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Outline of the talkOutline of the talk

1. Introduction:
•• Fractal Fractal wavefunctionswavefunctions: weak: weak-- vs. strongvs. strong-- fractalityfractality
•• Critical correlations of fractal Critical correlations of fractal wavefunctionswavefunctions andand

the dynamical scaling hypothesisthe dynamical scaling hypothesis
•• Paradox of the critical correlations at strong Paradox of the critical correlations at strong fractalityfractality

2. Strong multifractality regime:
•• Model (the Critical RMT) and method (the Virial Expansion)Model (the Critical RMT) and method (the Virial Expansion)

3. Scaling exponents:
•• Outline of calculations and resultsOutline of calculations and results

4. Conclusions
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Fractal wave-functions at the localization transition
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Criticality at the localization transition

Fractal wave-functions
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Inverse Participation Ratio

Wavefunction occupies a fraction of space

( ) ( 1)
1lim

qq dqL L −
→∞

∝P

0 qd d< <fractal dimension:fractal dimension:

(Wegner, 1980)

Anderson, 1958  
the Gang of four, 1979
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Weak- vs. strong- fractality regimes
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Weak fractality

Strong fractality

Fractal WF are close to extended states
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Fractal WF are close to localized states

Examples (talk by Konstantin Efetov):
- 2d disordered systems, weak disorder
- turbulence

Method: σ-model

Example:
- localization transition in the high-dimensional

Anderson model

Method: locator expansion (talk by Boris Altshuler)

Localization transition in the Anderson model, d=3:



Correlations of the fractal wave-functions

Two point correlation function:

If ω>Δ then                                         must play a role of L:

L

Δ

Lω

ω

For a disordered system at the critical point (fractal wavefunctions)

(Wegner, 1985)



(Chalker, Daniel, 1988; Chalker, 1990)

For a disordered system at the critical point (fractal wavefunctions)

(Wegner, 1985)

Correlations of the fractal wavefunctions

Two point correlation function:

d –space dimension, Δ - mean level spacing, l – mean free path, <…> - disorder averaging

Dynamical scaling hypothesis:Dynamical scaling hypothesis:



(Cuevas , Kravtsov, 2007)

extended

localized
critical

Fractal enhancement of correlations

Dynamical scaling:

Extended WF:
small amplitude
substantial overlap in space

Localized WF:
high amplitude
small overlap in space

the fractal the fractal wavefunctionswavefunctions
strongly overlap in spacestrongly overlap in space

Fractal WF:
relatively high amplitude and

- Enhancement of correlations

(The Anderson model: tight binding Hamiltonian)
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Naïve expectation:

weak space correlations

Strong fractality regime: do WFs really overlap in space?

- sparse fractals,
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The consequence of the dynamical scaling:

strong space correlations

So far, no analytical check of the dynamical scaling; just a numerical evidence

IQH WF: Chalker, Daniel (1988), 
Huckestein, Schweitzer (1994), Prack, Janssen, Freche (1996)

Anderson transition in 3d:  Brandes, Huckestein, Schweitzer (1996)
WF of critical RMTs:           Cuevas, Kravtsov (2007)

Does the dynamical scaling hypothesis hold true in the strong fractality regime?



Coinciding space point: scaling in energy-domain

energy representation

Diagonal part

(space scaling)

Off-diagonal part

(dynamical scaling)



Coinciding space point: scaling in time-domain

time representation

Fourier transform of C2(ω,0):

– averaged return probability for a wave packet

ExpectedExpected scaling properties of scaling properties of P(tP(t))

- spatial scaling
(IPR)

P

τ1 L

- dynamical scaling

(τ - scaled time)
P(t) is more convenient for the further analysis



Scaling of the return probability

- IR cutoff of the theory

ExpectedExpected behaviourbehaviour of of P(tP(t) in the long time limit) in the long time limit

can be non-universal → let’s eliminate them

Universal exponent



Scaling of the return probability

- IR cutoff of the theory

ExpectedExpected behaviourbehaviour of of P(tP(t) in the long time limit) in the long time limit

IFIF the dynamical scaling hypothesis holds true thenthe dynamical scaling hypothesis holds true then

-- Equation for Equation for κκ

-- Universality of Universality of κκ



Model: MF RMT (Power-Law-Banded Random Matrices)

2 π b>>1
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1-d2<<1 – regime of weak multifractalityweak multifractality

b<1

2 const d b≈

d2<<1 – regime of strong multifractalitystrong multifractality
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αα=1=1: : RMT with RMT with multifractalmultifractal eignestateseignestates at any bandat any band--widthwidth
(Mirlin, Fyodorov et. al., 1996, Mirlin, Evers, 2000)

… …i-1 i i+2i+1

εi-1 εi εi+2εi+1Hi-1,i Hi,i+1 Hi+1,i+2

Hi-1,i+1 Hi,i+2

N citesN cites

1d chain with
random long-range hopping

b is the bandwidth

Ĥ - NxN Hermitian BRM

d=1



Variance of matrix elements for almost diagonal MF RMT

MF RMT from the GUE symmetry class

- small band width

→ almost diagonal MF RMTalmost diagonal MF RMT

b/|i-j|<<1
1



As an alternative to the σσ--modelmodel, we use 
the the virialvirial expansion in the number of interacting energy levelsexpansion in the number of interacting energy levels. 

Method: The virial expansion

2-particle collision

Gas of low density ρ

3-particle collision

ρ1

ρ2

Almost diagonal RM

b1

2-level interaction

bΔ >> Δ

Δ

bΔ

b2

3-level interaction

VE allows one to expand correlations functions in powers of b<<1

Note: a field theoretical machinery of the σ–model cannot be used in the case
of the strong fractality



SuSy breaking factor

SuSy virial expansion

SuSy is used to average over disorder (OY, Ossipov, Kronmüller, 2007-2009)

εm
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Hmn

Interaction of energy levels

⇔

Hybridization of localized stated
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→
Coupling of supermatrices

Summation over all possible configurationsSummation over all possible configurations



Application of the virial expansion

PertubationPertubation theory for  the scaling exponenttheory for  the scaling exponent

Expected behavior:

VE for the return probability:VE for the return probability:



What do we calculate and check

2)  Universality: scaling exponent is cut-off independent

1) Dynamical scaling:

log2( ) must cancel out in P3- (P2)2/2

a) Log-behavior of Pj:

b) Pure power-law dependence of 



• Using the model of  the of the almost diagonal RMT with multifractal
eigenstates in the strong fractality regime we have shown that:

- assumptions about the dynamical scaling and the relation μμ=1=1--dd22
hold true up to the leading and the subleading terms of the VE
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Conclusions

- our results confirm strong correlation of the sparse fractal wave functions 

Resuls


