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Ergodic properties of a simple model
at the crossroads between turbulent

transport and localization

Krzysztof Gawedzkia, Trieste, August 2010

Aim of this lecture:

to teach you a useful pieceb of the theory of stochastic differential

equations (SDE’s) on an example well known to the turbulence

community and related to 1D Anderson localization

Keywords: inertial particles, SDE’s, hypoellipticity, control theory

−−−−−−−−−−−−−−−−−−−
aBased on joint work with David P. Herzog & Jan Wehr

bA good short review: L. Rey-Bellet, ”Ergodic properties of Markov processes”,
In: “Open Quantum systems II”, Lect. Notes in Math. 1881, Berlin, 2006, pp. 1-78
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Basic model

• Our model describes the motion of a small heavy beads, called inertial
particles, suspended in a turbulent flow (e.g. of water droplets in clouds)

• To a good approximation, motion of inertial particles in a d-dimensional
flow with velocity field v(t, r) is described by the equations

R̈ = − 1

τ

`

Ṙ− v(t,R)
ւ́ friction force

տ Stokes time

• Main phenomenon: intermittent clustering of particles

from J. Bec, J. Fluid Mech. 528, 255-277 (2005)



• Some information about particle clustering may be extracted from the dynamics

of the separation δR ≡ ρ of close particles, called pair dispersion, that

in a moderately turbulent flow obeys the linearized equation:

ρ̈ = − 1

τ

`

ρ̇− (ρ · ∇)v(t,R(t))
´

• Assuming the correlation time of the process Sj
i (t) = ∇iv

j(t,R(t)) much

shorter than the Stokes time τ , one may model S(t) by a matrix-valued

white noise with isotropic covariance
D

Si
j(t)S

k
l (t′)

E

= Dik
jl δ(t− t′)

where
Dik

jl = Aδikδjl +B(δi
jδ

k
l + δi

lδ
k
j )

with A ≥ |B|, A+ (d+ 1)B ≥ 0, and, for incompressible flow,

A+ (d+ 1)B = 0 (not necessarily assumed below)

• This gives are basic linear (!) SDE:

ρ̈ = − 1

τ

`

ρ̇− S(t)ρ
´



Relation to 1D localization

• For ψ(t) = exp[ t
2τ

]ρ(t), one obtains:

−ψ̈+
1

τ
S(t)ψ = − 1

4τ2
ψ

• Viewing t as a spatial variable, this is the 1D stationary Schrödinger

equation with:

• ψ(t) a vector-valued wave function

• V (t) = 1
τ
S(t) a random matrix-valued δ-correlated potential

• E = − 1
4τ2 the energy

• In d = 1 both ψ(t) and V (t) are real-valued giving

the model for 1D Anderson localization studies already

in 1967 by Halperin

• In d = 2 both ψ(t) and V (t) may be viewed as complex-valued

giving a non-hermitian random Schrödinger operator not studied

in the context of localization



Solution

• In the 1st order form with differentials, Eq. ρ̈ = − 1
τ

`

ρ̇− S(t)ρ
´

becomes:

dρ =
1

τ
χdt ,

dχ = − 1

τ
χdt + dS(t)ρ

with, invariably, Itô or Stratonovich convention

• The solution is:

p(t) ≡
“

ρ(t)

χ(t)

”

=
←−
exp

h

t
Z

0

dΣ(s)
i“

ρ(0)

χ(0)

”

for

dΣ(t) =
“

0 1
τ

dt

dS(t) − 1
τ

1dt

”

• It exists for all times and is a Markov process with the generator

L =
1

τ

`

χ · ∇ρ − χ · ∇χ) +
1

2

X

i,j,k,l

ρjρl Dik
jl ∇χi∇χk



Remarks

• p(t) = 0 ⇔ p(0) = 0 and the process p(t) may be restricted to

R2d \ {0} ≡ R2d
6=0

• L is defined by the formula: d
dt

D

f(p(t))
E

=
D

(Lf)(p(t))
E

• L is not elliptic (its top symbol is degenerate because it contains
the second derivatives only in the directions of χ)

