The Abdus Salam oz B
International Centre for Theoretical Physics &)

2
A,

2162-4

Advanced Workshop on Anderson Localization, Nonlinearity and
Turbulence: a Cross-Fertilization

23 August - 3 September, 2010

Many body localization of fermions and bosons

Igor ALEINER

Columbia University, Dept. of Physics New York
NY
USA.

Strada Costiera ||, 3415 Trieste, Italy - Tel.+39 040 2240 |1 1; Fax +39 040 224 163 - sci_info@ictp.it



Many body localization of fermions and
bosons

lgor Aleiner (Columbia)

oIIaborators: B.L. Altshuler (columbia, NEC America)
D.M. Basko (Columbia, Trieste, Grenoble)
G.V. Shlyapnikov (Orsay)

Detailed paper (fermions): Annals of Physics 321 (2006) 1126-1205
Shorter version: cond-mat/0602510; chapter in “Problems of CMP”

Bosons: arXiv:0910.4534

Anderson localization, Nonlinearity and Turbulence: a Cross-fertilization,
Trieste, August 25th, 2010



Transport in solids
olw=0,T)
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Problem: can e-e interaction alone
sustain finite conductivity
In a localized system?

Given: . All one-electron states are localized

Electrons interact with each other

1
2
3. The system is closed (no phonons)
4

Temperature is low but finite

Find: DC conductivity ofT,w=0)
(zero or finite?)




1. Localization of single-electron wave-functions:
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Most of the knowledge is based on extensions and
Improvements of:

PHYSICAL REVIEW VOLUME 109, XUMBER 3 MARCH 1., 1958

Absence of Diffusion in Certain Random Lattices

P, W, ANpERSON
Bell Taephone Loboratories, Murray T, New Sersey

{Received October 10, 1937)

This paper presents a simple model for such processes as spin difuslon or condaction in the “impurity
hand.” These processes involve trnsport in a lattice which is in some senge random, and in them diffusion
5 expected to take place via quantum jumps between localized sites, In this simple model the essential
randomness is introdeced by requiring the energy to vary mndemly from site to site. IE s shown that at low
enpugh densties no diffusion at all can take place, and the criterin for transport o ootur are _g;i'.-*-ﬂlt.



1. Localization of single-electron wave-functions:
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U(r) — er | Ya(r) = Eatba(T)
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d=1: All states are localized

Exact solution for one channel:
M.E. Gertsenshtein, V.B. Vasil’ev, (1959)

“Conjecture” for one channel:

Sir N.F. Mott and W.D. Twose (1961)

Exact solution for 6(®) for one channel:
V.L. Berezinskii, (1973)

Scaling argument for multi-channel :
D.J. Thouless, (1977)
Exact solutions for multi-channel:

K.B.Efetov, A.l. Larkin (1983)
O.N. Dorokhov (1983)



1. Localization of single-electron wave-functions:
V2

| 2R

7 (r) = e | Ya(r) = Eatbal(r)

Ao (z) extended |
e PRt d=1; All states are |ocalized

/\/\ \//\]A /\\/w A/\Uﬂ\f\v“v“ “\,ﬂ\/\ w\\ > d=2; All states are |ocalized
V M If no spin-orbit interaction
) ‘ Thouless scaling + ansatz:
) /,»’—~ -« VCloc E. Abrahams, P. W. Anderson, D. C.
. f/\?\ [\A/\A {\ /\{\X /\/\ /\/\ . Licciardello, and T.V. Ramakrishnan, (1979)

\“ MTAAY \]V [T V\} \ \/V VYV ) Instability of metal with respect to quantum
(weak localization) corrections:
localized L.P. Gorkov, A.l.Larkin, D.E. Khmelnitskii, (1979)

First numerical evidence:
A Maccinnon, B. Kramer, (1981)



Instability of 2D metal with respect to quantum

(weak localization) corrections:
L.P. Gorkov, A.l.Larkin, D.E. Khmelnitskii, (1979)

e’ 1
o(w) =o0p ymors In —




1. Localization of single-electron wave-functions:
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7 (r) = e | Ya(r) = Eatbal(r)

Ao (z) extended |
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\“ MTAAY \]V [T V\} \ \/V VYV ) Instability of metal with respect to quantum
(weak localization) corrections:
localized L.P. Gorkov, A.l.Larkin, D.E. Khmelnitskii, (1979)

First numerical evidence:
A Maccinnon, B. Kramer, (1981)



“All states are localized *

means

Probability to find an extended state:

