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1 Introduction

Most techniques for imaging subsurface structures, like seismic tomography, require
a network of seismograph stations. Receiver functions are exceptions: they can be
used with the data of a single station. The idea is to replace the network of stations
by a network of seismic events. Seismic phases of body waves that are present in the
seismogram can be classified into primary and secondary phases. For example, the
primary P wave that arrives first is followed by secondary (reflected and converted)
phases that are generated by this wave in the crust and mantle in the vicinity of
the station. In order to detect the secondary phases in noise and to investigate
the corresponding discontinuities, one should inspect a number of recordings of the
same station. This is difficult, because source function of each event is usually
different from the others, and the corresponding waveforms of secondary phases are
different, as well. However, using a special kind of digital filtering (deconvolution),
the primary waveform of each event can be transformed into a standard ‘spike’
or ‘bump’. The deconvolution transforms into a standard form every secondary
phase, as well, and then they can be detected by stacking the deconvolved traces
with appropriate time-shift (moveout) corrections. Receiver functions and similar
techniques play an important role in the present-day global and regional studies of
the interior of the Earth.

2 P receiver functions

The term “receiver function” was introduced for the radial component of the initial
part of the seismogram R(t) deconvolved by the vertical component Z(t), where t is
time. Instead of these two components, we can use L (or P ) component correspond-
ing to the principal motion direction of the P wave, and Q (or SV ) component,
perpendicular to L in the wave propagation plane (Figure 1). Q(t) deconvolved
by L(t) can be termed receiver function, as well. For every discontinuity there
are three secondary phases in the Q component, with comparable amplitudes (Fig-
ure 2): Ps (converted from P to S), Ppps (transmitted as P , reflected from the
free surface as P , and reflected from the discontinuity as S) and Ppss (transmitted
as P , reflected from the free surface as S and reflected from the discontinuity as S).
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The multiple reflections of the higher order are much weaker and can be neglected.
Ps, Pppps and Ppss are large in the Q component and missing in the L component.
The only significant secondary phase in L(t) is Pppp (P once reflected from the free
surface and once from the discontinuity), but usually this phase is much weaker than
the parent P .

2.1 Deconvolution

Deconvolution can be performed either in time or frequency domain. Frequency
domain deconvolution can be performed as follows. For the L and Q components,
neglecting the instrument response, we can write in time domain

L(t) = S(t),

Q(t) = S(t) ∗ E(t),

Where ∗ denotes convolution, S(t) is source function, and E(t) can be written as

E(t) = α1δ(t− τ1) + α2δ(t− τ2) + . . .

Here αi are amplitudes of the secondary phases, and τi are their delays relative to P .
In frequency domain we can write

L(ω) = S(ω),

Q(ω) = S(ω)E(ω),

E(ω) = H(ω)/L(ω).

Dividing the spectrum of the Q component by the spectrum of the L component
for extracting information on crustal structure is the essence of the spectral ratio
technique, which was known prior to receiver function technique. The idea of the
receiver function approach is to bring the spectral ratio in the time domain by
inverse Fourier transformation. To avoid large errors caused by small values of the
denominator, the spectral ratio to be Fourier transformed is modified as

E ′(ω) =
Q(ω)L(ω)

Φ(ω)
G(ω),

where
Φ(ω) = max{L(ω)L(ω), cmax[L(ω)L(ω)]}.

The bar over L denotes the complex conjugate, and G(ω) = exp(−ω2/4a2). Con-
stant c is called “water level” and is selected empirically. G(ω) is required to suppress
high frequencies and is also determined empirically. E ′(t) is recovered by inverse
Fourier transformation.

The time domain deconvolution can be carried out as follows. Let the discrete
representations of the actual P waveform and the desired waveform be sk and zk.
The desired waveform is usually assumed to be δ-function: it is different from 0 only
for a certain value of k = K.

sk — seismic waveform
zk — desired waveform

}
k = 0,±1,±2, . . .
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If the actual P waveform is filtered with the filter li, the resulting waveform is

vk =
n−1∑
i−0

lisk−i.

We are looking for the filter, which provides minimum difference minQ between the
filtered and desired waveforms

εk = vk − zk,

Q =
∑
k

ε2
k.

The coefficients of this filter satisfy the condition

∂Q

∂lj
= 0, j = 0.± 1,±2, . . . , n− 1,

∂Q

∂li
= 2

∑
k

n−1∑
i=0

(lisk−isk−j − zksk−j).

