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Large Deviation theory

”Improbable events permit themselves the luxury of occurring.” C.Chan 1928

Heuristic of large deviation

Random variable AT which converges in probability towards ⟨a⟩

Large deviation : How improbable for AT to converge towards a which is different from the
typical value ⟨a⟩ :

LDP : ⟨�(AT − a)⟩ ≍ exp(−TI(a))

I(a) is called the rate function. Large deviation theory : Prove the LDP and calculate the rate
function.

Scaled cumulant generating function : Λ(s) ≍ − 1
T
ln ⟨exp(−sTAT )⟩

Gartner-Ellis Theorem (Saddle point approximation) : If Λ(s) is differentiable, then the LDP
exists and I(a) = sups∈ℜ (Λ(s)− sa)

Gallavotti-Cohen (GC) symmetry

I(a) = I(−a)− Ea ⇔ Λ(E − s) = Λ(s)

Where does it come from?

For what type of random variable ?
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Mathematical set up : Xt Ergodic time homogeneous pure jump
process

Transition rates W
�Ct
(x , y), Intensity �(x) =

∫
dyW (x , y), Markovian generator L = W − �Id .

CADLAG trajectories (in French : Continue A Droite, avec Limit A Gauche) then X+
s = Xs

and the jump is ΔXs = Xs − X−s .

Invariant density �inv (x)

Forward trajectory and trajectorial measure

Trajectory on [0,T ] : number of jumps n, sequence of state xi and jump time ti ⇒ [x]

Measure of this trajectory with initial distribution �0 :
M[0,T ],�0

[x ] =
�0(x0) exp(−�(x0)t1)W (x0, x1) exp(−�(x1) (t2 − t1))...W (xn−1, xn) exp(−�(xn) (T − tn))

Reversed trajectory and trajectorial measure

Reversed trajectory ...⇒ [̃x ] =
(
←−
x ,
←−−−
T − t , n

)

Measure of this reversed trajectory with initial distribution �r
0
:

M̃[0,T ],�r
0
[x ] ≡ MT ,�r

0
[̃x ] =

�r
0
(xn) exp(−�(xn) (T − tn))W (xn, xn−1)...W (x1, x0) exp(−�(x0)t1)
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Modern definition of fluctuating total entropy production

ΔStot
T

[x ] ≡ ln
M[0,T ],�0

[x ]

M̃[0,T ],�T
[x ]

= − ln �T (xT ) + ln �0(x0) +
∑Nt

i=1
ln
(

W (xi−1,xi )

W (xi ,xi−1)

)

Fluctuating entropy of the system

S
sys
t = − ln �t (xt )

Fluctuating entropy production in the system :

ΔS
sys
T

[x ] = − ln �T (xt ) + ln �0(x0)

Fluctuating entropy production in the environment

ΔSenv
T

[x ] =
∑Nt

i=1
ln
(

W (xi−1,xi )

W (xi ,xi−1)

)
=

∑
0≤s≤T ,Δxs ∕=0 ln

(
W (X−s ,Xs)

W (Xs,X
−

s )

)

”In the end, a theory is accepted not because it is confirmed by conventional empirical test, but
because researchers persuades one another that the theory is correct and relevant”.

Fisher Black (1986)
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LD of observable (Level 1) : Spectral characterization

Empirical mean of one point function

Ae
T
≡ 1

T

∫ T
0

A(xt )dt →
∫

dxA(x)�inv (x)
Feymann-Kac : Λ(s) = − infSpectre(−L− sAId)⇒ No generic GC symmetry

Empirical mean of two point function

Be
T
≡ 1

T

∑
0≤s≤t,Δxs ∕=0 B(X−s ,Xs)→

∫
dxdyB(x , y)�inv (x)W (x , y)

”Feymann-Kac” formula : Ex

(
�(xT − y) exp(−sTBe

T
)
)
= exp(T (W exp(−sB)− �Id))(x , y)

then

Λ(s) = − infSpectrum(Hs) with Hs = −W exp(−sB) + �Id

We have GC ≡
{
inf Spectrum(Hs ) = inf Spectrum(HE−s )

}
⇐ CS1 ≡

{
Spectrum(Hs ) = Spectrum(HE−s )

