \right| + \mu_{i} (\frac{1}{2} (\sigma_{1}^{\text{eff}} + \sigma_{3}^{\text{eff}}) + \frac{1}{2} (\sigma_{1}^{\text{eff}} - \sigma_{3}^{\text{eff}}) \cos 2\Theta)$$

$$= \frac{1}{2} (\sigma_{1}^{\text{eff}} - \sigma_{3}^{\text{eff}}) (\pm \sin 2\Theta + \mu_{i} \cos 2\Theta) + \frac{1}{2} (\sigma_{1}^{\text{eff}} + \sigma_{3}^{\text{eff}}) \mu_{i} \qquad (3.56)$$

$$\text{where} \quad \sigma_{1}^{\text{eff}} < T_{u} \text{ and } \sigma_{c} \leq S_{0} \quad .$$

Plane orientation for max. Coulomb stress

orientation from setting $d\sigma/d\Theta = 0$:

$$\frac{d\sigma_c}{d\Theta} = \frac{1}{2} (\sigma_1^{\text{eff}} - \sigma_3^{\text{eff}}) (\pm 2\cos 2\Theta_c - 2\mu_i \sin 2\Theta_c) = 0$$

or $\tan 2\Theta_c = \frac{\sin 2\Theta_c}{\cos 2\Theta_c} = \frac{1}{\pm \mu_i}$.

Eliminating the critical angle yields the maximal Coulomb stress:

$$\sigma_{cc} = \frac{1}{2} (\sigma_1^{\text{eff}} - \sigma_3^{\text{eff}}) \sqrt{1 + \mu_i^2} + \frac{1}{2} (\sigma_1^{\text{eff}} + \sigma_3^{\text{eff}}) \mu_i$$

where $\sigma_1^{\text{eff}} < T_u$ and $\sigma_{cc} \le S_0$

or

$$2\sigma_{cc} = \sigma_1^{\text{eff}} \left[\sqrt{1 + \mu_i^2} + \mu_i \right] + \sigma_3^{\text{eff}} \left[\sqrt{1 + \mu_i^2} - \mu_i \right]$$

Coulomb criterion and Mohr's circle

 $\sigma_1 \geq \sigma_2 \geq \sigma_3$

ZAAAA

four ways to trigger an earthquake(1) increasing the maximal compressive stress

2///4/

(2) decreasing the least compressive stress

Z.^^_

(3) increasing the pore pressure & shear fracturing

Z////

(4) increasing the pore pressure & tensional fracturing

Z.~~~~

Note: localized loading of porous media affects pressure and stress deviator!

from Rozhko (2007) GRL 34, 10.1029/2007GL031696

How large are deviatoric stresses in the crust?

vertical stress

horizontal stress

$$\sigma_{zz} = -\rho g z$$
 and $\sigma_{xx} = -\rho g z + \Delta \sigma_{xx}$

deviatoric stress

thrust faulting regime:

$$\sigma_{zz} = \sigma_1 = -\rho g z$$

$$\sigma_{xx} = \sigma_3 = -\rho g z + \Delta \sigma_{xx}, \text{ with } \Delta \sigma_{xx} < 0.$$

normal faulting:

 $\Delta \sigma_{xx} > 0$ and σ_{1} and σ_{2} are interchanged

resolving for $\Delta \sigma_x$

thrust faulting regime:

$$\Delta \sigma_{xx} = +C_u - \left(1 - \left[\sqrt{1 + \mu_i^2} + \mu_i\right]^2\right) (\rho gz - P_p)$$

normal faulting regime:

multiply µ_i by -1

friction-dependent deviatoric stress in crust at 5 km depth

assuming ρ = 2700 kg/m^3, P_f=1000 kg/m^3 g z, μ =0.6

Note: below \approx 30 km depth visco-elastic processes relax high deviatoric stresses

Are rocks in a critical stage to failure? Increasing Coulomb stress: how large to triggering rupture?

Several studies indicate that 0.01 MPa (0.1 bar) is sufficient to trigger an earthquake (e.g. Seeber and Armbruster, 2000)

Compare with typical values:

- Average stress drop during earthquake: 1-10 MPa
- Pore pressure reduction in reservoirs
- Head pressure for hydrofrac exper.
- Head pressure for waste fluid injection

up to 10 MPa up to 10 MPa

up to 10 MPa

44

2/////

Triggered or induced seismicity ?