Here Cs
j−i =

∑
k sk−isk−j is autocorrelation of s and Rsz

j =
∑

k zksk−j is cross-
correlation of z and s. This system can be written in the matrix form as

[Cs][L] = [Rsz].

Here [L] is the column vector with elements li, [Rsz] is the column vector with
elements Rj , and [Cs] is the matrix with elements Cs

j−i. It is assumed that the
actual waveform consists of signal a and noise b

sk = ak + bk.

We assume that the signal and noise are not correlated. Then matrix [Cs] can be
written as

[Cs] =

⎡
⎢⎢⎢⎢⎢⎣

ca0 + cb0 ca1 + cb1 . . . can−1 + cbn−1

ca1 + cb1 ca0 + cb0 . . . can−2 + cbn−2

...
...

...

can−1 + cbn−1 can−2 + cbn−2 . . . ca0 + cb0

⎤
⎥⎥⎥⎥⎥⎦

The elements of this matrix are autocorrelations of a and b. In practice, the
noise is assumed to be white, which means that its autocorrelation differs from 0
only for diagonal elements of the matrix. The presence of noise is accounted for
by presenting the diagonal elements in the form c0(1 + λ). The choice of this pa-
rameter, like waterlevel parameter, is arbitrary. When it is close to 0, the resulting
spike is very sharp, but the inversion is unstable. When λ is large (say, 100), the
deconvolved waveform is close to the autocorrelation function of the actual wave-
form. The optimum values are in the intermediate range. The deconvolution filter
transforms the actual P waveform into “spike” or “bump”. In first approximation
the transformed P waveforms are similar for different seismic events, and the same
is true with respect to the waveforms of various secondary phases.
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Instead of deconvolving every record separately, one can find a multichannel de-
convolution filter for the set of records of many events. Single-channel deconvolution
for continuous functions of time can be expressed as

v(t) =
∫ +∞

−∞
s(τ)l(t− τ) dτ,

where s(τ) is the actual waveform, l(τ) is the deconvolution filter, v(t) is close to
the desired waveform. Multichannel deconvolution for N records is expressed as

v(t) =
N−1∑
i=0

∫ +∞

−∞
si(τ)li(t− τ) dτ.

In case of multichannel deconvolution, the filter for each record should be found
by considering the other records. The calculations of multichannel deconvolution
filter are in principle similar to the single-channel case, but require more algebra.
The elements of [C], [L] and [R] for multichannel deconvolution are matrices.

Figure 3 shows an example of multichannel deconvolution. In the left column
there are three waveforms and their amplitude spectra. The dominant frequencies
of the waveforms are strongly different. The results of single-channel and multi-
channel deconvolution of these waveforms with the same damping are shown in the
middle and right column, respectively. The resulting spike in case of multichannel
deconvolution is much sharper than in single-channel case. Multichannel deconvolu-
tion is superior to single-channel deconvolution if the amplitude spectra of the input
waveforms are strongly different, like in the example in Figure 3.

In the litherature there are descriptions of other methods of deconvolution.

2.2 Stacking P receiver functions with moveout corrections

To detect weak converted and reflected phases that are present in the receiver func-
tions, one should stack receiver functions for many events. The delay of the converted
phase relative to the parent P wave is given by

t(Ps) =
∫ r0

rd

(√
v−2

s − p2r−2 −
√
v−2

p − p2r−2

)
dr,

where p is ray parameter, r is the radial distance of the discontinuity, r0 and rd

correspond to free surface and depth of conversion, vp and vs are P and S veloci-
ties. The time of the converted phase (its delay relative to P ) is increasing with the
increasing ray parameter value (or decreasing epicentral distance). For deep discon-
tinuities the effect is large: the difference in travel time delays of the Ps phases from
660 km depth at epicentral distances around 30 and 90 degrees is close to 10 s. To
detect the converted phase, the receiver functions should be stacked with moveout
travel time corrections, which depend on the ray parameter (or epicentral distance)
of event and the depth of the discontinuity. In practice the stack is calculated for
many assumed depths of conversion. The real signals (the converted phases) are
focused at depths, which are close to depths inferred from the travel times of these
phases.
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Contrary to the converted phases, multiply reflected phases have an opposite
dependence of travel time on the ray parameter: the delay relative to P is increas-
ing with increasing epicentral distance. In principle, for detecting the multiples one
should calculate their theoretical delays and to introduce the moveout corrections in
the same way, as it was made for the converted phases. Instead, one can apply slant
stacking. The moveout corrections are calculated as a differential slowness (relative
to P ) multiplied by differential distance. This kind of stacking implies that the delay
of the signal relative to P depends linearly on epicentral distance. Strictly speaking,
this is not correct, but can be used as a first approximation. Then the converted and
the multiply reflected phases can be detected in the negative and positive differential
slowness range, respectively. Since slowness is proportional to wavenumber, stack-
ing the receiver functions is very similar to the conventional wavenumber-frequency
filtering with the receiver array. The properties of the wavenumber filter are deter-
mined by the distribution of the seismic events with epicentral distance in about the
same way, as the performance of a receiver array depends on the array aperture. If
the events are concentrated in a narrow distance range, this implies filtering with a
poor resolution.

