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What is the multifractality of the eigenstates?

Schrodinger equation in a random potential
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H, -Kinetic energy The simplest gaussian distribution

Vy=0] [V, )=p5(r-r")

V. -Random potential




f(t)Di

-Local probability

stribution function

t,= [ t"f(t)dt

-moments

Distribution function of the probabilities f(t)
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-Mean level spacing,
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-Density of states,

Trivial moments.
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1. Pure metal or a ballistic chaotic regime

(the

wave function extends all over the sample)
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Small metal particles

d-dimension

Chaotic billiards

2. Localized regime (strong disorder)

tn are insensitive to the volume V



3. Multifractality

Vt o L0

If |d”=d

r(n)=(n-1)d"(n)

-fractality

if d"(n) is a function of n-multifractality

Examples

Porter-Thomas distribution: | f (t) =V eXp(—V’[)

Weak disorder,

&r 21




Power law decay: W(r) o

u<d/2| > j ‘W(r)(zdr is sensitive to boundary

U

“—d—=2u| -the same forall [Nn>—
d =d-2u 21

x . . ) A more complicated
It d (n) 's afunction of n (multifractal) behavior!



Multifractal wave functions



Multifractality in disordered metals:

nothing exotic and always happens in 2D at
weak disorder (the size of the sample L is
smaller than the localization length Lc).

Method of investigation: non-linear sigma model
(mostly supersymmetric).

Two different approaches:

1. Using Renormalization Group equations including
high gradients. Calculation of the distribution of density

of states, conductances, etc.

(Wegner; Altshuler, Kravtsov, Lerner) Appar_ently,
there is a

2. Finding non-trivial minima (instantons) of the connection

supermatrix action. Distribution of wave functions can be between _1).and

found directly. (Muzykantskii, Khmel'nitskii; Falko, Efetov; 2), but this Is

Mirlin, Fyodorov) not understood.




Supersymmetry method makes it possible to come to RMT and
go beyond (localization, mesoscopics, quantum chaos, etc.)

Literature: K.B. Efetov “Supersymmetry in Disorder and Chaos”, Cambridge University
Press, 1997

The main ideas
Grassmann anticommuting variables ¥

{Zi’Zj}:O 2 =0

Integrals (Berezin 1961):

jZidZi =1 JdZi =0

All other integrals are repetitions of these two.



The most important integrals (the basis of the method)

[exp(—x* Ax)dy*dy =det A

Not (det A)™ as for conventional
complex numbers!

Supervector: Supermatrix:
v =(7,5) q_(a aj X0, 0 - anticommuting
o ¢ S,a,b  -conventional
Strq=a-b
4

Str(P,P, )= Str(P,P,)

Str(Ple Ps) = Str(P3P1P2)




Supermatrix o-model

F :%" [ Str[D(VQ)? + 2i(w+i5)AQ]dr

Physical quantities as integrals over the supermatrices
| B(Q)exp(-F[Q1)DQ

Adding magnetic or spin-orbit interactions one changes the
symmetry of the supermatrices Q (orthogonal , unitary and
symplectic).

Depending on the dimensionality (geometry of the sample) one

can study different problems (localization in wires and films,
Anderson metal-insulator transition, etc.)

Everything that can be written in terms of products of Green
functions can be expressed in terms of an integral over the
supermatrices with the o -model.
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The explicit structure of Q

Q :UQOU

(o )

All essential structure is in Q,

Q, :[ cosd

—iesing

u,v contain all Grassmann

variables

ie'’ sin QJ

2
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|

(unitary ensemble)

Mixture of both compact and non-compact symmetries
rotations: rotations on a sphere and hyperboloid glued by the
anticommuting variables.
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An expression for the distribution function in
terms of the o-model.

ft)=lim,, | DQ.'f—VrStr(ﬂé”Q(r))ﬁ(t -~ sulzal, ))j exp(~F[Q)

F = 7%/'|'Str[D(VQ(r))2 ~ AQHr
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Integration over the zero mode !

Q(r) =V (r,)Q(rV(r,) Qr,)=A

In the limit » >0 one comes to a reduced & -model

1 d*®
f(t)==

d)(t){ f exp(ﬁ{é,tDDé(r)}

Q(ro ):A

The reduced o -model

F[o,t]= %I Str{m»Do(V Q) —2tAIl é}dr

T
H:( "
T

”bj Only the non-compact sector Is important.

T

13



The final result

exp(—Vtl-T/2+..

f(t) V{exp( Iz(zllj?;)) In’ TJ< >1

] T<1

tV In(L/1)
T= 2
27D,

Multifractality

th oC L—T(n) z'(n):

(n—1)d*(n)

d*(n)=2-n(4z>D, "

T<1: Porter-Thomas distribution
T>1: anomalously localized

\states, multifractality
Coincidence (agreement(!,?))

with Altshuler, Kravtsov, Lerner

-fractal dimension
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The multifractality resembles the intermittency in the

theory of turbulence!

1. Scaling hypothesis for developed turbulence
(Kolmogorov 1941)

2. Conjecture about log-normal distribution (Kolmogorov 1962)

However, there are deviations in exponents due to
rare strong fluctuations (known since 60’s)!

4

The biggest challenge for theory: no chance to
derive from Navier-Stokes equations!
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Simplified stochastic models: Passive scalar model

Vi =0 @ is pumping

<u“(t1, rl)uﬂ(tz’ r2)> = 5(t1 _tz)‘/aﬂ

1, r<L
0, r>L

\ % ZV05aﬂ _ Kaﬂ(rl_rz)

ket _ D
r?’

(r25aﬁ _ rarﬂ)+

D(d-1)

2—y

5Pz

O<y<2
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What should one calculate?

Again:




Known results:

f(r)ecr?

F(r11 r21 r31 I‘4)OC I‘Zy(k) ;

Intermittency!
Comes from a zero mode.

Chertkov, Falkovich, Kolokolov,
Lebedev (1995) (d>>1)
Gavedskii, Kupiainen (1995) (2—y <<1)

Intermittency!
Comes from instantons.

Balkovsky, Lebedev (1998)
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