

2162-7

Advanced Workshop on Anderson Localization, Nonlinearity and Turbulence: a Cross-Fertilization

23 August - 3 September, 2010

Inertial particle clustering and random walks in random environments

Jeremie BEC CNRS Observatoire de la Cote d'Azur, Univ. de Nice France

Inertial particle clustering and random walks in random environments

Jérémie Bec

CNRS, Observatoire de la Côte d'Azur, Université de Nice

in collaboration with

L. Biferale, M. Cencini, A. Lanotte (Rome), F. Toschi (Eindhoven), R. Chétrite (Weizmann/Nice), B. Merlet (Paris), and S. Musacchio (Nice)

Anderson Localization, Nonlinearity and Turbulence, August 2010, ICTP, Trieste

Turbulent Transport/Mixing

- Industrial/Natural problems: passive or active transport of species by a turbulent flow
- Effect of turbulence: enhance mixing/dispersion (w.r.t. molecular diffusion)

Eddy diffusivity (~mean-field effect)

Quantifying fluctuations? What are the mechanisms leading to the presence of very high concentrations?

Fluctuations in turbulent transport

Fluctuations are important for risk assessments

Models/Observations: space and/or time averages

Mean vs. meandering plumes

One source of fluctuations = the turbulent transport itself

Concentration PDFs have tails rather far from Gaussian (trapping events for the random walk of particles in the random environment of subjacent turbulent fluctuations?) Universality??

Particles finite mass

Most particles are not tracers but have inertia

Heavy particles are ejected from eddies

Light particles cluster in their cores

Preferential concentration

Very heavy particles

Spherical particles much much heavier than the fluid, feeling no gravity, evolving with moderate velocities: one of the simplest model

$$\ddot{\boldsymbol{X}} = -\frac{1}{\tau} \left(\dot{\boldsymbol{X}} - \boldsymbol{u}(\boldsymbol{X}, t) \right)$$

Prescribed velocity field (random or solution to NS)

$$\tau = \frac{2\,\rho_p\,a^2}{9\,\rho_f\,\nu}$$

Inertia measured by the Stokes number $St=\tau/\tau_{f}$

Dissipative dynamics (even if u(x,t) is incompressible) Lagrangian averages correspond to an SRB measure (with

support on the attractor) that depends on time and on the realization of the fluid velocity field.

Very heavy particles

Need for quantifying inertia effects on concentration fluctuations, which in turn affect global quantities

Preferential concentrations

- Observed for a long time in experiments Eaton & Fessler (1994); Douady, Couder, & Brachet (1991)
- Quantifying them is important for
 * the rates at which particles interact
 * the fluctuations in the concentration of a pollutant
 * the possible feedback of the particles on the fluid

Inertial-range clusters and voids

Multifractal distribution at dissipative scales

Phenomenology of clustering

Different mechanisms:

- Theory: requires elaborating models to disentangle these two effects. For instance:
 - flows with no structures (uncorrelated in time) to isolate the effects of a dissipative dynamics
 - coarse-grained closures to understand ejection from eddies
- Numerics show that these effects act at different scales

Inertial-range clustering ?

Case of *non-differentiable* Kraichnan: particle dynamics at scale ℓ depends on a **local (scale-dependent) Stokes number**

$$\operatorname{St}(\ell) = \tau / \tau_{\ell} = \varepsilon^{1/3} \tau / \ell^{2/3}$$

Falkovich, Fouxon, Stepanov (2003) JB, Cencini, Hillerbrand (2007)

Both the scale-invariance of the fluid flow and that of the particle distribution are broken

 $\ell \to \infty \quad St(\ell) \to 0$ inertia becomes negligible

 $\ell \to 0 \quad \operatorname{St}(\ell) \to \infty$ particles move almost ballistically

Particles in turbulent flow

Real flow have structure and particle distribution correlates with the acceleration field

Coarse-grained density

Time scales of clustering

- ▶ The local Stokes number $St(\ell) = \varepsilon^{1/3} \tau / \ell^{2/3}$ is not relevant
- Non dimensional contraction rate