While the receiver function technique was initially developed for a single sta-
tion, it can also be applied to seismic arrays. The individual receiver functions from
different stations can be stacked with moveout corrections calculated for the same
conversion point (piercing point), and the procedure can be repeated for all possible
piercing points. Calculations of the moveout corrections require ray tracing in the
appropriate velocity model. For a linear array, amplitude of the stack is presented
as a function of time after P (or depth) and of the horizontal coordinate. This is
the essence of the common conversion point (CCP) method. Sometimes this method
is incorrectly referred as ”migration”. The true migration is based on stacking the
receiver functions for neighboring scattering points with appropriate weights and
move-out corrections. This method has much in common with migration used in
seismic exploration. While in the theory migration is superior relative to CCP, in
practice the results obtained so far are comparable in resolution. Both techniques
may have problems with distinguishing between the true converted phases and mul-
tiple reflections (reverberations).

Signal/noise ratio enhancement by stacking depends on the degree of correlation
between the signals in the individual traces. The effect of scatter in the traveltimes
is quantified with the expression:

E/E0 = 1/n+ [(n− 1)/n] exp(−σ2ω2),

where E is the actual energy in the stack, E0 is the maximum possible energy, n is
the number of stacked traces, ω is angular frequency of the signal, and σ is the rms
value of the traveltime fluctuations. There are examples of detection of phases with
a frequency of 1 Hz. Such observations are only possible if σ is not much larger
than 0.1 s.

While stacking of the receiver functions is essentially a linear procedure, there
are nonlinear detection techniques, like N -th root method. Instead of the initial
trace, the N -th root of it with the sign preserved is taken, and the transformed
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traces are stacked:

EN(t) =
1

M

M∑
i=1

|li(t)|1/N sign{li(t)}.

The stack is raised to the N -th power, with the sign preserved

E ′N(t) = |EN(t)|N sign{EN(t)}.

There are examples when application of this method leads to a significant im-
provement of the signal/noise ratio. This method distorts waveforms, but the dis-
tortion is minimal for N=2.

2.3 Inverse problem for P receiver function

The secondary phases, which are present in receiver function, have different sensitivi-
ties to the properties of subsurface structure. Multiply reflected phases are sensitive
to both velocity and density contrasts at the discontinuities. If the width of the
discontinuity exceeds quarter of the wavelength, the reflection coefficient becomes
very small. The converted phases are strongly sensitive to the S velocity contrast.
Sensitivity to the P velocity contrast is lower. The transmission coefficient of the
converted phase is reduced significantly relative to the maximum value, if the width
of the discontinuity is around the S wavelength or larger.

Inverse problem for receiver functions was approached in several studies deal-
ing mainly with crustal structures. The best way of inverting receiver functions
would be to separate and investigate all secondary (reflected and converted) phases.
This, however, is usually difficult, because they interfere with each other, and their
differences in slowness are small. Therefore, generally, the wavefield should be in-
terpreted without separating the constituent phases. Useful results can be obtained
for plane-layered models, whereas practical methods for more complicated structures
may appear in the future. At high frequencies (around 1 Hz), the wavefield is dom-
inated by randomly scattered rather than reflected and converted phases, and the
technique is applicable starting from about 0.5 Hz. In the algorithm developed in
the IPE (Moscow), the synthetic Q component is calculated by using the expression

Qsyn(t, v(d), c) =
1

2π

∫ +∞

−∞
HQ(ω, v(d), c)

