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Dynamics of the Fermi-Pasta-Ulam system

by Antonio Giorgilli

This document contains the pages presented at the Advanced Workshop on
Anderson Localization, Nonlinearity and Turbulence: a Cross–Fertilization,
Gargnano (Trieste), august 26 – september 3, 2010.

The pages with the movies can not be included in a text, of course. I apologize
for the inconvenience.

An introductory text on which these pages are based may be found in:

The Fermi-Pasta-Ulam problem: a status report, G. Gallavotti ed., Lect. Not.
Phys, 728 Springer, Berlin Heidelberg (2008).
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The FPU paradox



The question

“The ergodic behaviour of such systems was studied with the primary aim of
establishing, experimentally, the rate of approach to the equipartition of energy
among the various degrees of freedom of the system”

Ej =
1

T

∫ T

0

Ej(t)dt −→ E

N

where Ej is the harmonic energy of the normal modes and E is the total energy.



The model

• The Hamiltonian

H(x, y) =

N∑
j=1

y2
j

2
+ V (x0, . . . , xN+1)

• Fixed ends condition

x0(t) = xN+1(t) = 0

• Potential energy

V (x0, . . . , xN+1) =
1

2

N∑
j=0

(xj+1 − xj)
2+

α

3

N∑
j=0

(xj+1 − xj)
3 +

β

4

N∑
j=0

(xj+1 − xj)
4

α, β arbitrary parameters.



• Normal modes

xj =

√
2

N + 1

N∑
k=0

qk sin
jkπ

N + 1
, j = 1, . . . , N

yj =

√
2

N + 1

N∑
k=0

pk sin
jkπ

N + 1
, j = 1, . . . , N

• Transformed Hamiltonian

H(q, p) =
1

2

N∑
k=1

(
p2

k + ω2
kq2

k

)
+ αV3(q) + βV4(q)

• The spectrum

ωk = 2 sin
kπ

2(N + 2)
, k = 1, . . . , N



The spectrum of the linear chain



The normal modes of the linear chain



The beginning

“After the war, during one of his frequent summer visits to Los Alamos,
Fermi became interested in the development and potentialities of the electronic
computing machines.”

. . . . . . . . . . . . . . . .

“We decided to try a selection of problems for heuristic work where in absence
of closed analytic solutions experimental work on a computing machine would
perhaps contribute to the understanding of properties of solutions”.

. . . . . . . . . . . . . . . .

“In addition, such experiments on computing machines would at least have the
virtue of having the postulates clearly stated”.

. . . . . . . . . . . . . . . .

“One could venture a guess that one motive in the selection of problems could
be traced in Fermi’s early interest in ergodic theory”.

S. Ulam



The answer of Fermi, Pasta and Ulam

“Let us say here that the results of our computations show features which
were, from the beginning, surprising to us. Instead of a gradual, continuous flow of
energy from the first mode to higher modes, all of the problems show an entirely
different behaviour. (. . .) Instead of a gradual increase of all the higher modes,
the energy is exchanged, essentially, among only a certain few. It is, therefore,
very hard to observe the rate of ‘thermalization’ or mixing in our problem, and
this was the initial purpose of the calculation”.



The FPU experiment revisited



The time evolution of the harmonic energies. The figure is a reproduction of the
first one of the original FPU report. Here, N = 32 (with α = 1/4, β = 0)), and
the energy was given initially just to the lowest frequency mode. One sees that
the energy, instead of flowing to all the 32 modes, remains confined within a
packet of low–frequency modes, namely modes 1 up to 5.



Time–averaged harmonic energies Ek vs. time. The figure is a reproduction of
the last one of the original FPU report.



The prehistory



Ergodicity

Hamiltonian system
H(p, q) = h(p) + εf(p, q)

with p the action variables, q the angles, ε a small parameter.

• Time average of a dynamical variable f(p, q):

〈f〉 = lim
T→∞

1

T

∫ T

0

f
(
p(t), q(t)

)
dt

• Phase average over the surface ΣE of constant energy:

f =

∫
ΣE

f(p, q)dσ

• The system is ergodic if 〈f〉 = f almost everywhere on ΣE



Ergodicity and equipartition

Hamiltonian in the neighbourhood of an elliptic equilibrium expanded in power
series

H(x, y) = H2(x, y) + H3(x, y) + H4(x, y) + . . .

where
H2(x, y) =

∑
j

ωj

2
(x2

j + y2
j )

• In action–angle variables p, q

xj =
√

2pj cos qj , yj =
√

2pj sin qj

takes the form
H(p, q) = h(p) + εf(p, q)

with
h(p) =

∑
j

ωjpj



Ergodicity and equipartition

QUESTION

Does the perturbation make the system ergodic for any ε?

For the FPU system equipartition follows from ergodicity:

Ej =
1

T

∫ T

0

Ej(t)dt −→ E

N

where Ej = ωjpj is the harmonic energy of the normal modes and E is the total
energy.



