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Abstract: We demonstrate experimentally that disorder enhances transport of waves in Penrose-type photonic 

quasicrystals. Increasing disorder gives rise to a transition from "bumpy ride" to diffusive transport.  
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Anderson Localization is a well-known concept in solid-state physics predicted by Philip Anderson in 1958 [1] 

and which led to the 1977 Nobel Prize. Realizing that Anderson localization is a universal wave phenomenon 

relying on interference, these concepts were introduced into to optics. In 2007, our group used the transverse 

localization scheme [2] and made the first demonstration of Anderson localization [3] in its original context, where 

random fluctuations superimposed upon a periodic structure bring transport to a halt. This was the first experimental 

observation of Anderson localization in any periodic system containing disorder, just as Anderson predicted it. 

Numerous experimental works have followed, in optics [4,5] and matter-waves [6].  
 

Here, we experiment with localization in photonic quasicrystals, and show that disorder enhances 

transport – opposite to Anderson localization effects in crystals and in fully random media. In that respect, 

what we observe here is "Anderson delocalization": a novel phenomenon unique to quasicrystals.    

Quasicrystals (QCs) are structures with no unit cell, exhibiting no reflection or translation symmetries, but 

having long-range order. They were discovered in 1984 [7] when a sharp diffraction pattern was observed from an 

aluminum alloy, providing evidence that the alloy has a 5-fold rotational symmetry, which, according to belief at 

that time, was crystallographically forbidden. Such long-range order without periodicity gives rise to unique 

properties [5,8]. For example, the band structure of a quasi-periodic potential is fractal-like, and the eigenmodes are 

critical states best described as having polynomially-decaying envelope functions (unlike the periodic Bloch modes 

of a lattice). The question of what  disorder would do to transport in QCs has thus far hardly been addressed, and 

even the few theory papers on this subject [9] heavily rely on tight-binding models, whose ability to model QCs, 

especially in the presence of disorder, is very limited. It is therefore of fundamental interest to find out how disorder 

affects transport in QCs and whether it ever leads to localization, bringing transport to a complete halt.   
 

We work with photonic lattices, employing the transverse localization scheme [2,3], which is represented by the 

paraxial wave equation for monochromatic light, in complete analogy to Anderson's model: 
 

  

Here z is the propagation coordinate, x and y are the transverse dimensions, Ψ is the field envelope, k is the wave 

number, n0  is the bulk refractive index, and n∆ is the local change in the refractive index (lattice + disorder). The 

equivalence to solid-state physics emerges when z t→  and n V−∆ → , implying that the evolution of a light beam 

behaves like the wavepacket of a quantum particle in a 2D  potential, but with the coordinate z replacing time. 
 

Figure 1 shows the experimental scheme described by Eq. (1). We use the induction technique [2,3] to transform an 

optical intensity pattern into a refractive index structure ( , , )n x y z∆ , which includes both the QC lattice and the 

disorder. A “frozen” potential (as required in the Anderson scheme) is achieved by constructing the interference 

pattern (QC lattice + disorder) from a ring in (kx, ky) (momentum) space, on which the transverse k components of 

the induction waves are overlaid. In this way all induction waves have the same propagation constant kz, and 

accumulate the same phase during propagation in z, hence the interference pattern and the index change ( , )n x y∆  

induced by it do not vary with z either. Five plane waves are used to create a ten-fold Penrose quasi-lattice on which 

the disorder is superimposed. To make the disorder propagation-invariant, we pass a beam through a conical lens, 

which creates a narrow ring of light at the Fourier plane of a 4f system, where a diffuser is placed. When the 

thickness of the ring is considerably narrower than the typical size of a scatterer upon the diffuser, the pattern (lattice 

+ speckles) formed at the output of the 4F system does not vary while propagating even for large distances. We 

launch a weak probe beam through the structure, and monitor the exiting beam. In optics, the propagation distance is 

always finite (equivalent to finite time), hence transport must be studied through ensemble-averaging over many 

  
2 2

2 2

0

1

2
i

z

k n

k x y n

∂Ψ
= − −

∂

 ∂ ∂ ∆
+ Ψ Ψ 

∂ ∂      

(1) 



realizations of the disorder (under same parameters), as appropriate for an expectation-value problem. The different 

realizations of the disorder are created by passing the beam through different locations upon the diffuser. 