HL(ω, v(d), c)
L(ω) exp(iωt) dω,

where v(d) is a vector of the variable model parameters, c is the apparent velocity,
HQ(ω, v(d), c) and HL(ω, v(d), c) are the SV and L components of the theoretical
frequency response of the layered structure, and L(ω) is the spectrum of the stack of
deconvolved L components. The theoretical response is computed using Thomson-
Haskell matrix method. To test the model, the synthetic SV component is compared
with the stack of the receiver functions. The inversion procedure is based on the
general method of solving ill-posed inverse problems. The optimum parameters of
the model can be found by iterative minimization of the smoothing functional:

F (v(d), c) = ‖SVobs(t)− SVsyn(t, v(d), c)‖+ αq(d)‖v(d)− v0(d)‖,
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where v0(d) is the starting velocity model, q(d) is the weight functions and α is the
damping parameter. The parameter α changes during the inversion procedure as
αp+1 = αp Δα, where αp is the value of α in the preceding iteration, and Δα is less
than 1.0. The second term of this expression keeps the solution near the starting
model.

The models generated from gradient-based methods of optimization usually de-
pend on the starting models, because the error surface has several local munima.
There are other methods that make a search for the global minimum. In particular,
Simulated Annealing algorithm belongs to the group of directed Monte Carlo meth-
ods that explore a wide space of possible solutions more efficiently than do pure
Monte Carlo random search techniques. The algorithm deals with a series of models
produced by random walk. The misfit between the observed and theoretical data
converges to the global minimum independently of the starting model, if the series
of misfits obeys the Metropolis rule. This rule is formulated in terms of a parameter
termed ”temperature”. In the theory, a convergence to the global minimum is only
guaranteed, if, during the search, the temperature decreases indefinitely slowly, and
the number of moves tends to infinity. In practice, temperature schedule is an essen-
tial problem of application of the SA techniques. In most cases, the ”best” model
corresponding to the global minimum is not so important as the whole ensemble
of acceptable models, that can be obtained with this technique. SA algorithm was
applied to a number of geophysical problems, including the inversion of the receiver
functions.

The highest accuracy of the inversion is achieved in the high gradient zones,
because these zones produce the converted phases, and the solution appears to be
well constrained. Therefore, the best results are usually obtained for the upper and
the lower crust, but not for the middle crust with a nearly constant velocity. There
is a trade-off between the average velocity above the discontinuity and its depth.
The uncertainty can be reduced by using receiver functions jointly with surface wave
dispersion curves.

3 S receiver functions

The major shortcoming of P wave receiver functions that were discussed in the
preceding sections is the difficulty of separating the phases converted at deep dis-
continuities from multiples reflected or scattered at shallow discontinuities. Ideally,
the converted phases and multiples that arrive in the same time interval have differ-
ent apparent velocities, but this difference is negligible for the converted phases from
discontinuities in the crust and the uppermost mantle. This problem can be solved
with the S wave receiver function technique, which is based on the observations of
Sp (S to P converted) phases. Sp phases from discontinuities in the mantle arrive
earlier than the crustal multiples, and hence are easily distinguished from them.

To detect the Sp phases, the 3-component seismogram is decomposed into P , SV ,
T and M components. The SV axis corresponds to the principal S particle motion
direction in the wave propagation plane. The P axis is perpendicular to the SV in
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the same plane and is optimal for detecting Sp phases. The T axis is perpendicular
to SV and P . The M axis corresponds to the principal motion direction of the S
wave in the T − SV plane and is characterized by the angle θ with the SV axis.
The P components of many records of the same station are deconvolved by their
respective M components. Combined processing of the deconvolved P components
yields Pc(t) and Ps(t), where t is time, Pc(t) is the P component (observed at the
free surface) corresponding to the incident SV and deconvolved by the SV recorded
at the free surface. The expression for Ps(t) includes a similar term for SH and two
other terms. Excitation of Ps(t) is possible in anisotropic medium.

The unknowns Pc(t) and Ps(t) are obtained by minimizing the misfit E between
the observed and predicted P components:

E(t) = ΣN
i=1w

2
i [Pi(t)− Pc(t)cosΔθi − Ps(t)sinΔθi]

2,

where Pi(t) is the P component of event (i) deconvolved by the M component
of the S wave, w2

i = 1/σ2
i , and σ2

i is the variance of noise in the i-th record. The
solution for either Pc(t) or Ps(t) is equivalent to stacking of Pi(t) with weights
depending on their respective θ and σ2

i . The procedure of record processing involves
evaluation of the standard error of the amplitude of the stack. To account for the
difference in slowness between the Sp phases and the parent phases, the estimates
of Pc and Ps are obtained by stacking the deconvolved P components with move-out
time corrections.