L

Pert X €XP (— Cl_
oC



1. Localization of single-electron wave-functions:

v
U(r) — er| Ya(r) = Lata(r)
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Ao (z) extended
—1 d=1; All states are localized
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= Cloe d>2; Anderson transition
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Anderson e Lattice - tight binding model
I\/I()d e| * Onsite energies & - random

e Hopping matrix elements |ij

| and | are nearest
neighbors

O otherwise Critical hopping:

1. N i 1
W< g <W W~ \2d) \Ind
uniformly distributed

dz3>1




Anderson Transition

1> 1 <1,

and extended states is not
possible!!!

c

Coexistence of the localized }

all states are
\ localized

oxtended
Bl
C
DoS DoS
> >

EC - mobility edges (one particle)



Temperature dependence of the
conductivity (1)

€F

>
o(T'— 0) > (o(T) xe T O'(T) =0



Temperature dependence of the

conductivity (1)

Assume that all the states
are localized

DoS

O‘(TS =30




Inelastic processes )
transitions between localized states

___ — = — lg _ ¢, energy
—o— . —e— _° er 17 % mismatch
o« o v

o(T) x o (inelastic lifetime)!

T=0 = oc=0 (any mechanism)

T>0 = o=7




Phonon-induced hopping

W
J _; wzfﬁ_fa<<5c
- G
T

energy difference can be matched by a phonon | i

17
Variable Range Hopping o(T) x 17 exp |— (i) d+1

Sir N.F. Mott (1968) Z

. Without Coulomb gap
Mechanism-dependent {A.L.Efros, B.1.Shklovskii (1975)

prefactor | Optimized
phase volume

\

Any bath with a continuous spectrum of delocalized
excitations down to =0 will give the same exponential




Q: Can we replace phonons with
e-h pairs and obtain phonon-less VRH?

A#1: Sure
Easy steps:

1) Recall phonon-less AC conductivity:

Sir N.F. Mott (1970) 9 ~d—2 9
hw
o (w) = Sl ( 5C) I+
2) Calculate the Nyquist noise
(fluctuation dissipation Theorem).

9¢
hw

3) Use the electric noise instead of phonons.

4) Do self-consistency (whatever it means).



Q: Can we replace phonons with
e-h pairs and obtain phonon-less VRH?

A#1. Sure
A#2: NO way [L. Fleishman. P.W. Anderson (1980)]
(for Coulomb interaction in 3D — may be)

R — oo Thus, the matrix element vanishes !!!

o () = e2( 2 ( h,w>21nd+1 J | Is contributed by rare
Ao\ o¢ fw resonances

w=§5—§a=§7—§5




Q: Can we replace phonons with
e-h pairs and obtain phonon-less VRH?

A#1: Sure
A#2: No way |[L. Fleishman. P.W. Anderson (1980)]

A#3: Finite T Metal-Insulator Transition
[Basko, Aleiner, Altshuler (2005)]
o(T)]

Drude

>

A1

< metal

<—insulator—

(P erfect Ins) Interaction strength
OF
T=T(F)= %

>

O¢ T




Many-body mobllity threshold

Ea

|:H1 —I_ H’Lnt] o g \Ij /AII STATES EXTENDED

All STATES LOCALIZED
>

[Basko, Aleiner, Altshuler (2005)] Many body DoS
A
o(T)
< metal
.
Insulator— SC many-body
mobility threshold

>

e I



“All states are localized *

means
Probability to find an extended state:
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ocalized one-body wave-function

Means, In particular:

(€]10(r1)| 7} 10(r2)| 1) = <
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We define localized many-body wave-function as:
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Is it similar to Anderson transition?

Why no activation? E.—ep
o(T) x exp (— )
T
o g
5 _ 1L
- = -— -
_____ ( \) |
£(T) i\\\\\ _____ o
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—0 Physics: Many-body excitations turn out
~ 7 to be localized in the Fock space

VOLUME 78, NUMBER 14 PHY SICAL REVIEW LETTERS T APRIL 1997

Quasiparticle Lifetime in a Finite System: A Nonperturbative Approach

Boris L. Alishuler,! Yuval Gefen,? Alex Kamenev,® and Leonid S. Levitov?
\NEC Research Institute, 4 Independence Way, Princeton, New Jersey (08540
> Department of Condensed Matter Physics, The Weizmann Institute of Science, Rehovot, 76100, Israel
*Massachusetts Instite of Technology, 12-112, Cambridee, Massachusetts (12139
{ Recerved 30 August 1996)