  

 

 
 

Simulated results, shown in Fig. 2a, display the ensemble-averaged width of the beam propagating through the 

QC as a function of z, without disorder (lower curve) and with 20% disorder. With no disorder, transport through the 

QC displays a "bumpy ride", with irregular oscillations occurring as the tunneling from one site to another is never 

resonant, because the QC potential is never identical for adjacent sites. Such “bumpy ride” is especially pronounced 

for wavepackets selectively comprised of narrow QC eigenmodes. These are the kind of wavepackets we study here. 

When disorder is introduced, the band structure is no longer ideally fractal, but rather has piecewise continuous 

regions. As such, the bands resemble crystalline bands containing disorder, which is why transport is diffusive-like 

in its characteristic shape. Unlike the traditional role of disorder in reducing transport, here – in disordered QCs – 

transport is enhanced. Consequently, transport through the QC containing disorder is considerably enhanced (Fig. 

2a, upper curve), displaying a Gaussian profile characteristic of diffusive transport. At high disorder levels, the 

potential becomes completely random, and the system crosses over to Anderson localization.       

 
 

 

 

 
 

 
 
 

The experimental results are depicted in Fig. 2 (b-e). Figure 2b shows the beam exiting the QC with no disorder 

superimposed. The exiting beam is always fractured and varies depending on the initial launch point, because the 

potential in a QC has no translational symmetry. The mean beam width is 192µm. Figures 2(c-e) depict the output 

beam for increasing strength of disorder ensemble-averaged over 50 realizations of the disorder (same statistics), for 

each value of disorder strength. As expected from the simulation (Fig. 2a), at 30% disorder transport is diffusive-like 

(Fig. 2c), with an average beam width of 215um. Increasing the disorder strength makes the beam more and more 

localized (Fig. 2d), until at 100% disorder it displays the exponential tails characteristic of Anderson localization 

with an average beam width of 206µm (Fig. 2e). That is, at very high disorder levels the potential becomes fully 

random – with little trace of the initial quasi-periodic potential, and transport comes to a halt. 

The experimental and theoretical results displayed in Fig 2 unequivocally show that disorder enhances transport 

in QCs for a range of values of disorder strength, making it diffusive-like transport. This constitutes the first 

observation of disorder-enhanced transport in any quasi-crystalline structure in nature. This study raises very 

many new questions: what happens after very long evolution (say, 10
6
 coupling lengths)? How would nonlinearity 

affect transport in QCs containing disorder? How does the structure of the wavepacket affect transport? These and 

very many other questions are now within experimental reach, following the experiments displayed here.    
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Fig.1. Experimental setup: five plane waves creating a Penrose Quasi-Crystal lattice (left). Disorder (middle) is created by passing a wide beam 

through a conical lens, and then placing a diffuser at the Fourier plane located in the middle of the 4F system. The disorder and the lattice are 

then both coherently added and imaged to the input facet of the nonlinear crystal, where the probe is injected right) and monitored at the output 

plane.  

Fig.2. (a) simulation results for a “clean” QC (blue curve) and a disordered quasi-lattice with 20% disorder (red curve). Shown are the average 

beam width as function of z. The red curve has a positive slope and is always above the blue curve, indicating that transport is higher at all z.    

(b-e) Experiments - Figures 2b to 2e shows the output intensity and the log of its cross section, for a beam propagating for 10mm in a frozen 2D 

(QC + disorder), with increasing amount of disorder (samples of which are pictured underneath- disorder value is in yellow), indicating that the 

average width first increases and only at 30% disorder starts to decrease, where at the same point the log plot shows parabolic tails indicating 

diffusive-like behavior. At 50% and 100% disorder the beam is exponentially localized showing linear tails in the log plots. 