• The transition probability densities exist in the sense of distributions

Pt(p0,p) =
D

δ
“

p− ←−exp
ˆ

Z t

0
dΣ(s)

˜

p0

”E

and satisfy the differential equations:
`

∂t − L⊗ 1
´

Pt = 0 =
`

∂t − 1 ⊗ L†
´

Pt

so that
`

2∂t − L⊗ 1 − 1 ⊗ L†
´

Pt = 0



Hypoellipticity

Definition. A differential operator D on a domain Ω is called

hypoelliptic if for all distributional solutions of the equation

Df = g with smooth right hand side g, f is also smooth

• Hörmander’s criterion:

Suppose that

D = ϕ + X0 +
1

2

N
X

n=1

X2
n ,

where ϕ is a smooth function and X0, X1, . . . Xn are smooth vector

fields on Ω and that for each x ∈ Ω

Xn1 (x), [Xn2 , Xn1 ](x), [Xn3 , [Xn2 , Xn1 ]](x), . . . . . .

with nl = 0, 1, . . . , N span the tangent space at x.

Then D is hypoelliptic



Proposition. The generator L = 1
τ

`

χ ·∇ρ − χ ·∇χ

´

+ 1
2

P

ρjρl Dik
jl

∇χi∇χk

is hypoelliptic on R2d
6=0

Idea of the proof: establish that L satisfies Hörmander’s criterion

Lemma. One may decompose:

Dik
jl =

d
X

m,n=1

`

Eδi
jδ

m
n + Fδimδjn +Gδi

nδ
m
j

´`

Eδk
l δ

m
n + Fδkmδln +Gδk

nδ
m
l

´

for
E =

1

d

`

−(A+B)
1
2 + (A+(d+ 1)B)

1
2

´

,

F =
1

2
((A+B)

1
2 + (A−B)

1
2 ) ,

G =
1

2
((A+B)

1
2 − (A−B)

1
2 )

Proof of Lemma: a straightforward check �

Now set: X0 = 1
τ

`

χ · ∇ρ − χ · ∇χ

´

,

Xm
n =

P

i,j

ρj
`

Eδi
jδ

m
n + Fδimδjn +Gδi

nδ
m
j

´

∇χi



Then

L = X0 +
1

2

d
X

m,n=1

(Xm
n )2

Remark. The original SDE for p(t) is equivalent to

dp = X0(p) dt +

d
X

m,n=1

Xm
n (p) dβm

n (t)

with independent Brownian motions βm
n (t)

Lemma. If A+ 2B > 0 in d = 1 or A > 0 in d ≥ 2 then

Xm
n (p) , [X0,X

m1
n1

](p) , [X0, [X0,X
m2
n2

]](p)

span R2d if p 6= 0

Proof of Lemma: a direct check with different arguments when ρ = 0

and when ρ 6= 0
�

The hypoellipticity of L on R2d
6=0 follows from Hörmander’s criterion

�



• The same way one proves that:

L† on R2d
6=0 ,

∂t − L, ∂t − L† on (0,∞) × R2d
6=0 ,

2∂t − L⊗ 1 − 1 ⊗ L† on (0,∞) × R2d
6=0 × R2d

6=0

are hypoelliptic.