Non–integrability theorem of Poincaré

Let
H(p, q) = h(p) + εf(p, q)

be analytic and satisfy
(i) non degeneration

det

(
∂2h

∂pj∂pk

)
�= 0

(i.e., the frequencies ωj = ∂h
∂pj

are non–isochronous);

(ii) genericity: the coefficient fk(p) Fourier expansion of the perturbation

f(p, q) =
∑

k∈Zn

fk(p)ei〈k,ω〉

are not identically zero on the surface 〈k, ω(p)〉 = 0.
Then there are no analytic first integrals independent of H.

(Poincaré, Méthode Nouvelles, Tome I, Ch. VIII)



Generalization by Fermi

Let
H(p, q) = h(p) + εf(p, q)

be as in Poincaré’s theorem.
Then there is no analytic invariant surface of dimension 2n− 2 embedded in the
surface ΣE of constant energy.

• Fermi’s conclusion: the energy surface can not be decomposed in two invari-
ant subsets of positive measure, hence the motions is ergodic on ΣE .

• but: he assumes that the surface of separation is analytic (or at least smooth),
which needs not be true.

(E. Fermi: Physikalische Zeitschrift 24, 1923.)



Two conjectures



The conjecture of Izrailev – Chirikov (1966)

There is an energy threshold below which the system is not ergodic, due to the
existence of a set of invariant tori of positive measure (Kolmogorov’s theorem).

but:
• For increasing N the the spectrum becomes more and more resonant.
• Due to resonance overlapping the exchange of energy among modes becomes

more and more effective.
• The threshold for applicability of Kolmogorov’s theorem decreases (very

rapidly!) to zero when N tends to infinity.
• Thus, ergodicity is recovered in the thermodynamic limit N →∞.

(see also Kantz (1989); Kantz, Livi and Ruffo (1994), Shepelyansky (1997),
Casetti, Cerruti–Sola, Pettini and Cohen (1997), among others.)



The conjecture of Bocchieri – Scotti – Bearzi – Loinger (1970)

There is threshold in specific energy below which the system is not ergodic.

• Based on calculations with the Lennard–Jones potential.
• The threshold remains positive in the thermodynamic limit, being related

to specific energy E/N .

(see also Galgani and Scotti (1972), Cercignani, Galgani and Scotti (1972), Livi,
Pettini, Ruffo, Sparpaglione and Vulpiani (1985), among others.)



Kolmogorov’s theorem and invariant tori



The theorem of Kolmogorov

Hamiltonian:
H(p, q) = h(p) + εf(p, q) .

Assume:
(i) non–degeneration, i.e.,

det

(
∂2h

∂pj∂pk

)
�= 0 ;

(ii) the unperturbed system possesses an invariant torus p∗ with diophantine
(non resonant) frequencies λ = ω(p∗), i.e.,

∣∣〈k, λ〉∣∣ ≥ γ|k|−τ for 0 �= k ∈ Zn

with some constants γ > 0 and τ ≥ n− 1 .
If ε is small enough, ε < ε∗ say, then the perturbed system possesses an invariant
torus carrying quasi–periodic motions with frequencies λ .



Applicability of Kolmogorov’s theorem to the FPU system

• Non degeneration hypothesis: the unperturbed (quadratic part) of the
Hamiltonian is isochronous, so it is degenerate.

• Non–resonance: what about resonances in the FPU spectrum?

• Threshold for applicability ε∗: what about the dependence on the number
N of particles?



Removing the non–degeneration

Give the Hamiltonian

H(x, y) =
N∑

j=1

ωj

2
(x2

j + y2
j ) + H3(x, y) + H4(x, y) + . . .

the Birkhoff normal form up to degree 4

H(4)(x, y) = H2(x, y) + Z4(x, y) + ...

where

H2 =
N∑

j=1

ωjpj , Z4 =
∑
i,j

ai,jpipj , pj =
x2

j + y2
j

2
.

• If the spectrum has no resonances up to order 4, i.e.,

〈k, ω〉 �= 0 for 0 < |k| ≤ 4

then H(4) for the FPU β model is non degenerate (Nishida, 1971).

• but. . . : does the FPU spectrum satisfy the non resonance condition?



Resonances in the FPU spectrum

Frequencies in the FPU spectrum

ωj = sin
jπ

2(N + 1)

• The frequencies are rationally independent if and only if N + 1 is either
prime or a power of 2 (Hemmer, 1959).

• In all other case there are resonance relation, including resonances of order
4; e.g.:

sin(π/6) + sin(3π/14)− sin(π/14)− sin(5π/14) = 0 , N + 1 = 42 ,

sin(π/6) + sin(13π/30)− sin(7π/30)− sin(3π/10) = 0 , N + 1 = 30 ,

sin(π/2) + sin(π/10)− sin(π/6)− sin(3π/10) = 0 , N + 1 = 30 .

• However, resonant term do not occur at order 4 in the FPU periodic β model,
due to symmetries (Rink and Verhulst, 2000; Rink, 2006).



Energy threshold for the FPU chain

Thus, Komogorov’s theorem applies to the FPU periodic β model if the energy
E is small enough.

but . . . : How small?

• The parameter is ε ∼ �, the convergence radius of the Birkhoff’s normal
form;

• thus, ε ∼ √E, the square root of the energy (may be ε ∼√
E/N?);

• the best available estimates for Kolmogorov’s theorem give ε∗ ∼ C−N with
C > 1.