The most efficient way of using S receiver functions is joint inversion with P
receiver functions. Our technology of joint inversion was described and used in the
studies of the Tien Shan, Indian shield, Himalaya and other regions. To generate
synthetic receiver functions and compare them with the actual receiver functions
we use the Thomson-Haskell matrix algorithm for plane waves and plane layers,
with Earth flattening transformation. We conduct a search for the optimum models
by using an iterative method, similar to Simulated Annealing, from 4 randomly
selected starting points. For each starting point we test up to 100000 models until
they converge to those which provide a small misfit between the synthetics and the
actual receiver functions. The depth range is usually up to 300 km. The trial models
consist of 4 layers in the crust and 5 layers in the mantle. The non-uniqueness of
the joint inversion of P and S can be further reduced by using teleseismic S and P
travel-time residuals. The residuals can be inferred from the travel times of the Ps
phases from the 410-km and 660-km discontinuities.

Our experience shows that that the P and S receiver functions are comlementary,
and their joint inversion is more robust and informative than separate inversion.
In particular, calculations of the receiver functions involve measurements of the
apparent angles of incidence of the P and SV waves, and these angles are used as
an input in the inversion procedure. It can be shown that the angle of incidence of
the P wave depends only on the S velocity, whereas the angle of incidence of the
S wave depends on both P and S velocity. Therefore the two angles, if used jointly,
constrain both velocities and the Vp/Vs ratio. The Vp/Vs ratio is also constrained
by the transmission coefficients of the Ps and Sp phases, the travel-times of crustal
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and upper-mantle multiples in the P receiver functions and by P and S traveltime
residuals. The Vp/Vs ratio is either difficult or impossible to obtain by other means.

4 Other kinds of receiver functions

There are other seismic techniques with a very similar approach to the data treat-
ment. For example, studies of the mantle discontinuities, which are based on obser-
vations of precursors to SS, use a similar technique. Teleseismic SS phase (S wave
reflected from the Earth’s surface in the midpoint between the source and the re-
ceiver) is preceded by weak phases (precursors), which are reflected (or scattered)
from the underside of the mantle discontinuities. In this case the parent phase
is SS, and SH component of the record is deconvolved by the SH component
of SS. The deconvolved records of many events at many stations with the bounc-
ing points within certain regions are stacked. The times of the precursors relative
to SS depend on the S velocity in the mantle and depths of the discontinuities.
With this technique, the depths of the major mantle discontinuities (those at about
410 km and 660 km depths) were mapped worldwide. However, the accuracy of
these estimates is disputable.

A similar approach was used in the analysis of multiple ScS reverberation. The
coefficients of reflection of SH from the Earth’s surface and the core-mantle bound-
ary are close to unity, and the recordings of strong deep events contain a sequence of
clearly visible waves reflected a few times from the free surface and the core-mantle
boundary. Weaker phases, reflected from the mantle discontinuities accompany these
strong ones. To detect the phases reflected from the mantle discontinuities, record-
ings of many events are deconvolved by ScS and the deconvolved traces are stacked
with appropriate moveout corrections.

The best data on discontinuities in subduction zones are provided by observa-
tions of phases, which are converted from S to P in the source region and arrive in
the tail of the P wave. In short-period frequency range these phases sometimes are
detected in array recordings of deep events. Now, the receiver function technique
is extended for detecting these phases in the broadband recordings of conventional
seismograph stations. The idea is to deconvolve the vertical component of the tele-
seismic record by the S waveform in the same record and to stack the deconvolved
vertical components of many records. This technique has been used in the search
for discontinuities in the lower mantle.

5 Receiver functions for anisotropic media

In the isotropic, laterally homogeneous medium the P wave is coupled only with SV .
In anisotropic medium, all three components of motion (vertical Z, radial R and
transverse T ) are coupled.