Remark. For the last three ones, one uses the fact that X0(p) was

not needed to generate R2d and that the vector field ∂t

generates the time direction

Corollary. The transition probability densities Pt(p0,p) are smooth

on (0,∞) × R2d
6=0 × R2d

6=0 (as they are annihilated by

2∂t − L⊗ 1 − 1 ⊗ L†)



Control theory

Proposition. Pt(p0,p) are strictly positive for p0 6= 0 6= p

Proof. This follows via the control theory developed by

Stroock-Varadhan from the following:

Lemma. Given T > 0, p0 6= 0 and p1 6= 0 then for there exists control

functions [0, T ] ∋ t 7→ un
m(t) ∈ R s. t. the solution of the ODE

ṗ = X0(p) +

d
X

m,n=1

un
m(t)Xm

n (p)

with the initial condition p(0) = p0 satisfies p(t) = p1

Proof of Lemma: not very difficult �

�

Remark. This proves that the dispersion process is irreducible on R2d
6=0

(it connects with positive probability arbitrary two points)



Projective dispersion

• The pair-dispersion process p(t) = (ρ(t),χ(t)) on R2d
6=0 does not have

an invariant probability measure (it diffuses to ∞ !)

• To study ergodic properties of the process p(t) we shall project it on

R
2d
6=0/R+

∼= S2d−1

where the action of R+ is by the multiplication p
Θσ7−→ σp

• [Θσ, L] = 0 implies that the projected process π(t) is still Markov

• Generator Λ of π(t) is L acting on homogeneous functions of degree 0

• Since [Θσ,X0] = 0 = [Θσ,Xm
n ], all the hypoelliptic properties still hold

• The transition probabilities of π(t), have smooth densities Pt(π0,π) > 0

w. r. t. SO(2d)-invariant measure ν(π) on S2d−1 ∼= R2d
6=0/R+



Invariant measure for π(t)

• The gain from the projection is that the quotient space is compact

• Any Markov process on a compact space has invariant probability measures,

e.g. obtained as weak limits subsequences of Cesaro means:

1

T

Z T

0
Pt(π0, dπ) dt

(probability measures on a compact space form a weakly compact set)

Theorem. 1. The projectivized pair dispersion process π(t) has

a unique invariant probability measure µ(dπ)

2. µ(dπ) is the weak limit of the above Cesaro means

3. µ(dπ) = n(π) ν(dπ) where ν(dπ) is the normalized

S(2d)-invariant measure on S2d−1

4. n(π) is smooth and strictly positive



Idea of the proof:

• The hypoellipticity of Λ† implies that every invariant measure µ(dπ)

has a smooth density n(π) (annihilated by Λ†) w.r.t. ν(π)

• Smoothness and positivity of Pt(π0,π) together with the invariance relation
Z

n(π0) Pt(π0,π) dν(dπ0) = n(π)

imply that n(π) > 0 everywhere

• The uniqueness of µ(dπ) follows since two different ergodic invariant

smooth measures necessarily have disjoint supports

�

One also has:

Theorem. Time-correlations of π(t) decay exponentially (exp. mixing)



More symmetries

• Consider the action of SO(d) on R2d given by

(ρ,χ)
ΘO7−→ (Oρ, Oχ)

• It induces an action of SO(d) on S2d−1 that preserves ν(dπ)

• It commutes with L and Λ (due to the assumed isotropy of the flow)

and hence preserves the measure µ(π)

• Corollary. Density n(π) is SO(d)-invariant and must depend only

on the SO(d)-invariants

• The (dimensionless) SO(d)-invariants on R2d
6=0/R+

∼= S2d−1 are:

• in d = 1 : x = χ
ρ

,

• in d = 2 : x = ρ·χ

ρ2 and y = ρ1χ2−ρ2χ1

ρ2 ,

• in d ≥ 3 : x = ρ·χ

ρ2 and y =

√
ρ2χ2−(ρ·χ)2

ρ2



d = 1 case

• Here the normalized rotation-invariant measure on S1 is:

ν(dπ) =
dx

π(1 + x2)
and µ(dπ) = n(π) ν(dπ) = η(x) dx

• Smoothness and strict positivity of n(π) on S1 imply that

η(x) = O(|x|−2) for |x| → ∞

• In fact (Halperin 1967)

η(x) = Z−1
“

e
− 1

τ(A+2B)

`

2
3

x3+x2
´ Z x

−∞

e
1

τ(A+2B)