Kolmogorov’s theorem applies for every finite N , but will likely become useless
for very large N .



The metastability scenario



Exponential stability for an elliptic equilibrium

The Hamiltonian around the equilibrium

H(x, y) = H2(x, y) + H3(x, y) + . . .

H2(x, y) =
∑

j

ωj

2
(x2

j + y2
j ) .

Hs(x, y) a homogeneous polynomial of degree s .

Birkhoff normal for at order r :

Z(x, y) = H0(x, y) + Z1(x, y) + . . . + Zr(x, y) + F (r+1)(x, y)

with

• Zs a function of pj =
x2

j+y2
j

2 only (i.e., integrable);

• F (r+1)(x, y) of degree at least r + 1.



General result

• Assume
∣∣〈k, ω〉∣∣ ≥ γ|k|−τ with γ > 0 and τ > N−1 (diophantine condition).

• In a polydisk Δ� = {(x, y) : x2
j + y2

j ≤ �2R2
j} get

∣∣∣F (r+1)(x, y)
∣∣∣ ≤ (r!)τ+1Br�r+3

• the transformation to normal form is generally divergent: use truncation.
• optimize r as a function of � and get

r ∼ 1

�1/(τ+1)
,

∣∣∣F (ropt)(x, y)
∣∣∣ ∼ exp

(−(1/�)1/(τ+1)
)

(exponential estimate of Nekhoroshev’s type).
• The actions pj of the system are almost constant up to time

Tstab ∼ exp
(
(1/�)1/(τ+1)

)
.

If not eternity, this is a considerable slice of it (Littlewood).



The resonant case

Birkhoff normal for at order r :

Z(x, y) = H0(x, y) + Z1(x, y) + . . . + Zr(x, y) + F (r+1)(x, y)

with
{H0, Zs} = 0 (resonant normal form)

• Let M = {k ∈ ZN : 〈k, ω〉 = 0} (the resonance module).
• In action–angle variables p, q the normal form Z1, . . . , Zr depends only on

p1, . . . , pn and 〈k, q〉 with k ∈M.
• There are N − dimM approximate first integrals

Φ =
n∑

j=1

αjpj , α ⊥M

which are independent of H.



Exponential estimate for the resonant case

• Change the diophantine condition to

∣∣〈k, ω〉∣∣ ≥ γ|k|−τ for k /∈M

with γ > 0 and τ > n− dimM− 1.
• The relevant quantity is the number of rationally independent frequencies

m = n− dimM
• The approximate first integrals Φ remain almost constant up to time

Tstab ∼ exp
(
(1/�)1/(τ+1)

)
.

• Remark: τ + 1 ∼ m.

Resonance may increase stability.

(Benettin, Galgani and Giorgilli, 1989)



Example: the FPU chain with alternatig masses

• The spectrum splits into
◦ ”acoustic” frequencies ≤ ω
◦ ”optical” frequencies > Ω � ω

• The energy flow (acoustic modes)−→ (optical modes) is exponentially slow.

• Relaxation time: Tr ∼ exp(Ω/ω) .

• Theoretical estimate (Benettin, Galgani and Giorgilli, 1989) confirmed by
numerical calculations (Galgani, Giorgilli, Martinoli and Vanzini, 1992).

• Further Analytical results for N →∞, but typically with fixed total energy
or with very particular initial conditions (Benettin, Fröhlich and Giorgilli,
1988; Bambusi and Giorgilli, 1993; Ponno and Bambusi, 2004; Bambusi and
Ponno, 2006)



The spectrum at several times (10, 102, · · · , 108). N = 127, ε = 1× 10−4).



The spectrum at several times (10, 102, · · · , 108). N = 127, ε = 1× 10−3).



The relation between critical time and energy

• A natural packet is formed in a short time.
• The flow of energy towards higher moded requires a long time.
• Critical value of the energy: the point where the destruction time for a packet

detaches from the left group.



The critical energy as a function of the frequency

• N ranging from 8 to 1023.
• The natural packet extends up to the mode of frequency ω only if the specific

energy is greater that Ec(ω).



The ”packets” for theβ model

Mode 1 initially excited Modes 8–40 initially excited



The exponential estimate

Tr ∼ ε−3 Tr ∼ exp(ε−1/4)



The dependence of the critical time on n



A few open questions



A few open questions

The question raised by Fermi, Pasta and Ulam is not yet answered.

• Does the metastability scenario apply to generic initial conditions?
(see A. Carati, L. Galgani, A. Giorgilli and S. Paleari: FPU phenomenon for
generic initial data, Phys. Rev. E 76, (2007)).

• Can we produce estimates for the relaxation time independent of N using
statistical methods?
(see A. Carati: An averaging theorem for Hamiltonian dynamical systems in
the thermodynamic limit, Journal of Statistical Physics 128, (2007)).

• Does the metastability scenario persist for lattices of FPU type in dimension
2 or 3?
(see G. Benettin and G. Gradenigo: A study of the Fermi-Pasta-Ulam prob-
lem in dimension two, CHAOS 18, (2008)).