When inertia is very weak:
$$\tau \ll \tau_{\rm f}$$

 $\ddot{\boldsymbol{X}} = -\frac{1}{\tau} \left(\dot{\boldsymbol{X}} - \boldsymbol{u}(\boldsymbol{X}, t) \right) \Rightarrow \dot{\boldsymbol{X}} = \boldsymbol{u}(\boldsymbol{X}, t) - \tau \ddot{\boldsymbol{X}}$
 $\dot{\boldsymbol{X}} \approx \boldsymbol{v}(\boldsymbol{X}, t) = \boldsymbol{u}(\boldsymbol{X}, t) - \tau \left[\partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} \right]$ Maxey's approximation

Rate at which a particle blob with size r is contracted

$$\Gamma_{r,\tau} = \frac{1}{r^3} \int_{|\boldsymbol{x}| < r} \nabla \cdot \boldsymbol{v} \, \mathrm{d}^3 \boldsymbol{x} \simeq \frac{\tau}{r^2} \delta_r p$$
Pressure scaling
Sweeping $\delta_r p \sim \mathrm{U}(\varepsilon r)^{1/3}$

$$\Gamma_{r,\tau} \sim \tau/r^{5/3}$$

$$\Gamma_{r,\tau} \sim \tau/r^{5/3}$$

$$\Gamma_{r,\tau} \sim t/r^{5/3}$$

$$\Gamma_{r,\tau} \sim t/r^{5/3}$$

$$\Gamma_{r,\tau} \sim t/r^{5/3}$$

Scalable deviations from uniformity

Mass distribution depends only on $au_{\eta}\Gamma_{r,\tau} \sim \operatorname{Re}^{1/4}\operatorname{St}(r/\eta)^{5/3} \sim \operatorname{Re}^{-1}\operatorname{St}(r/L)^{5/3}$

Mass transport model

- Find models belonging to the same universality class
- Discreteness in time and space
- At each time step some (randomly chosen with probability p) cells eject a fraction of their mass to their neighbors
- Parameter = γ ejection rate (related to particle inertia)

JB, R. Chétrite (2007)

Tails

Right tail = algebraic $p(m) \propto m^{\alpha(\gamma)}$

$$N \text{ times} \begin{cases} \clubsuit & m_0 \approx 1 \\ \vdots & m_N \approx (1 - \gamma)^N \end{cases}$$

$$Prob = p^{N} (1-p)^{2N}$$
$$\Rightarrow \alpha(\gamma) = \frac{\ln p(1-p)}{\ln(1-\gamma)}$$

Left tail = super-exponential

$$Prob = [p^2(1-p)]^{NM}$$

$$\Rightarrow p(m) \propto \exp(-C m \ln m)$$

More general model

- - σ random \Rightarrow diffusion in a random environment Green function \leftrightarrow transition probability for $dX = \sigma(X, t) dW_t$
- **High densities:** near the zeros of the diffusion coefficient σ Example: $\sigma(x, t)$ smooth, generic, Gaussian

Large density tail

$$\partial_t \rho = \partial_x^2 \left(x^2 \rho \right)$$

$$\rho(x,t) = \frac{1}{2} e^{2t} \operatorname{erfc} \left(\frac{\ln |x| + 3t}{2\sqrt{t}} \right)$$
Cumulative probability $P^>(\rho)$

$$= \text{fraction of space-time where the density is larger than } \rho$$

$$\lambda = 2t/\ln \rho$$

$$P^>(\rho) \simeq \ln \rho \int_1^\infty e^{-\mu(\lambda) \ln \rho} d\lambda$$

$$\mu(\lambda) = \frac{3}{2}\lambda - \sqrt{2\lambda(\lambda - 1)}$$
Saddle-point: $P^>(\rho) \propto \rho^{-1}$

Universal intermediate asymptotics where

$$p(\rho) = -\frac{\mathrm{d}P^{>}}{\mathrm{d}x} \propto \rho^{-2}$$

+ non-universal cut-off (distribution of zeros lifetime)

Conclusions

Summary

Clustering of heavy particles:

of two kinds, depending on the observation scale:

- * multifractal in the dissipative range
- * dependent on a rescaled contraction rate in the inertial range

Connection to random walks in random environments: ejection models reproduce most features (in particular tails)

Open questions

- * Universality of mass probability distribution?
- * **Spatial/temporal correlations** (e.g. scale invariance) of the ejection/diffusion rate?