`

2
3

x′3+x′2
´

dx′
”

and the behavior at ∞ may also be extracted from the above formula

• The projected process x(t) explodes in finite time to −∞ but re-enters

immediately from +∞



d = 2 case

• Here

ν(dπ) =
dx dy darg(ρ)

π(1 + x2 + y2)2
and µ(dπ) = η(x, y) dx dy darg(ρ)

• Smoothness and positivity of the ratio of the two measures on S3 imply

that for z = x+ iy

η(x, y) = O(|z|−4) for |z| → ∞

and, as conjectured by Bec-Cencini-Hillerbrand (2007),
Z ∞

−∞

η(x, y) dy = O(|x|−3) for |x| → ∞

• In this case S3/SO(2) ∼= PC1 ∼= C ∪ {∞} (the Riemann sphere)

and the projected process z(t) may be shown to stay finite at all

times if z(0) is finite (no explosion !)



d ≥ 3 case

• Now for the measures on S2d−1 one has:

ν(dπ) =
2d−1(d− 1)yd−2dx dy d[O]

π(1 + x2 + y2)d
and µ(dπ) = η(x, y) dx dy d[O]

where d[O] is the normalized SO(d) invariant measure on SO(d)/SO(d− 2)

• Smoothness and positivity of the ratio of the two measures on S2d−1 imply:

η(x, y) = O(|x|−2d) for |x| → ∞
η(x, y) = O(|y|d−2) for y ց 0

Z ∞

0
η(x, y) dy = O(|x|−d−1) for |x| → ∞

• In d ≥ 3 the quotient space S2d−1/SO(d) is not smooth (unlike for d = 2).

Lack of explosions of the projected process (x(t), y(t)) to y = 0 or |x| = ∞
was shown



Lyapunov exponent

• For the original dispersion process p(t) = (ρ(t),χ(t)), one may define

the Lyapunov exponents as

λ = lim
t→∞

1

2t

D

ln
“ p2(t)

p2(0)

”E

Theorem.

1. The above limit exists and is independent of the initial point

of the process p(t)

2. In d = 1 what results is in the formula:

λ =
1

τ
p.v.

Z

x η(x) dx = − 1

2τ
+

1

4τ
√
c

d

dc
ln

`

Ai2(c) + Bi2(c)
´

for c = (4τ(A+ 2B))−
2
3

3. In d ≥ 2, one gets:

λ =
1

τ

Z

x η(x, y) dxdy



Remarks

1. The main input into the proof is the formula L(ρ2) = 2 ρ·χ
ρ2 = 2x

τ
and

the ergodicity of the projected dispersion π(t), but some work is required

2. λ+ 1
2τ

is the Lyapunov exponent of the associated 1D localization

problem and it is positive in d = 1 (permanent localization)

3. λ itself may change sign in d = 1 signaling a phase transition in the

advection of inertial particles in one dimension (Wilkinson-Mehlig 2003)

4. In d ≥ 2 no explicit formula for λ exists (except for very special cases)

but numerical simulations and asymptotic analysis are available

(Wilkinson-Mehlig et al. 2004-2006, Horvai 2005, Bec-Cencini-

Hillerbrand 2007)



Conclusions and open problems

• The use of hypoellipticity and control theory techniques in ergodic

theory of SDE’s was illustrated on a model for the inertial-particle

dispersion in moderate turbulence, related to the 1D localization

• Our analysis permitted to prove certain properties of that model conjectured

in the literature (Bec et al., 2007) and to establish some new ones

• Similar treatment (with more SO(d) representation theory) should apply to

the multiparticle dispersion process δ1r(t) ∧ · · · ∧ δkr(t), leading to

formulae for the other Lyapunov exponents λk

• Another open problem is the existence of the large deviations regime

(providing more insight to the particle-clustering and its multifractality)

for fluctuations of finite-time Lyapunov exponents about λk

• Application of the techniques discussed here to the model of inertial-particle

dispersion in fully developed turbulence introduced by Bec-Cencini-

Hillerbrand (2007) remains to be worked out



• An infinite-dimensional version of similar techniques was used by Hairer-

Mattingly (2006-2008) to prove ergodicity of 2D Navier-Stokes equation

with random large-scale forcing

————–

“Everything has its beauty but not everyone sees it”

Confucius

————–



Malliavin’s approach to hypoellipticity

• Suppose that F : RN → Rd is smooth with pollynomially bounded

derivatives. Consider a Gaussian measure on RN with covariance 1.

