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Abstract

We develop an effective theory of pulse propagation in a

nonlinear AND disordered medium in 2d.

It is formulated in terms of a minimal equation which despite its
apparent simplicity describes novel phenomena which we refer to as
''locked explosion'' and '‘'diffusive'’ collapse.

It can be applied to such distinct physical systems as

laser beams propagating in disordered photonic crystals or

Bose-Einstein condensates expanding in a disordered environment.



Experiment - visualization
of the Anderson localization:

Laser beams propagating in disordered photonic crystals

Bose-Einstein condensates expanding in a disordered
environment



BECs with disorder

Direct observation of Anderson localization of matter-waves in a controlled
disorder

Juliette Billy], Vincent Jossel, Zhanchun ZuolA_ Alain Bemardlﬁ Ben Hambrechti, Pierre Luganl, David Clémenti,
Laurent Sanchez-Palencia’, Philippe Bouyer' & Alain Aspect’

!Laboratoire Charles Fabry de I'Institut d'Optique, CNRS and Univ. Paris-Sud, Campus Polytechnique, RD 128, F-
91127 Palaiseau cedex, France

The method presented here can be extended to
localization of atomic quantum gases in higher

dimensions, and with controlled interactions.
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Disordered photonic 1D-lattice

4 ' 7 : week endin
PRL 100, 013906 (2008) PHYSICAL REVIEW LETTERS |1 JANUARY 3008

Anderson Localization and Nonlinearity in One-Dimensional Disordered Photonic Lattices

: iai A coaf Avic L : e 2 . 2 .3
Yoav Lahini,”™ Assaf Avidan,” Francesca Pozzi,” Marc Sorel.” Roberto Morandotti,
Demetrios N. Christodoulides.* and Yaron Silberberg’'
' Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot, Israel

short time scales of &-like wave packets in the presence of disorder. A transition from ballistic wave
packet expansion to exponential (Anderson) localization 1s observed. We also find an intermediate regime
in which the ballistic and localized components coexist while diffusive dynamics is absent. Evidence 1s

found for a faster transition into localization under nonlinear conditions.

FIG. 1 (color online). (a) Schematic view of the sample used in
the experiments. The red arrow indicates the input beam. (b)—
(d) Images of output light distribution, when the input beam
covers a few lattice sites: (b) in a periodic lattice, (c¢) in a
disordered lattice, when the input beam is coupled to a location
which exhibits a high degree of expansion, and (d) in the same
disordered lattice when the beam is coupled to a location in
which localization is clearly observed.




Disordered photonic 2D-lattice

nature Vol 446[1 March 2007/ doi:10.1038/ nature05623

Nature 446, 52 (2007)
LETTERS

Transport and Anderson localization in disordered
=P two-dimensional photonic lattices

Tal Schwartz!, Guy Bartal', Shmuel Fishman' & Mordechai Segev'
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Lattice Beams
Far-Field

E(r,z,t)=Re[Y(r,z)exp(i(kz — wt))] r=(x,y)
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I Ballistics, diffusion, Anderson localization, in the linear case

NB: "time" of observation is fixed and limited by the length of the photonic crystal.
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beam’s peak. The mean free path and the localization length evaluated from
these simulations are approximately [* = 5 um and ¢ = 29 pum, respectively
(see calculation details in Supplementary Information). 30% disorder.
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Influence of nonlinearity on localization
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Main conclusion:

Self-focusing nonlinearity promotes localization! 8




Gross-Pitaevskii vs Nonlinear Schrédinger

= Gross-Pitaevskii Equation: Matter wave

Lattice Beams
Far-Field

iV (r,t) = —%VZ\I’(L t) +u(r)¥(r,t) + \U(r,t)|*¥(r,t)

= Nonlinear Schréodinger equation: Envelope of E-field

10,V (r,z) = —-LVQKIJ(r, 2) +u(r)¥(r, z) + AU (r, 2)|*¥(r, 2)

2k ‘ 2
= Disorder Potential Wave vector
]_ w
"N = —§(p — 1’ k = —
(u(r)u(r’)) — (r—r") -

A>0 de-focusing, repulsive
= Sign of nonlinearity: 3. Fep

A<0 focusing, attractive



Theory: injection problem

Q>0 Y2
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Problem:

the time evolution of the injected pulse in 2d non-linear
medium, averaged over impurity configurations.

in 2d there is an exponentially long diffusive regime
preceding localization




Specifics of the problem:
diffusion with a broad distribution of energies

Free case: \=0

Decoupled linear equations for different €:

on(r,t,e) — D.Von(r,e,t) = 6(t)F(e, 1)

Formal solution:

O(t 2
n(r,e,t) = 47?5))t fd?rl e~ (r—r)"/ (WD) B p)