The problem of electron-electron lifetime in a quantum dot 15 studied bevond perturbation theory

by mapping onto the problem of localization in the Fock space. Locahized and delocalized regimes

are 1dentified. corresponding o quasiparticle spectral peaks of zero and fhnite width. respectively.
In the localized regime. quasiparticle states are single-particle-like.  In the delocahized regime, each
elgenstate 15 a superposition of states with very different quasiparticle content.  The transition energy 1s
€. = Alg/Ing)2, where A is mean level spacing. and g is the dimensionless conductance. Near €,
there 15 a broad critical region not described by the golden rule.  [SO031-0007(97)02895-0]



Anderson e Lattice - tight binding model
I\/I()d e| * Onsite energies & - random

« Hopping matrix elements |ij

In fact, i,j can be states

Critical hopping: | ] in any space (not necessarily
coordinate)

T 1 Interpretation:
IT; ~ (Q_d ) W - maximal energy mismatch;
2d - number of coupled neighbors;

dz3>1 (connectivity)

At I>1 there will be always level mismatched
from given b RSN
givenby o, —c,i| <1

and the resonance transport will occur



Fock space localization in quantum dots (AGKL, 1997)

No spatial structure
( “O-dimensional” )

Aoy Y (F)elehe,és
av0

¢ -Random matrix theory

61 — <£ atl — £a> - one-particle level spacing;



Fock space localization in quantum dots (AGKL, 1997)
H=Y &élea+...+ 201 > ()l ehe, s
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Cayley tree mapping



Fock space localization in quantum dots (AGKL, 1997)

1-particle 3-particle
excitation excitation
o — &t&—§ ¢ B—
AO1 AO1
I
(2d)— ~ 1

1

2
— | A~1
<51>

) | - one-particle level spacing;

5-particle
excitation
§1 1+ &2+ 63 — &4
I — Moy
W — (5 1
2
T
2d — | —
01

{ .
-------
>/



Metal-Insulator “Transition” In zero dimensions

9 [Altshuler, Gefen, Kamenev,Levitov (1997)]
(E) sl 1 L |
0 A Inthe paper: [ = | ~ —In—
1 pap ( 51> Y

Vs. finite T Metal-Insulator Transition in the bulk systems
[Basko, Aleiner, Altshuler (2005)]
o(T)

A

>

A1

Interaction strength

< metal

<—nsulator—

>

)
TC:C T



Metal-Insulator “Transition” In zero dimensions

~

A\ 5 1°- one-particle level spacing;

2 [Altshuler, Gefen, Kamenev,Levitov (1997)]
i 1
01

Vs. finite T Metal-Insulator Transition in the bulk systems
[Basko, Aleiner, Altshuler (2005)]

5C (5 1-particle level spacing in
Tc ~ — C localization volume;

A

1) Localization in Fock space | > |
= Localization in the coordinate space.
2) Interaction is local;

51—>(5C




Metal-Insulator “Transition” In zero dimensions

~

A\ 5 1°- one-particle level spacing;

2 [Altshuler, Gefen, Kamenev,Levitov (1997)]
i 1
01

Vs. finite T Metal-Insulator Transition in the bulk systems
[Basko, Aleiner, Altshuler (2005)]

0 ¢ (S 1-particle level spacing in
C — \ localization volume;

1,2) Locality: | 91 — O¢

3) Interaction matrix elements

6) — (@) () — (@)




Effective Hamiltonian for MIT.

We would like to describe the low-temperature
regime only.

Spatial scales of interest >>

loc

1-particle localization
length

Otherwise, conventional perturbation theory for
disordered metals works.

Altshuler, Aronov, Lee (1979); Finkelshtein (1983) — T-dependent SC potential
Altshuler, Aronov, Khmelnitskii (1982) — inelastic processes



é’ Reproduces correct behavior of the NO Spl ns
tails of one particle wavefunctions




]132
Z Vhlz

lllele,P

Interaction only within the same cell;



l1l27172;p

Statistics of matrix elements?
Energy transfer w > o,

corresponds to the special scale L, = \/D/w < (.



fl(P) 1(p) +f5gzcm p+a)
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—I—IcSCch )em(p + a)

Z V12 (p)el (p)E] (p)ejs(p)és (p)

l1129132 P

v _ Oy (& — & £ — &
Vil = 21 <J5c 1) (325C 2) (l1 < I2)

T(x )_9(%—@:0 <M< =

2 2

Ensemble averaging over: fl ( P); O‘j — +1

Level repulsion: Only within one cell.
Probability to find n levels in the energy interval of the width E:

—E/5§ A B n5 ]
ID(IH,E)=e . exp —F(—g) |imF(X)—oo

n! 54/ E X—>00 X =




What to calculate?