• F (η) becomes then a random vector with the distributional PDF
Z

δ(x− F (η)) e
− 1

2 η
2 dη

(2π)N/2

• Question: when is the right hand side a smooth function of x?

• A sufficient condition for that is the rank equal to d of the Jacobi matrix

∂F i(η)

∂ηn
or, equivalently, of M ij(η) =

N
X

n=1

∂F i(η)

∂ηn

∂F j(η)

∂ηn

• Under this assumption, one may change locally the integral over d

of variables ηk to the one over F getting rid of the δ-function

• The resulting sum over the (discrete) set of solutions of Eq. x = F (η)

for fixed x is controlled by the bounds on F and its derivatives



• Malliavin applied the above argument in the ∞-dimensional setup

where η = dβ
dt

is a N -dimensional white noise on the interval [0, T ]

and F (η) = x(T ), with x(t) the solution of the Stratonovich SDE

dx = X0(x)dt +

N
X

n=1

Xn(x) ◦ dβ , x(0) = x0

• Matrix M ij(η), called here the Malliavin matrix, is given by

M ij =
N

X

n=1

Z T

0

δxi(T )

δηn(t)

δxj(T )

δηn(t)
dt

• An easy calculation gives:

δx(T )

δηn(t)
= W (T )W (t)−1Xn(x(t))

where W (t) is the d× d matrix that solves the linearized SDE

dW = DX0(x)Wdt +
X

n

DXn(x)W ◦ dβ , W (0) = 1



• We infer that the matrix M = W (T )NW (T )† is of maximal rank if and

only if the matrix N is, for

N =
N

X

n=1

Z T

0

`

W (t)−1Xn(x(t))
´ `

W (t)−1Xn(x(t))
´†

• Suppose now that some vector y ∈ Rd is orthogonal to the image of N .

Then y ·Ny = 0 and one infers that

y ·W (t)−1Xn(x(t)) = 0 for n = 1, . . . , N, 0 ≤ t ≤ T

• At t = 0 this gives: y ·Xn(x0) = 0

• Differentiating over t the identity y ·W (t)−1Xn(x(t)) = 0 with the use

of the SDE’s for x(t) and W (t) one infers that

y ·W (t)−1[Xn1 ,Xn](x(t)) = 0

for n1 = 0, 1, . . . , N , so that also y · [Xn1 ,Xn](x0) = 0



• By iteration, one infers that y is orthogonal to the span of

Xn(x0), [Xn1 ,Xn](x0), [Xn2 , [Xn1 ,Xn]](x0), . . . . . .

for n = 1, . . . , N, nl = 0, 1, . . . , N , and hence vanishes if the latter vectors

span Rd. Invertibility of the Malliavin matrix M(η) follows

• The space of square integrable functionals of the white noise η may

be naturally identified with the symmetric Fock space Γ(L2([0.T ],RN ))

• The regularity assumptions on F (η) from the finite-dimensional case

become here the (satisfied) conditions that the functionals of η :

d
X

i=1

N
X

nl=1
l=1..k

Z

[0,T ]k

˛

˛

˛

δkxi(T )

δηn1 (t1) · · · δηnk (tk)

˛

˛

˛

2
dt1 · · · dtk ,

are in the domain of all powers of the Fock space number operator

• A good brief review: P. K. Friz: “An Introduction to Malliavin Calculus”,
http://www.statslab.cam.ac.uk/∼peter/mystuff/papers.html

————–