Example (B. Shapiro 2007) 1
F(e,r) = 6(r)O(e) e /%0 2rN /e

a broad distribution of energies, i.e.,

distribution of diffusion coefficients D, : = - 0 : ;

n(r,t) o exp(—r/xo) [ ai = Dat 1



Specifics of the problem: no loops!
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Typical diagram after disorder averaging

T diffusion ladders

Injection L '

nonlinearity

. | time t
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i Typical diagram after disorder averaging

| coupling |

< q(q—q,)

=Coupling vanishes for q->0
->Number conservation

t *(r,t)-dependent Diffusion-
coefficient D(r,1)

\J




i Typical diagram after disorder averaging

*Frequency transfer
->"energy gradually changes”

\J



$ Kinetic equation

=The kinetic equation:

Hr, t) =2Xxn(r,t)

on(r,t,e) — V(De_yVn(r,t,e)) + 0:0(r,t)0-n

e

r,t,e) =4(t) F(e —d(r,0),r)




Kinetic equation

Hr, t) =2Xxn(r,t)

=The kinetic equation:

on(r,t,e) — V(D_yVn(r,t,e)) + 0:9(r,t)0-n(r,t,e) = §(t) F(e —¥(r,0),r)

We demand wr < 1 and lg < 1 for typical frequencies
w and momenta g characterizing the average density dis-
tribution n(q,w). The nonlinearity can be strong, but
gradients should not be too large, lgi(q.w)/s0 < 1 and
wt(q,w)/e0 < 1, for typical kinetic energies gq.

that the initial wave-function sets a momentum scale pg

characterizing the main part of the momentum distribu-

tion, so that the weak disorder condition pgl = 1 is ful- . .
filled, where I = pg7 /m is the mean free path. We further The size Of the cloud is

assume that the density varies smoothly on scales of [, in much |ar‘ger'
particular that the size of the condensate is much larger

than the mean free path. Both of these conditions can Than The mean fr‘ee pa'rh

be met simultaneously. The phase of ¥, which is related
to the momentum, may change rapidly, while the ampli-
tude, which determines the density, may vary smoothly.
Even if the density does not satisty the smoothness con-
dition initially, it is natural to expect that in the case
of an expansion it will become sufficiently smooth after



Formalism

Step 1: Statistical field theory approach in real time

= Introduce pair of fields similar to Martin-Siggia-Rose, Keldysh formalisms
= Fix initial conditions

= Average over disorder configurations

= Express density via components of 2x2 matrix Green's functions

Step 2: Method of quasi-classical Green's functions

= Introduce momentum integrated Green's function
= Derive analog of Usadel equation (theory of superconductivity)
= Find kinetic equation for the density in the diffusive limit

Assumptions:

= The initial energy distribution has characteristic energy g, so that g,t>>1.
= The initial density distribution is smooth on scales of the typical mean free path.



Kinetic equation
(set of two self-consitent equations)

=The kinetic equation:

on(r,t,e) — V(D_yVn(r,t,e)) + 0:9(r,t)0-n(r,t,e) = §(t) F(e —¥(r,0),r)

*Nonlinear integro-differential equation.

“Density: n(r,t) = /dg/(z’”) n(r,t,¢)

“Self-consistent potential: J(r,¢) = 2\n(r,t)

+Initial distribution:
nitial distribution: / (dp)(dq) F(p,q) exp(igr) 2md(c — ep)

F(p,q) = U(p +q/2)¥;(p — q/2) ep =p°/(2m)



Diffusion in the presence of a non-linearity

= The density distribution creates
a self-consistent potential 3.

M Hr,t) =2 n(r,1)



Diffusion in the presence of a non-linearity

Imagine a particle with total

energy € and kinetic energy €—9
diffusing in 2d under the
influence of this potential. Its

local diffusion coefficient is D, .

t

kinetic

energy

De—ﬁ




Diffusion in the presence of a non-linearity

*The potential 3 depends on
coordinates AND time.

"A purely time dependent

potential 3(t) (without
coordinate dependence) would
not lead to a physical effect.

10



Kinetic equation: a more physical form

sLet us shift € —> €+3. Now, € represents the kinetic energy of
an interacting particle, and the kinetic equation takes the form

din(r,t,e) — [vr ~ Vi, t)ae} D. [vr — Vi, t)as} n(r,e,t) = 6(t) F(e,r)

*Upon integration in €:

Z(r,t) = /.((15) en(r,t, e)

= crinl(r,t) n(r,t)

oin(r,t) — %VQ (E(r,t) + An*(r,t)) = 6(t) n(r,0)

*Nonlinear diffusion

Deypr(r,t) = (ekin + )\n)’f/’m‘

é?tn — VQ (Deffn) — 5(75)7’2,

11



Warning: simplicity of this equation could be misleading

n(r,t) — —V? (E(r,t) + An?(r,1)) = 6(t) n(r,0) | | T = / (de) en(r,t,e

m
Epin(r,t) n(r,t)

)

= Warning:
= This is not a closed equation for n(r,t). £ depends on the energy
distribution and needs to be determined independently.