One of the most useful techniques for measuring azimuthal anisotropy in the man-
tle is closely related to the receiver function technique. In azimuthally anisotropic
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medium, S wave with a nearly vertical direction of propagation splits into two quasi-
shear waves, which propagate with different velocities, and polarizations of which
are perpendicular to the wave propagation direction and to each other. Assume
that on its way to the Earth’s surface the S wave propagates through an anisotropic
layer. Neglecting the vertical component, the relationship between the radial (R)
and transverse (T ) components of this wave above the layer and its SV and SH com-
ponents beneath the layer can be described in frequency domain by matrix equation

[A(ω)] = [F (ω)][S(ω)],

where [A(ω)] is column vector with the elements R(ω) and T (ω); [S(ω)] is column
vector with elements SV0(ω) and SH0(ω); matrix [F (ω)] contains transfer functions[

RSV (ω) RSH(ω)

TSV (ω) TSH(ω)

]
.

Approximate expressions for the transfer functions can be obtained by using
Figure 4. Incoming S wave in Figure 4 is SV with the vertical incidence and unit
amplitude. In anisotropic layer with a horizontal symmetry axis the incoming wave
splits into the fast and slow quasi-shear waves. Polarization of the fast wave is
parallel to the crystallographic axis a in olivine. Fast direction forms angle β with
direction R. Arrows show amplitudes of the incoming and split waves. Amplitudes
of the split waves are equal to cos β and sin β for the fast and slow split waves,
respectively. Amplitudes of the transfer functions can be obtained by projecting the
amplitudes of the split waves on the axes R and T . The resulting expressions for
the transfer functions are

RSV (ω) ≈ cos2 β + sin2 β exp(−iω δt),
TSV (ω) ≈ RSH(ω) ≈ −0.5 sin 2β[1− exp(−iω δt)],
TSH(ω) ≈ sin2 β + cos2β exp(−iω δt).

Here δt is the traveltime delay of the slow split wave relative to the fast one. Thus,
the effect of azimuthal anisotropy can be described by two parameters: (1) fast
direction (polarization direction of the fast split wave) and (2) delay of the slow wave
relative to the fast one. First parameter is controlled by the direction of symmetry
axis in the anisotropic layer. Second parameter is proportional to the strength of
anisotropy (difference between the fast and slow velocity) and the thickness of the
layer.

Measurements of the parameters of anisotropy beneath the seismograph station
are based on the recordings of seismic phase SKS. This phase propagates as the
S wave in the mantle and as P wave in the liquid core of the Earth. Due to coupling
between SV and P at the core/mantle boundary SKS in isotropic Earth should be
polarized as SV . Putting SH0(ω) = 0 in the expressions for R(ω) and T (ω), we get

SV0(ω) = R(ω)/RSV (ω)

and
T (ω) = TSV (ω)R(ω)/RSV (ω).
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Using last expression we can find the theoretical T (ω) for any pair of the pa-
rameters of anisotropy and (by inverse Fourier transformation of T (ω)) the related
synthetic seismogram of the T component of SKS phase. The optimum pair pro-
vides minimum rms difference between the observed and synthetic T components.
This approach has much in common with the receiver function inversion: in both
cases one component of wave moton is used to synthesize the other component. In
both cases the optimum model minimizes the difference between the observed and
synthetic components.

At long periods (ω δt� 1) the harmonic components of SKS are related as

R(t) ≈ cosωt,

T (t) ≈ 0.5ω δt sin 2β sinωt.

This means that the T component of SKS is shifted in time with respect to the
R component by a quarter period, and its amplitude is proportional to frequency. In
other words, the T component is proportional to the derivative of the R component.
This relation between the R and T components of SKS helps to recognize the effect
of azimuthal anisotropy and to distinguish it from lateral heterogeneity. The term
sin 2β means that T/R amplitude ratio is a harmonic function of azimuth with a
period of π.

Observations of SKS provide excellent lateral resolution but they are insensitive
to depth of anisotropy. Distribution of anisotropy with depth can be constrained
with the aid of receiver functions. In an isotropic laterally homogeneous Earth, sec-
ondary (converted and reflected) phases are polarized strictly in the vertical plane
containing the source and the receiver, and their amplitudes are independent of the
azimuth. In the presence of azimuthal anisotropy, an appreciable amount of en-
ergy of the secondary phases is contained in the T component, and the amplitude
of the SV component depends on the azimuth. There are two different mecha-
nisms responsible for the T component of the Ps phases. If this phase is converted
from the boundary between two isotropic media, the T component can arise from
the splitting of SV . This mechanism is exploited in the SKS techniques. If the
phase is converted from the discontinuity between anisotropic media with different
anisotropies or from the discontinuity between isotropic and anisotropic media, the
T component, like SV , is generated directly by conversion from P . In the process
of further propagation, both the SV and T component are modified by shear wave
splitting.

