

2162-33

Advanced Workshop on Anderson Localization, Nonlinearity and Turbulence: a Cross-Fertilization

23 August - 3 September, 2010

Critical Scaling at the Anderson Localization Transition in the Strong Multifractality Regime

Oleg YEVTUSHENKO

LMU Ludwig Maximilians Universitaet Muenchen Faculty of Physics Theoretical Solid State Physics Germany

Critical Scaling at the Anderson Localization Transition in the Strong Multifractality Regime

Oleg Yevtushenko

In collaboration with:

Vladimir Kravtsov (ICTP, Trieste), Alexander Ossipov (University of Nottingham)

arXiv: 1008.2694v1

Outline of the talk

- 1. <u>Introduction:</u>
 - Fractal wavefunctions: weak- vs. strong- fractality
 - Critical correlations of fractal wavefunctions and the dynamical scaling hypothesis
 - Paradox of the critical correlations at strong fractality
- 2. <u>Strong multifractality regime</u>:
 - Model (the Critical RMT) and method (the Virial Expansion)
- 3. <u>Scaling exponents:</u>
 - Outline of calculations and results
- 4. <u>Conclusions</u>

Fractal wave-functions at the localization transition

Weak- vs. strong- fractality regimes

Localization transition in the Anderson model, d=3: $d_2\simeq d/2, \,\, d_4\ll d$

Strong fractality $d_q \ll d$

Fractal WF are close to localized states

Example:

- localization transition in the high-dimensional Anderson model

Method: locator expansion (talk by Boris Altshuler)

Correlations of the fractal wave-functions

Two point correlation function:

$$C_{2}(\omega,\mathbf{R}) \equiv \nu^{-1} \langle \sum_{\mathbf{p}} \sum_{m,n} \delta(\omega/2 - \xi_{n}) \delta(\omega/2 + \xi_{m}) |\psi_{\xi_{n}}(\mathbf{p})|^{2} |\psi_{\xi_{m}}(\mathbf{p} + \mathbf{R})|^{2} \rangle$$

For a disordered system at the critical point (fractal wavefunctions)

$$C_2(\omega = 0, \mathbf{R}) \propto (L/|\mathbf{R}|)^{d-d_2}, |\mathbf{R}| \leq L$$

If $\omega>_{{\it \Delta}}$ then $\ L_{\omega}=L(\Delta/\omega)^{1/d}$ must play a role of L:

Correlations of the fractal wavefunctions

Two point correlation function:

$$C_{2}(\omega,\mathbf{R}) \equiv \nu^{-1} \langle \sum_{\mathbf{p}} \sum_{m,n} \delta(\omega/2 - \xi_{n}) \delta(\omega/2 + \xi_{m}) |\psi_{\xi_{n}}(\mathbf{p})|^{2} |\psi_{\xi_{m}}(\mathbf{p} + \mathbf{R})|^{2} \rangle$$

For a disordered system at the critical point (fractal wavefunctions)

$$C_2(\omega=0,\mathbf{R})\propto (L/|\mathbf{R}|)^{d-d_2}, \ |\mathbf{R}|\leq L$$
 (Wegner, 1985)

Dynamical scaling hypothesis: $L^{d-d_2} \rightarrow (L_{\omega})^{d-d_2}$

$$\Rightarrow C_2(\omega > \Delta, \mathbf{R}) \propto (L_\omega/|\mathbf{R}|)^{d-d_2}, \ l \leq |\mathbf{R}| \leq L_\omega < L$$

(Chalker, Daniel, 1988; Chalker, 1990)

d –space dimension, Δ - mean level spacing, *l* – mean free path, <...> - disorder averaging

Fractal enhancement of correlations

Dynamical scaling:
$$C_2(\Delta < \omega < E_0, |\mathbf{R}| \ll l) \propto \left(\frac{E_0}{\omega}\right)^{1-d_2/d}$$

 $E_{0}/\omega>1, \,\, 1-d_{2}/d>0 \,\,$ - Enhancement of correlations

Strong fractality regime: do WFs really overlap in space?

So far, no analytical check of the dynamical scaling; just a numerical evidence **Does the dynamical scaling hypothesis hold true in the strong fractality regime?** *IQH WF*: Chalker, Daniel (1988), Huckestein, Schweitzer (1994), Prack, Janssen, Freche (1996) *Anderson transition in 3d*: Brandes, Huckestein, Schweitzer (1996) *WF of critical RMTs*: Cuevas, Kravtsov (2007)

Coinciding space point: scaling in energy-domain

 $\mathbf{R} = 0$, energy representation $C_{2}(\omega,0) \equiv \nu^{-1} \langle \sum_{\mathbf{p}} \sum_{m,n} \delta\left(\frac{\omega}{2} - \xi_{n}\right) \delta\left(\frac{\omega}{2} + \xi_{m}\right) |\psi_{\xi_{n}}(\mathbf{p})|^{2} |\psi_{\xi_{m}}(\mathbf{p})|^{2} \rangle = C_{2,\text{diag}} + C_{2,\text{off-diag}}$ Diagonal part $C_{2,\text{diag}} = \delta(\omega) \left\langle \nu^{-1} \sum_{\mathbf{p}} \sum_{m} \delta(\xi_{m}) |\psi_{\xi_{m}}(\mathbf{p})|^{4} \right\rangle \propto \delta(\omega) V^{-d_{2}/d}, \quad V = L^{d}$ (space scaling)
(IPR, \mathcal{P}_{2}

