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Fractal wave-functions at the localization transition

Anderson, 1958
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Fractal wave-functions

Criticality at the localization transition
In(g) ' |

(Wegner, 1980)
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Inverse Participation Ratio
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fractal dimension: () < ( ; <d Wavefunction occupies a fraction of space



Weak- vs. strong- fractality regimes

L,

Weak fractality dgq >~ d

Fractal WF are close to extended states

Examples (talk by Konstantin Efetov):
- 2d disordered systems, weak disorder
- turbulence

Method: c-model

Localization transition in the Anderson model, d=3: do ~ d/2, d4 < d

w, (k)
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Strong fractality dq < d

Fractal WF are close to localized states

Example:
- localization transition in the high-dimensional
Anderson model

Method: locator expansion (talk by Boris Altshuler)



Correlations of the fractal wave-functions

Two point correlation function:

Co(w,R) = v 1YY 8(w/2—&n)d(w/2+E&m) [¥e, (P) %[, (P + R)|?)
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For a disordered system at the critical point (fractal wavefunctions)

Cr(w=0,R) x (L/|R|)d_d2, R| <L (Wegner, 1985)

If w>Athen [, = L(A/w)l/d must play a role of L:

s




Correlations of the fractal wavefunctions
Two point correlation function:
Co(w,R) =v 1Y N 6(w/2—€n)8(w/24Em) [0e, (P [We,,, (P + R)[?)

p m,n

For a disordered system at the critical point (fractal wavefunctions)

Cr(w=0,R) x (L/|R|)d_d2 , |R| < L (Wegner, 1985)

Dynamical scaling hypothesis: Ld_dQ N (Lw)d—dQ

= Co(w > AR) o (Lw/IRDT®2, I<|R| < Lu < L
(Chalker, Daniel, 1988; Chalker, 1990)

d —space dimension, A - mean level spacing, / — mean free path, <...> - disorder averaging



Fractal enhancement of correlations

Eg\ 1—d2/d
Dynamical scaling: Co(A<w< Eg,|R| K1) x (_)
W

Eg/w>1, 1 —dy/d > Q -Enhancement of correlations

Extended WF:
small amplitude
: ; substantial overlap in space
=3
y Localized WF:
Lu . .
~ high amplitude
< small overlap in space
' ' ' Fractal WF:

10" 10* 10" E, 10"

IE-E)| relatively high amplitude and
(Cuevas , Kravtsov, 2007) M

(The Anderson model: tight binding Hamiltonian)



Strong fractality regime: do WFs really overlap in space?

O < do K d - sparse fractals, A <L |&m —én| < Ep

Naive expectation: The consequence of the dynamical scaling:
| z ﬂ
v, \k
- )

-

N\
) N4 ) I
/ weak space correlations\ strong space correlations

So far, no analytical check of the dynamical scaling; just a numerical evidence

Does the dynamical scaling hypothesis hold true in the strong fractality regime?
IQH WF: Chalker, Daniel (1988),
Huckestein, Schweitzer (1994), Prack, Janssen, Freche (1996)
Anderson transition in 3d: Brandes, Huckestein, Schweitzer (1996)
WF of critical RMTs: Cuevas, Kravtsov (2007)




Coinciding space point: scaling in energy-domain

R = 0, energy representation

Co(w,0) = V_1<Z Z Y (g — 5%) Y (g + fm) |¢§R(P)|2|‘/)§m(P)|2> — CQ,diag+O2,off—diag

p mmn

Diagonal part

C2 diag = 6(w) <v—1 225(€m)|¢gm(l))|4> x s(w)V—R/d v =4

p
\ _/  (space scaling)

YIPR, Py

Off-diagonal part
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C2,off—diag |A<<w<<EOO< w (dynamical scaling)

1—pu=dy/d




Coinciding space point: scaling in time-domain

R = 0, time representation

d
Fourier transform of C,(w,0): P(t) = fC’Q(w, O)e_'“*’tz_w
7

- averaged return probability for a wave packet

Expected scaling properties of P(t)
P

T_dQ/d- dynamical scalingi

y—de/d spatial scaling
i : (IPR)
1 L T

»
»