|dea for one particle localization Anderson, (1958);

MIT for Cayley tree: Abou-Chakra, Anderson, Thouless (1973);

Critical behavior: Efetov (1987)
To(e) = Im X% (e) —random quantity
! Tale)=n— 40

Metal ©'o(€) Insulator I'c(€)

|1 ]
) Ux

— —

My

My



What to calculate?

|dea for one particle localization Anderson, (1958);

MIT for Cayley tree: Abou-Chakra, Anderson, Thouless (1973);

Critical behavior: Efetov (1987)
To(e) = Im X% (e) —random quantity
! Tale)=n— 40

Metal ©'o(€) Insulator L'c(€)

A A

||
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My



What to calculate?

|dea for one particle localization Anderson, (1958);

MIT for Cayley tree: Abou-Chakra, Anderson, Thouless (1973);

Critical behavior: Efetov (1987)
To(e) = Im X% (e) —random quantity
! Tale)=n— 40
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What to calculate?

|dea for one particle localization Anderson, (1958);

MIT for Cayley tree: Abou-Chakra, Anderson, Thouless (1973);

Critical behavior: Efetov (1987)
To(e) = Im X2 (e) —random quantity
! Tale)=n— 40

Metal 1, (6) Insulator L. (6)

A A

|||

AN nm?m NN

My



What to calculate?

|Idea for one particle localization Anderson, (1958);
MIT for Cayley tree: Abou-Chakra, Anderson, Thouless (1973);
Critical behavior: Efetov (1987)

T'o(€) = Im X2 (e) —random quantity
No interaction: T, (¢) =n — +0

A Fa(e) AP(F)
iInsulator _ metal
iInsulator
—d — 25
€ ~1N I
behavior for a probability distribution

given realization for a fixed energy



Probability Distribution

|

|

|

|

|

|

|

|

|

|

i
T
Look for:

> 0; metal

lim lim P(I' > 0) = {

Bl —ron 0; insulator



How to calculate?

non-equilibrium (arbitrary occupations) — Keldysh

’ (s}
_ allow to select the most

relevant series

(a) :

F—iSi(p)y = |_<_| +4 ;
. :" 3

Find the distribution fljgnction of each
SCBA diagram
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Iterations:

Cayley tree structure



Nonlinear integral equation with oefficients

after standard simple tricks: l Decay due to tunneling ]

T(e) = D8V (e) + 18 () s
(el) 7252 . .
NE p) =ml*6 ) A (6p+a) Decay due to e-h pair creation

l,a —

F('m)(e)f(scz Yillgl /deldezdesAzl(61)Az2(€2)A13(€3)5 (€ — €1 — €2+ €3) Fi (€1, €25 €3);

I1,l2,l3

=& fl ) (511 &3 ) . (511 Sl ) (&2 &3 ) ]
O¢ O¢ O¢ O¢

1
Iy, (€1, €05 €3) = 1{1 + myy (e1)n,(€2) — nug(ez) [y (1) + nuy (e2)] };

+ kinetic equation for occupation function 7] (E)




Stability of metallic phase

Assume T1';,(¢) is Gauss:an

2
M 2
S-S )z
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T2 T =

omAM




Probability Dlstrlbutlons




Probability Distributions
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Kinetic Coefficients in Metallic Phase

_ 2met I e
A

O =

O‘(T > \/54’T€l) ~ O~o (]_ — g

O'(T < VCSCTeZ) = Uoo% (




Kinetic Coefficients in Metallic Phase

Wiedemann-Frantz law ?
1403 (5523’;85), T > \/6Tu,

= =
L 20(TT
o mo(l) 192G2
3 ~ 1.65 T K \/5¢T65.
(b) 2:. ...............
1.5F!
:i Id
{ 1 2d
0_5:-§
[](;;....(]TS....ll....ll
f§™ T/6,T.)



So far, we have learned:

Lo (T) Non-ergodic+Drude metal

Trolible !

%

<—|nsulator—

277




Stability of the insulator

Nonlinear integral equation with coefficients

Ty(e) = TV (e) + TV (e) + n;

(e, p) = 712623 Ay, (e, p+ a);

ll,a

K —ma22 3 vl f derdesdes Ary (1) Ay (€2) Aty (€3) (€ — €1 — €2 1 €3) I, (€1, €23 €3);

[1,l2,l3

Fl(E)

O —
Al =1 +m<e)12

Notice: I'(¢) = 0; for 71 =0 is a solution

Linearization:

Aj(e) ~ 6(e — &) - Li(e)

(€ —&1)?