}
⇐

CS2 ≡

{
Hs (x, y) = f−1(x)HE−s (y, x)f (y) ≡

(
W (x, y) = f−1(x)W (y, x) exp(−EB(y, x))f (y)

B(x, y) = −B(y, x)

)}

Then CS2 is for an (antisymmetric) observable which is proportional to the entropy

production in the large time limit : ΔSenv
T

[x ] =
− ln(f (x0))+ln(f (xT ))

T
+ EBe

T
[x ]

Entropy production is obtained for B(x , y) = ln
(

W (x,y)
W (y,x)

)
, then

Hs(x , y) = −W (x , y)1−sW (y , x)s + �(x)�(x − y)⇒ CS2 verified : Hs = HT
1−s

Questions : Example of an observable for which CS2 is not verified, but CS1 or GC is ?
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Restricted Solid On Solid model

Deposition and evaporation with the constraint ∣hi − hi±1∣ ≤ 1 and periodic BC : hL+1 = h1

Equivalent model of charge = ”Reduction” of the number of state : �i = hi+1 − hi ,

BC⇒
∑L

i=1 �i = 0

Height HT =
∑

0≤s≤t,Δxs ∕=0 B(X−s ,Xs) with B(X−s ,Xs) = 1 for a deposition and

B(X−s ,Xs) = −1 for an evaporation

If qa
pa

=
qb
pb

= qc
pc
≡ r then ΔSenv

T
= (ln r)HT and then we have GC symmetry for the large

deviation of
HT
T

: I(h) = I(−h)− (ln r) h

Now we treat the famous case : qa = qb = qc = q, pb = pc = 1 and pa = p.
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L = 3 : GC with E = lnq − ln p
3

First view : we can check that CS2 is verified by diagonalizing the deformed operator

Physical view : the 7 states can be grouped by symmetry into 3 super-state :
[000], [+− 0] = {(+− 0), (0+−), (−0+)}, [−+ 0] = {(−+ 0), (0−+), (+0−)} with the
network of transition forming a unique cycle

”Les preuves fatiguent la vérité”
Georges Braque. Le jour et la nuit
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L=4 : GC with E =
1
4
ln

(

3q4

2p+p2

)

and CS2 non verified

First view : check that CS1 is verified by diagonalizing the deformed operator

Physical view : trajectorial analysis

For the entropy production : property of individual path

exp(ΔSenv
T

) =
M[0,T ][x ]

M[0,T ][x̃ ]

〈
�

(
ΔSenv

T
T

−j

)〉

〈
�

(
ΔSenv

T
T

+j

)〉 =

∫
M[0,T ][x ]�

(
ΔSenv

T
[x ]

T
−j

)

∫
M[0,T ][x ]�

(
ΔSenv

T
[x ]

T
+j

) =

∫
M[0,T ][x̃ ] exp(ΔSenv

T [x ])�

(
ΔSenv

T
[x ]

T
−j

)

∫
M[0,T ][x̃ ]�

(
−ΔSenv

T
[x ]

T
+j

) = exp(Tj)

For the height : property of group of path

exp(EHT ) ∕=
M[0,T ][x ]

M[0,T ][x̃ ]

A cycle analysis of the embedding Markov chains gives :

〈
�
(

HT
T
−h
)∣∣∣NT =n

〉

〈
�
(

HT
T

+h
)∣∣∣NT =n

〉 = exp(TEh)

and then

〈
�
(

HT
T
−h
)〉

〈
�
(

HT
T

+h
)〉 =

∑
n

〈
�
(

HT
T
−h
)∣∣∣NT =n

〉
P(NT =n)

∑
n

〈
�
(

HT
T

+h
)∣∣∣NT =n

〉
P(NT =n)

= exp(TEh)
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Open issue : GC in disordered system

Large deviations for a random walk in a random environment, Ann. Prob. 22 (1994),

A.Greven, F.Den Hollander.

Random environment wk , k ∈ Z iid (0, 1) random variable with

distribution �

Discrete random walk Xn in Z with

Pw (Xn+1 = x ± 1∣Xn+1 = x) =

{

wx

1− wx

Large deviation for the speed of the w-conditioned random walk :

Pw

(

Xn

n
= v

)

≍ exp(−nI(v))

I(v) is deterministic
I(v) verify the ”GC” symmetry

I(v) = I(−v) + v
〈

ln
(

1−w
w

)〉
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