Triggered:

• the **nucleation** of rupture is controlled by the loading (human-related, natural intrusion, ...

• the **growth/length** of the rupture is mainly controlled by the pre-existing tectonic stress on the fault

-> the earthquake would have occurred in any case, but now it was slightly earlier
-> the size of the event is not related to the loadingrelated stress perturbation

Induced:

• both, **nucleation and rupture** are controlled by the induced stress perturbation from the operation/process

Seismicity models

- Earthquake nucleation from frictional instability (Dietrich model)
- Earthquake nucleation from stress corrosion (not discussed here, see Scholz 1990)

concept of pre-existing cracks

Pre-existing faults with different orientation are everywhere

Universität Hamburg · Zentrum für Marine und Atmosphärische Wissenschaften · Bundesstrasse 53 · D-20146 Hamburg · Germany photo from: Oates

UН

H.

Statistical earthquake relations

(1) magnitude-frequency relation (Gutenberg-Richter)

$$\log N = a_1 - b M_S$$

equivalently moment-frequency relation

UHH #

$$\log N = \alpha - \frac{b}{1.5} \log(M_0) = \alpha - \beta \log(M_0)$$

(2) Omori law for aftershock occurrence

$$n = \frac{C}{(K+t)^P}$$

- n : number of aftershocks
- t : time

UΗ

茁

C, K, p: constants

Three brief examples

- A) Tectonic case
- B) Volcanic earthquake swarm
- C) Cyclic thermal loading of rock

A) Gutenberg Richter (global data)

Loma Prieta, California

Typical main- & aftershocks: Friuli 1976, Italy

Number of earthquakes per day

B) Typical "volcanic swarm": Eyjafjallajökull 1994, Iceland

Universität Hamburg Zentrum für Marine und Atmosphärische Wissenschaften Bundesstrasse 53 D-20146 Hamburg Germany

UΗ

笧

Event rate & spatial pattern correlates with stress and stress rate

Becker et al., 2010. GJI 10.1111/j.1365-246X.2010.04642.x

2.

Kaiser effect for cyclic loading

.... events are triggered only after "the stress" exceeds the level of the previous cycle

Dietrich (1994) rate and state seismicity model 1) Steady state loading and background seismicity R=r

2) transient loading by fracturing: seismicity rate R

Dietrich (1994) model: nucleation assisted by rate-state controlled friction

Effect of changing stress rate

Effect of stress jump

Z///A/

Stress jump and changing stress rate

Example: rainfall-triggered earthquake activity

Hochstaufen, S-Germany

1D fluid diffusion model indicates tiny pressure changes of < 0.3 kPa at 4 km depth (diffusivity: D=3.3 m^2/s) High correlation to seismicity observed !

from Hainzl et al., 2006: GRL 33, L19303, doi: 10.1029/2006GL0276427

Π

V) single fractures: some fundamental solutions

2////

three modes of brittle failure

Hydraulic fracture experiment

How do intrusions look like ?

Solidified dike in Iceland

Solidified, eroded dikes are several km high and long and a few tens of cm thick

Stress intensity factor and intrusion tip

'form factor'

$$\sigma_{ij} = \Delta \sigma^{(m)} \sqrt{\pi a} \frac{1}{\sqrt{2\pi r_1}} f_{ij}^{(m)}(\theta_1)$$

stress intensity loading stress

$$K = \Delta \sigma^{(m)} \sqrt{\pi a}$$

2////

Failure criteria for tensile fracture?

Griffith concept of instability

$$K(a) \geq K_c = \left[\frac{4\gamma_0 \mathcal{N}}{(1-\nu)}\right]^{1/2}$$

stressfracturePoisson ratiointensitytoughness

Universität Hamburg · Zentrum für Marine und Atmosphärische Wissenschaften · Bundesstrasse 53 · D-20146 Hamburg · Germany

Examples for lab-derived fracture toughness

rock type	K_c range $(MPa m^{1/2})$	
Granite	1.66 - 3.52	
Basalt	0.99 - 3.75	
Quarzite	1.31 - 2.10	
Marble	0.87 - 1.49	
Limestone	0.86 - 1.65	
Sandstone	0.34 - 2.66	
Shale	0.17 - 2.61	

why is Griffith criterion important?

... it is (later) used to understand the growth of hydraulic fractures or magmatic intrusions

2///4/