# of interactions # of hops in space

F _ F?’L,m .11
Z P(r™™) —\/ s O (ﬂ )
T Fn,m

[Fn,m]B

A P(T) e
0
metal B Q
| insulator Lo = 12)\M‘ ln/\\ [1 o ()\Mln I)]
g T 1<, staBLE
bability distributi
probability distribution T > Tc: unstable

for a fixed energy



So, we have just learned:

1o (T)

1.

<—|nsulator—

'‘Non-ergodic+Drude metal

>

" 12AM|In )\




Extension to non-degenerate system
1. > €ep

) b N2
H;,: = Z/dd'r‘: (WLw) ., bosons

62(T, d
T, ~ C( C); if (€) > ()
bno de
For 1D it leads to: 52 ~ .
mC(Tc)2 = oo

I.LA. and B.L. Altshuler , unpublished (2008)



Weakly Interacting bosons in
one dimension

L r 202 -
ﬁ:/ dz |1 ( 0 | V(a’:)) U+ gﬂ;“/ﬁ@"&
0 i l
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Phase diagram

L=
an
1 Crossover????
No finite T phase transition
in 1D T
=
) See e.g. g
R < 1; Supel‘ﬂmd Altman, Kafri, Polkovnikov, G.Refael, PRL,
T=0 100, 170402 (2008); 93,150402 (2004).

K > 1; msulator G.M. Falco, T. Nattermann, & V.L. Pokrovsky,

PRB, 80, 104515 (2009).



Finite temperature
k=E / ng phase transition in 1D

. Insulator K (t)

gm LA., Altshuler, Shlyapnikov t=T1 / ng

r=-<1 arXiv:0910.434



High temperatures: QISR IN SO

Bose-gas Is not degenerate:
occupation numbers either 0 or 1

Matrix element of the transition

I ~9/¢(=T)~(9E.)/(s.T)

should be compared with the minimal energy
mismatch ( vn c 2T

E 2
[Local.izﬁ Numbeé\q OC t t 7/ >> 1
spacing 5g

channels




Intermediate temperatures: 7/‘]/ ol 7/‘1
‘lu‘:Tz/Td >>ng,E* T<<Td

Bose-gas is degenerated, typical energies ~

1|>>T == occupation numbers >>1 =—matrix
elements are enhanced

g T
|—.—_'—.—I————| IN, ~ — - P -—---4
Bt N S g(8)8> '_.'.'t!._t_h-l—l--l-l"'
-4 B B0 - -avar 2B e

K ()oct?y¥® |y <<ty <<l



Low temperatures: [RasE Start with T=0

Bosons occupy only

O 1 e ey ey o
AV(E) ve) energy states&;, < U

(G.E)" (.E)"
N
JIN\Z
Localization length S. £

Occupaf/bn#:(ﬂ—gi)g*/g ol H e
Dos: v(e)=(Egc.)" 2gE, 7

<—|(K-) >< o > |(K)=g*\/;>>g*

&) &) &) Occupation
nl (K)/g* =y Y>>




Disordered interacting bosons in two dimensions

Fluid

Tempe rature

.




Conclusions:

Existence of the many-body mobility
threshold is established.

The many body metal-insulator transition Is
not a thermodynamic phase transition.

It Is assoclated with the vanishing of the
Langevine forces rather the divergences In
energy landscape (like in classical glass)

Only phase transition possible in one
dimension



and speculations:

 Stronger Interactions: this is the only phase
transition feasible for the pinned Wigner
crystal

 Phonons: Cascades. Divergence of the
cascade size at the mobility threshold.

* Non-linear I-V. Bistability. Noise

enhancement, see D. M. Basko, I. L. Aleiner, and B. L.
Altshuler, Phys. Rev. B 76, 052203 (2007).




Instead of Conclusions - Some speculations

Conductivity exactly vanishes below some
temperature. Is it an ordinary thermodynamic
phase transition (I do not think so.-.A.) or low
temperature phase Is a glass?

We considered weak interaction.
What about strong electron-electron interactions?
Melting of a pinned Wigner crystal?

What if we now turn on phonons?

Cascades.
Is conventional hopping conductivity picture ever
correct?



NEW Some more notes

s the metal to insulator transition irrelevant?
Are there experimental proposals?

Finite electric field £ (finite current J)

N T.=T—e&C i.e.insulating phase survives if £ is small.
**) insulator- hopping conductivity - no heating T=T

**) (bad, non-ergodic) metal — heating T=Tph+ e‘ﬂ—ph

Therefore in the interval T-e&ly, < T, < Te-e&L
both metal and insulator are stable.

Bistability !