(t - scaled time)
P(t) is more convenient for the further analysis



Scaling of the return probability

T = min(r, L) - IR cutoff of the theory

Expected behaviour of P(t) in the long time limit

P(t) = A(T) (m)@'\ Universal exponent

T

log(P)

0g(A) + r(log(B) — log(T))

N _—

can be non-universal — let's eliminate them




Scaling of the return probability

T = min(r, L) - IR cutoff of the theory

Expected behaviour of P(t) in the long time limit

B(T)

Poy = ac) (250)

I@(@ + 1 108{B) — Oiog() K 109( )]

Aog(r) 109(P)

IF the dynamical scaling hypothesis holds true then
1) Aog(T) log(P) = —k - Equation for «

2) K’|V>>’T — K?\fr>>v — d2/d = Universality of «



Model: MF RMT (Power-Law-Banded Random Matrices)

4 <—>-<H’ - )i(H’ N =PI D 1d chain with
- i-1 ) e random long-range hopping
Hl 1,i+1 Hi,i+2 =1
H - NxN Hermitian BRM |i—jl<b

b iIs the bandwidth

i—j|>b

)

o=1: RMT with multifractal eignestates at any band-width
(Mirlin, Fyodorov et. al., 1996, Mirlin, Evers, 2000)

2w b>>1 b<lI
~1_ const d, =const b
2y 0 Aﬂ'b 2

1-d,<<I - regime of weak multifractality | 4,<<I —regime of strong multifractality




Variance of matrix elements for almost diagonal MF RMT

MF RMT from the GUE symmetry class

1
2 p— E—
<€":> 07
(|Hizj?) = = L oL ?
FIS T 214 (- 2/l 2\ — g
/ o o \
b<< 1 -smallband width bi-j|<<I

\/
— almost diagonal MF RMT >
\_ _/



Method: The virial expansion

Note: a field theoretical machinery of the s-model cannot be used in the case
of the strong fractality

As an alternative to the a-model, we use
the virial expansion in the number of interacting energy levels.

Gas of low density p IAlmost diagonal RM A >> DA

1 O ® I bA - pl
: ——
. 41

2-particle collision 2-level interaction

|
|
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p’ | -
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3-particle collision

3-level interaction

VE allows one to expand correlations functions in powers of b<<I



SuSy virial expansion

Interaction of energy levels Hybridization of localized stated
Hmn
N
4 N
8m
S |
gn | |
m n
SuSy is used to average over disorder (OY, Ossipov, Kronmiiller, 2007-2009)
H_ Coupling of supermatrices
mo n
N\ j\ A/ —>  exp (— (| Hmn[2)Str(Qm@Qn))
| |
'm 'n

Summation over all possible configurations

- / dz exp (—(|Hmn|2)Str(QmQn)) FIQ), w=m-n

SuSy breaking factor




Application of the virial expansion

Expected behavior: P Y %:; YT =min(,N), k~bk 1

VE for the return probability: P = 1 + Z bj_le , Pj o~ IOg('Y")j_1
J=2

Pertubation theory for the scaling exponent

k= —0og() 109(1+b' Po+b*P3+...) = kotrz+. ..

Ko = _b18|Og('T)P2 - |
_ 42 1 2
k3 = —b0og(r)(Ps — 5P5 ) o—




What do we calculate and check

1) Dynamical scaling:

1
Pox YT, k()= —618|OQ(T)PQa k3(T) = _anlog(’Y“) (P3_§P22)

a) Log-behavior of P;:

Py ~ log(T), P3~log(T)? \/

b) Pure power-law dependence of P(Y)

© log?(7) must cancel out in P,- (P,)*/2 \/

2) Universality: scaling exponent is cut-off independent

Kilr=N= Kjlr=r, J1=2,3 \j



Resuls

b
1—p=dp~ ko + K3 = %+O.083(7rb)2

Conclusions

Using the model of the of the almost diagonal RMT with multifractal
eigenstates in the strong fractality regime we have shown that:

- assumptions about the dynamical scaling and the relation //=7-d,
hold true up to the leading and the subleading terms of the VE

v, () A
S, h
NN

- our results confirm strong correlation of the sparse fractal wave functions
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