Equation for £ depends on o2, efc.
= Moreover, the information about initial energy distribution
enters through ¢ .

= Our strategy:
= Understand limiting cases

= Make use of conservation laws to find properties that do not
depend on the details of the initial energy distribution.

= Seek for qualitative picture.

12




i §_> O’ }b>0 on(r,t) — %VQM—I— )\nQ(r,t)) = J(t) n(r,0)

*Porous medium equation (Zeldovich, Kompaneets, 1950)

81;77/ — V2n2

«"Barenblatt's solution” starting from AN O (7‘) is

n(r,t) = (C —r?/(16t"/2))  /t'/? | C° = M/(S%X

=Explosion:

Mean square
radius

(r?) oc t1/2 n(0,t) oc t /2

13

Decay at r=0



Barenblatt's solution : Explosion

= Barenblatt's solution describes explosive behavior with a wave-front:

<'r2> o /2
n(0,t) oc t /2

0.5 1.

= Comparison: Diffusion equation vs Porous medium equation

' Diffusion Eq

Porous Medium Eq
-06 -04 -02 -06 -04 -02 0 0.2 0.4 0.6 -06 -04 -02 0 0.2

comments

in color

0.4

0.6

14



"Explosion” for large repulsive nonlinearities?

Not exactly!




Conservation laws and the rate of diffusion

= Number conservation: / &rufe,)=N

("Talanov's theorem")

= Energy conservation: |z, = / dr (£(r,t) + M2 (r, 1))

= Note: The integrated "quasiparticle” energy

ap __
Etot _

dr (£ +2X\n”(r,t)) is not conserved.

- ImPOPTGnT lmpllcaT|on: on(r,t) — %Vg (E(r,t) + An®(r,t)) = 6(t) n(r,0)

‘ (r*) = /dr r? n(r,t)/N Etot = Eiot/IN

16



Repulsion: center and boundary

= Center of the distribution: 9,n = — [V22 + 2AnV?2n]

m

= For large initial An rapid decay in accordance with the Barenblatt's
solution.

= Near the "boundary” of the distribution: /
E(r,t) = [ (de)en(r.t,c
= cpin(r,t) n(r,t)

Oin ~ — [V + 2\(Vn)?]

T
m

= The second term is responsible for the propagation of the wave-
front in Barenblatt's solution.

= Inour case: Internal redistribution of energy brings "fast particles”
to the boundary and 2 _; blocks the "explosive” expansion.

17



Repulsion: "Locked explosion”

Qualitative picture, repulsive nonlinearity:

Redistribution of energies
blocks fast initial expansion,
that would otherwise occur

due to (Vn)’ term.

_—

Large density leads to

fast decay in the center.

~f

=N —

18




i Attraction: "Diffusive collapse” and fragmentation

= In the case of attraction one may have E. ;<O or E, ;>0.

= For E, <O the mean square radius <ré> would become
negative after a finite time, leading to a collapse

(diffusive collapse).

= Even when E, ;>0 the collapse can play a role for
attractive nonlinearity, if part of the cloud has a
negative energy, while the remaining part expands. As a
result one may expect a fragmentation of the cloud.

(Nonlinear central limit theorem for the porous medium equation.)

19



Summary: illustration

20



Conclusion

A set of equations has been derived that describes the evolution of an
injected wave-packet in the presence of random scatterers and nonlinearity.

A repulsive nonlinearity increases the effective diffusion coefficient, an
attractive nonlinearity makes it smaller.

= This is in line with the experimental observation that an attractive nonlinearity
supports localization. Still, whether true localization has been observed,

or just a slowing down of a diffusing cloud (or its fragmentation), should be
reanalyzed.

For a repulsive nonlinearity, the explosive stage is "locked” by redistribution
of energies.

For an attractive nonlinearity diffusive collapse is expected for E, <O and
fragmentation for E; 0.

21



Remarks on localization effects

= A repulsive nonlinearity increases the diffusion coefficient, an
attractive nonlinearity makes it smaller.
= This is in line with the experimental observation that a repulsive

nonlinearity increases the localization length, while an attractive
nonlinearity supports localization.

= Weak localization due to interference:

= Our analysis did not account for interference effects. Such effects
lead to logarithmic corrections to the diffusion coefficient in two
dimensions, which favor localization. For an attractive nonlinearity three
effects seem important.
= During the expansion the time variation of the potential leads to dephasing.

= As the cloud expands, the potential energy increases (becomes less negative),
and the kinetic energy decreases.

= Additionally longer paths become available for interference.
= The first effect weakens localization, the last two support it.

22