Off-diagonal part

$$C_{2,\text{off}-\text{diag}}|_{\Delta\ll\omega\ll E_0}\propto\omega^{-\mu}$$
 (dynamical scaling)

$$1-\mu = d_2/d$$

Coinciding space point: scaling in time-domain

 $\mathbf{R} = \mathbf{0}$, time representation

Fourier transform of
$$C_2(\omega, 0)$$
: $P(t) = \int C_2(\omega, 0) e^{-i\omega t} \frac{d\omega}{2\pi}$

- averaged return probability for a wave packet

P(t) is more convenient for the further analysis

Scaling of the return probability

 $\Upsilon = \min(au,L)\,$ - IR cutoff of the theory

Expected behaviour of *P(t)* in the long time limit

$$P(t) = A(\Upsilon) \left(\frac{B(\Upsilon)}{\Upsilon}\right)^{\kappa} \qquad \text{Universal exponent}$$
$$\log(P) = \log(A) + \kappa \left(\log(B) - \log(\Upsilon)\right)$$
$$(an be non-universal \rightarrow let's eliminate them)$$

Scaling of the return probability

 $\Upsilon = \min(\tau,L)$ - IR cutoff of the theory

Expected behaviour of P(t) in the long time limit

$$P(t) = A(\Upsilon) \left(\frac{B(\Upsilon)}{\Upsilon}\right)^{\kappa}$$
$$\partial_{\log(\Upsilon)} \log(P) = \log(A) + \kappa \log(B) - \partial_{\log(\Upsilon)}[\kappa \log(\Upsilon)]$$

IF the dynamical scaling hypothesis holds true then

1)
$$\partial_{\log(\Upsilon)} \log(P) = -\kappa$$
 - Equation for κ
2) $\kappa|_{V\gg\tau} = \kappa|_{\tau\gg V} = d_2/d$ - Universality of κ

Model: MF RMT (Power-Law-Banded Random Matrices)

Variance of matrix elements for almost diagonal MF RMT

MF RMT from the GUE symmetry class

$$\left\langle \varepsilon_i^2 \right\rangle = \frac{1}{2},$$

$$\left\langle |H_{i\neq j}|^2 \right\rangle = \frac{1}{21 + (i-j)^2/b^2} \Big|_{b \ll 1} \simeq \frac{1}{2} \left(\frac{b}{i-j} \right)^2$$

 $b \ll 1$ - small band width

 \rightarrow almost diagonal MF RMT

Method: The virial expansion

Note: a field theoretical machinery of the σ -model cannot be used in the case of the strong fractality

As an alternative to the σ -model, we use

the virial expansion in the number of interacting energy levels.

VE allows one to expand correlations functions in powers of *b*<<1

SuSy is used to average over disorder (OY, Ossipov, Kronmüller, 2007-2009)

Summation over all possible configurations

$$\sim \int dx \,\overline{\exp\left(-\langle |H_{mn}|^2\rangle} \operatorname{Str}(Q_m Q_n)\right)} \underbrace{\mathcal{F}[Q]}_{SuSy \text{ breaking factor}}, \quad x \equiv m-n$$

Application of the virial expansion

Expected behavior: $P \propto \Upsilon^{-\kappa}$; $\Upsilon = \min(\tau, N), \ \kappa \sim b \ll 1$

VE for the return probability:
$$P = 1 + \sum_{j=2} b^{j-1} P_j$$
, $P_j \sim \log(\Upsilon)^{j-1}$

Pertubation theory for the scaling exponent

$$\kappa = -\partial_{\log(\Upsilon)} \log(1 + b^1 P_2 + b^2 P_3 + \dots) = \kappa_2 + \kappa_3 + \dots$$

$$\kappa_2 \equiv -b^1 \partial_{\log(\Upsilon)} P_2$$

$$\kappa_3 \equiv -b^2 \partial_{\log(\Upsilon)} \left(P_3 - \frac{1}{2} P_2^2 \right) = \square$$

What do we calculate and check

1) Dynamical scaling:

$$P \propto \Upsilon^{\kappa}; \quad \kappa_{2}(\Upsilon) \equiv -b^{1} \partial_{\log(\Upsilon)} P_{2}, \ \kappa_{3}(\Upsilon) \equiv -b^{2} \partial_{\log(\Upsilon)} \left(P_{3} - \frac{1}{2} P_{2}^{2} \right)$$

a) Log-behavior of P_j:

$$P_2 \sim \log(\Upsilon), \ P_3 \sim \log(\Upsilon)^2$$

b) Pure power-law dependence of $P(\Upsilon)$

Ø $\log^2(\frac{1}{2})$ must cancel out in P_3 - $(P_2)^2/2$

2) Universality: scaling exponent is cut-off independent

$$\kappa_j|_{\Upsilon=N} = \kappa_j|_{\Upsilon=\tau}, \quad j = 2,3 \quad \bigvee$$

Resuls

$$1 - \mu = d_2 \simeq \kappa_2 + \kappa_3 = \frac{\pi b}{\sqrt{2}} + 0.083(\pi b)^2$$

Conclusions

- Using the model of the **of the almost diagonal RMT with multifractal eigenstates in the strong fractality regime** we have shown that:
 - assumptions about the dynamical scaling and the relation μ =1-d₂ hold true up to the leading and the subleading terms of the VE

- our results confirm strong correlation of the sparse fractal wave functions