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We develop an effective theory of pulse propagation in a 

nonlinear AND disordered medium in 2d. 

It is formulated in terms of a minimal equation which despite its 

apparent simplicity describes novel phenomena which we refer to as 

''locked explosion'' and ''diffusive'' collapse. 

It can be applied to such distinct physical systems as 

laser beams propagating in disordered photonic crystals or

Bose-Einstein condensates expanding in a disordered environment. 

AbstractAbstract
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Experiment - visualization 
of the Anderson localization:

Laser beams propagating in disordered photonic crystals

Bose-Einstein condensates expanding in a disordered 
environment
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BECs with disorder

Nature 453, 891 (2008)

The method presented here can be extended to 

localization of atomic quantum gases in higher 

dimensions, and with controlled interactions. 

Roati et al, Nature 453, 895 (2008)



5

Disordered photonic 1D-lattice
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Disordered photonic 2D-lattice
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Ballistics, diffusion, Anderson localization, in the linear case

Clear lattice 15% 45%
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NB: “time” of observation is fixed and limited by the length of the photonic crystal.
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Influence of nonlinearity on localization  

Main conclusion:

Self-focusing nonlinearity promotes localization!

15% disorder

Focusing nonlinearity

with increasing strength 

(�=0,1,2,3)

� �xIln

15%

30% disorder.
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Gross-Pitaevskii vs Nonlinear Schrödinger 

� Gross-Pitaevskii Equation: Matter wave

� Nonlinear Schrödinger equation: Envelope of E-field

� Disorder Potential Wave vector

� Sign of nonlinearity: 
� 	>0 de-focusing, repulsive

� 	<0 focusing, attractive
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Theory: injection problemTheory: injection problem

Problem: 

the time evolution of the injected pulse in 2d non-linear 
medium, averaged over impurity configurations.

in 2d there is an exponentially long diffusive regime
preceding localization 

γ

ε < 0

ε+Ω > 0

ω < 0
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Hartree
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Specifics of the problem:
diffusion with a broad distribution of energies

Decoupled linear equations for different 
�

Formal solution:

Example (B. Shapiro 2007)

a broad distribution of energies, i.e., 

distribution of diffusion coefficients D
�: �4 �2 0 2 4

1

Diffusion with D(
)

Free case: 	=0
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Specifics of the problem: no loops!

Injection

nonlinearity

diffusion ladders

time

Typical diagram after disorder averaging
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ε+Ω > 0

ω < 0
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Typical diagram after disorder averaging

)( 1qqq �
 q1

qq-q1

coupling

�Coupling vanishes for q->0 
->Number conservation

�(r,t)-dependent Diffusion-
coefficient D(r,t)
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Typical diagram after disorder averaging
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�Frequency transfer          
->”energy gradually changes”
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Kinetic equation

�The kinetic equation:

q1

qq-q1
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Kinetic equation

�The kinetic equation:

The size of the cloud is 
much larger 

than the mean free path 
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Formalism

� Step 1: Statistical field theory approach in real time

� Introduce pair of fields similar to Martin-Siggia-Rose, Keldysh formalisms
� Fix initial conditions
� Average over disorder configurations
� Express density via components of 2x2 matrix Green’s functions

� Step 2: Method of quasi-classical Green’s functions

� Introduce momentum integrated Green’s function
� Derive analog of Usadel equation (theory of superconductivity)
� Find kinetic equation for the density in the diffusive limit

� Assumptions: 
� The initial energy distribution has characteristic energy 
�, so that 
������
� The initial density distribution is smooth on scales of the typical mean free path.
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�The kinetic equation:

�Nonlinear integro-differential equation.

�Density:

�Self-consistent potential:

�Initial distribution:

Kinetic equation 
(set of two self-consitent equations)
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The density distribution creates

a self-consistent potential ��

n

�

Diffusion in the presence of a non-linearity
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n

�

Imagine a particle with total 
energy 
 and kinetic energy 
��

diffusing in 2d under the 
influence of this potential. Its 

local diffusion coefficient is D
���




�

��

Diffusion in the presence of a non-linearity

kinetic 

energy
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n

�




�

��

�The potential � depends on 
coordinates AND time.

�A purely time dependent 
potential �(t) (without 

coordinate dependence) would 
not lead to a physical effect.