Figure 5 demonstrates synthetic seismograms for a medium with azimuthal
anisotropy. Anisotropy is hexagonal with a horizontal axis of symmetry. This is
the simplest kind of anisotropy that is consistent with the properties of crust and
mantle rocks. Anisotropy is in the layer between 30 and 180 km depths, fast di-
rection of anisotropy is 0 degrees, velocities of the fast and slow split waves differ
by 3%. Isotropic discontinuity is placed at a depth of 410 km. The only strong
wave in the L component is P wave at a time of 0 s. It is followed by arrival at
a time of 3 s, which is seen in both H and T components. This phase is formed
by conversion from P to S at the upper boundary of the anisotropic layer. Two
phases which arrive at a time around 10–12 s are multiple reflections (from the free
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surface and the upper boundary of the anisotropic layer). Tho phases that arrive
at a time around 18 s are formed by conversion from P to S at the lower boundary
of the anisotropic layer and by subsequent splitting of the S wave in this layer.
Finally, the phases that arrive at a time ariund 40 s are formed by conversion from
P to S at a depth of 410 km and splitting of S in the anisotropic layer. There are
strong differences between polarities and amplitudes of different phases in the same
component and between those of the same phase in different components.

We filtered H and T components of this wavefield in azimuth domain by stacking
the traces with weights Wi depending on their azimuths. The weights are different
for the Q and T components and are defined as

W T
i (ψ) = sin 2(ψ − ϕi)

/ n∑
j=1

sin2 2(ψ − ϕj),

WQ
i (ψ) = − cos 2(ψ − ϕi)

/ n∑
j=1

cos2 2(ψ − ϕj),

where ϕ is back azimuth of the i-th trace, and ψ is a variable parameter. These
filters isolate second azimuthal harmonic with a period of π and introduce a phase
shift between the stacks of Q and T components in azimuth domain. The results
of azimuthal filtering of traces in Figure 5 are presented in Figure 6. In spite of
differences between the initial Q and T components, the stacked traces are remark-
ably similar. This similarity presents an important criterion to distinguish azimuthal
anisotropy from lateral heterogeneity. The actual receiver functions in a broad range
of azimuths should be stacked with the azimuth-dependent weights like synthetics
in Figure 5. The results of stacking can be inverted for subsurface structure by com-
paring them with the synthetics that are processed like the actual recordings. The
optimum model should also be consistent with the observations of SKS at the same
station. This model can be found with a Simulated Annealing algorithm. Exam-
ples of analysis of actual data will be demonstrated. The analysis of the secondary
phases related to the P wave can be complemented by analysis of precursors to the
teleseismic S in various azimuths with the S receiver function technique.

6 Applications of the P and S receiver function

techniques

P receiver functions were applied in many regions to map topography of the Moho
and other crustal discontinuities. Together with seismic tomography, this is one
of the most usable seismic method of regional studies. In a few studies subduct-
ing oceanic crust was imaged at a depth reaching 150 km. In other cases, some
arrivals can be seen at the times characteristic of the uppermost mantle, but it is
usually unclear whether these arrivals are mantle Ps phases or crustal reverbera-
tions. Another subject which is addressed in a number of studies is topography
of the discountinuities bounding the mantle transition zone at depths around 410
km and 660 km. These discontinuities are related to phase transformations with
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opposite Clapeyron slopes. Therefore, the differential time between the P660s and
P410s phases is sensitive to the mantle temperature: large in the cold regions and
small in the hot ones. Indications of hot and cold transition zone are generally
found in hotspots and subduction zones, respectively. The hotspot anomalies in a
depth range of the transition zone favor the hypothesis of plumes rising from the
lower mantle. Some results of mapping the topography of the 410 km and 660 km
discontintinuities should be viewed with caution, because of large uncertainty in the
velocities which are needed for transforming travel times into depths.

S receiver functions were introduced 10 years ago. One of the first succesful
applications of this method was the analysis of crustal structure of the Moon. Owing
to wave scattering, lunar seismograms are very noisy. Coda waves following the
arrivals of the P wave are comparable in amplitude with the P waves, and this
makes application of P receiver functions impossible. However, in recordings of
deep moonquakes there are arrivals of the S waves with the amplitudes much larger
than the preceding noise. Considerations of the signal/noise ratio favor applications
of S receiver functions in the future exploration of the Moon and other planets.