Diffusion in the presence of a non-linearity
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�Let us shift 
����
��� Now, 
 represents the kinetic energy of 
an interacting particle, and the kinetic equation takes the form

�Upon integration in 
�

�Nonlinear diffusion

Kinetic equation: a more physical form
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� Warning: 
� This is not a closed equation for n(r,t). depends on the energy 

distribution and needs to be determined independently. 
Equation for        depends on      , etc. 

� Moreover, the  information about initial energy distribution 
enters through     . 

� Our strategy:  
� Understand limiting cases 
� Make use of conservation laws to find properties that do not 

depend on the details of the initial energy distribution.
� Seek for qualitative picture.
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Warning: simplicity of this equation could be misleading
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�Porous medium equation (Zeldovich, Kompaneets, 1950)

�“Barenblatt’s solution” starting from            is

�Explosion: 


-> 0, 	��

Mean square 
radius Decay at r=0

)(rM�

�1. �0.5 0 0.5 1.

0.5

1



14

Barenblatt’s solution : Explosion

� Barenblatt’s solution describes explosive behavior with a wave-front:

� Comparison: Diffusion equation vs Porous medium equation

�1. �0.5 0 0.5 1.
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Porous Medium Eq

Diffusion Eq

comments 

in color
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“Explosion” for large repulsive nonlinearities?

Not exactly!
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� Number conservation:

� Energy conservation:

� Note: The integrated “quasiparticle” energy 

is not conserved.

� Important implication:

Conservation laws and the rate of diffusion                 
(“Talanov’s theorem”) 

<r2> grows linearly in t (as in ordinary diffusion). 

D is determined by the total energy per particle.
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� Center of the distribution:

� For large initial 	n rapid decay in accordance with the Barenblatt’s
solution.

� Near the “boundary” of the distribution:

� The second term is responsible for the propagation of the wave-
front in Barenblatt’s solution. 

� In our case: Internal redistribution of energy brings “fast particles”
to the boundary and              blocks the “explosive” expansion.          

Repulsion: center and boundary
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Repulsion: “Locked explosion”

Qualitative picture, repulsive nonlinearity:

Large density leads to 

fast decay in the center.Redistribution of energies 
blocks fast initial expansion, 
that would otherwise occur 

due to   term.2)( n�
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Attraction: “Diffusive collapse” and fragmentation

� In the case of attraction one may have Etot<0 or Etot>0. 

� For Etot<0 the mean square radius <r2> would become 
negative after a finite time, leading to a collapse 
(diffusive collapse).

� Even when Etot>0 the collapse can play a role for 
attractive nonlinearity, if part of the cloud has a 
negative energy, while the remaining part expands. As a 
result one may expect a fragmentation of the cloud. 

(Nonlinear central limit theorem for the porous medium equation.)
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Summary: illustration

�>0

�<0

�<0

Etot>0

Etot>0

Etot<0

t

???
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Conclusion

� A set of equations has been derived that describes the evolution of an 
injected wave-packet in the presence of random scatterers and nonlinearity.

� A repulsive nonlinearity increases the effective diffusion coefficient, an 
attractive nonlinearity makes it smaller. 

� This is in line with the experimental observation that an attractive nonlinearity 
supports localization. Still, whether true localization has been observed, 
or just a slowing down of a diffusing cloud (or its fragmentation), should be 
reanalyzed.

� For a repulsive nonlinearity, the explosive stage is “locked” by redistribution 
of energies.

� For an attractive nonlinearity diffusive collapse is expected for Etot<0 and 
fragmentation for Etot>0.
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Remarks on localization effects

� A repulsive nonlinearity increases the diffusion coefficient, an
attractive nonlinearity makes it smaller. 
� This is in line with the experimental observation that a repulsive 

nonlinearity increases the localization length, while an attractive 
nonlinearity supports localization.

� Weak localization due to interference:
� Our analysis did not account for interference effects. Such effects 

lead to logarithmic corrections to the diffusion coefficient in two 
dimensions, which favor localization. For an attractive nonlinearity three 
effects seem important. 

� During the expansion the time variation of the potential leads to dephasing.
� As the cloud expands, the potential energy increases (becomes less negative), 

and the kinetic energy decreases. 
� Additionally longer paths become available for interference. 

� The first effect weakens localization, the last two support it. 