On the Earth, low S velocity layers were found at those depths, where they were
previously either unknown or their presence was doubtful. A low S velocity layer was
found in several regions at a depth around 500 km; origin of the low velocity might
be related to the presence of water in the transition zone. Another well pronounced
low S velocity layer has been found at a number of locations atop the 410 km
discontinuity by using both P and S receiver functions. This layer is usually found
in the regions of mantle upwelling. Its origin can be explained by the difference in
solubility of water in the upper mantle (low) and the transition zone (high). If the
water concentration in the transition zone is higher than its solubility in the upper
mantle, mantle upwelling through the 410-km discontinuity leads to dehydration
and melting. Another result of applications of S receiver functions is a progress in
undestanding the Lehmann discontinuity. It is a feature of the continental upper
mantle at a depth around 200 km. In the last years this discontinuity was often
explained as an effect of a transition from anisotropy in the uppermost mantle to
isotropy at depths exceeding 200 km. S receiver functions provide arguments against
this explanation.

Joint inversion of P and S receiver functions resulted in a detailed 3-D S velocity
model of the crust and uppermost mantle of the Tien Shan. The Tien Shan is the
largest in the world and most active intracontinental mountain belt. The model
provides first plausible explanation for the strange pattern of local seismicity: in the
past century large earthquakes occured only in the peripheral regions, but not in
the vast central region. The new model shows that in this region the S velocity at
depth of 10-35 km is much lower than in adjacent regions. These data are indicative
of a mechanical weakness of the crust preventing the accumulation of elastic energy
in the central region. The model provides other links between the geodynamics and
deep structure of the Tien Shan.

Shear-wave splitting in SKS is a subject of many studies. The depth of the
observed anisotropy presents a difficult problem of these studies.The joint analysis
of P receiver functions and SKS splitting for seismograph stations in the Tien Shan
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has revealed a change in the patterns of azimuthal anisotropy at a depth around
100 km. In the lower layer (asthenosphere), fast directions are aligned with the
strike of the belt. This alignment suggests that the anisotropy is an effect of coaxial
shortening normal to the strike of the belt. In the upper layer, fast directions are
varable. This anisotropy can be a result of thrusting and of ancient deformations.

Intriguing results of joint inversion of P and S receiver functions in southern
Africa are a low S velocity atop the 410-km discontinuity and unusually high anelas-
tic attenuation in the upper mantle. These observations, if confirmed, may provide
explanation for the Mesozoic-Cenozoic uplift of the Kalahari craton.

Important observations have been made in India. The Indian shield is mostly
Archean. In most other Archean cratons, S velocity in the uppermost mantle is
very high (4.7 km/s). This is an effect of a low temperature and a depletion of the
upper mantle in the basaltic component. However, beneath the Indian shield seismic
velocities at depths less that 200 km are close to the world average (4.5 km/s) which
is indicative of either anomalous composition or temperature or both.
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R(w) Rsv(w) RSH(w)
T(w) ~ Tsv(w) TSH(w)

For vertical propagation, approximate expressions for the transfer functions can be
obtained by using geometrical relations:

T

Arrows show amplitudes and polarizations of the incoming and split waves.
Incoming S wave is SV with vertical incidence and unit amplitude. Amplitudes for
the T components of the fast and slow split waves are -O.5sin213 and O.5sin213.
Amplitudes of the R components are cos2(13) and sin2(13). The slow wave arrives
with a delay i3t. The resulting expression for the transfer functions are:

RSit(W) ~ cos~ (3 + sin2 f3 exp(-iw 8t)
Tsv(w) ~RSH(W) ~ -O.-sin2,8[1-exp(-iw8t)),

T.SH(W) ~ sin2 f3 + COS 2 ;9 exp(-iw 8t).
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We assume that the receiver functions are obtained for discrete values <Pi of back
azimuth with a small sampling interval in the range from 0 to 360°. Horizontal
components of the receiver function with the azimuth of <pj are Qj(t) and Ti(t). For these
components we define weighting coefficients WjQ(lp) and WjT(lp) :

WjQ(lIJ) = -cos2(lIJ - <Pj) Irjcos22(lIJ - <Pj)

WjT(lIJ) = sin2(lIJ - <pi) Irjsin22(lIJ - <Pj)

The components of the receiver functions are stacked with weights:

Fig. 7
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