

2162-13

Advanced Workshop on Anderson Localization, Nonlinearity and Turbulence: a Cross-Fertilization

23 August - 3 September, 2010

Anderson Localization for the Nonlinear Schroedinger Equation (NLSE): Progress Report

> Shmuel FISHMAN Technion, Dept. of Physics Haifa Israel

Anderson Localization for the Nonlinear Schrödinger Equation (NLSE): Progress Report

Arkady Pikovsky, Avy Soffer, Alexander Iomin Yevgeny Krivolapov, Hagar Veksler, Erez Michaely Alex Rivkind and SF

Experimental Relevance

Nonlinear Optics Bose Einstein Condensates (BECs)

Paradigm for competition between randomness and Nonlinearity a Fundamental Question

Outline

- Introduction
- Effective Noise Theories
- Scaling Theory
- Perturbation Theory
- Summary

The Nonlinear Schroedinger (NLS) Equation

$$i\frac{\partial}{\partial t}\psi = \mathcal{H}_{o}\psi + \beta \left|\psi\right|^{2}\psi$$

1D lattice version

$$\mathcal{H}_{0}\psi(x) = -(\psi(x+1) + \psi(x-1)) + \varepsilon(x)\psi(x)$$

1D continuum version $\mathcal{H}_{0}\psi(x) = -\frac{1}{2}\frac{\partial^{2}}{\partial x^{2}}\psi(x) + \mathcal{E}(x)\psi(x)$ V random $\longrightarrow \mathcal{H}_{0}$ Anderson Model

$$i\frac{\partial\psi(x)}{\partial t} = -\left(\psi(x+1) + \psi(x-1)\right) + \varepsilon(x)\psi(x) + \beta\left|\psi(x)^2\right|\psi(x)$$

$$m_2(t) = \sum_n x^2 |\psi(x)|^2$$

$\beta = 0 \Longrightarrow$ localization

Does Localization Survive the Nonlinearity???

Does Localization Survive the Nonlinearity???

- Yes, if there is spreading the magnitude of the nonlinear term decreases and localization takes over.
- 2. No, may depend on realizations or on β found in numerical calculations.
- 3. No, the NLSE is a chaotic dynamical system. Will it remain chaotic for all densities??
- 4. No?, but localization asymptotically preserved beyond some front that is logarithmic in time

Point 4, conjectured by Wang and Zhang in the limit of strong disorder:

given
$$\mathcal{E} = hopping + \beta$$
 $\delta > 0, A > 0$ tail beyond j_0 of weight < δ

there exist $C, \mathcal{E}(A), K > A^2$

So that for all
$$t \leq \left(\frac{\delta}{C}\right) \varepsilon^{-A}, \varepsilon < \varepsilon (A)$$

tail beyond
$$j_0 + K$$
 of weight < 2δ
Logarithmic front $j_0 + K$

Perturbation theory supports this conjecture for any disorder

Numerical Simulations

- In regimes relevant for experiments looks that localization takes place
- Spreading for long time (Shepelyansky, Pikovsky, Mulansky, Molina,
 Electromodelyie Kominese Krimer, Lentveye Body
 - Flach, Kopidakis, Komineas, Krimer, Laptyeva, Bodyfelt)
- We do not know the relevant space and time scales
- All results in Split-Step
- No control (but may be correct in some range)
- Supported by various heuristic arguments

Pikovsky, Sheplyansky

FIG. 2: (color online) Probability distribution w_n over lattice sites n at W = 4 for $\beta = 1$, $t = 10^8$ (top blue/solid curve) and $t = 10^5$ (middle red/gray curve); $\beta = 0, t = 10^5$ (bottom black curve; the order of the curves is given at n = 500). At $\beta = 0$ a fit $\ln w_n = -(\gamma |n| + \chi)$ gives $\gamma \approx 0.3$, $\chi \approx 4$. The values of $\log_{10} w_n$ are averaged over the same disorder

FIG. 3: (color online) Same as in Fig. 2 but with W = 2. At $\beta = 0$ a fit $\ln w_n = -(\gamma |n| + \chi)$ gives $\gamma \approx 0.06$, $\chi \approx -3$. The values of $\ln w_n$ are averaged over the same disorder realizations as in Fig. 1.

Slope does not change (contrary to Fermi-Ulam-Pasta)

Effective Noise Theories

- D. Shepeyansky and A. Pikovsky
- S. Flach, Ch. Skokos, D.O. Krimer, S. Komineas

$$\psi(x,t) = \sum_{m} c_{m}(t) e^{-iE_{m}t} u_{m}(x)$$

$$i\frac{\partial}{\partial t}c_{n} = \beta \sum_{m_{1},m_{2},m_{3}} V_{n}^{m_{1},m_{2},m_{3}} c_{m_{1}}^{*} c_{m_{2}} c_{m_{3}} e^{i(E_{n}+E_{m_{1}}-E_{m_{2}}-E_{m_{3}})t}$$

Overlap
$$V_n^{m_1,m_2,m_3} = \sum_x u_n(x)u_{m_1}(x)u_{m_2}(x)u_{m_3}(x)$$

$$\left|V_{n}^{m_{1}m_{2}m_{3}}\right| \leq [const]e^{-\frac{1}{3}\gamma\left(\left|x_{n}-x_{m_{1}}\right|+\left|x_{n}-x_{m_{2}}\right|+\left|x_{n}-x_{m_{3}}\right|\right)}$$

of the range of the localization length ξ

$$i\frac{\partial}{\partial t}c_{n} = \beta \sum_{m_{1},m_{2},m_{3}} V_{n}^{m_{1},m_{2},m_{3}} c_{m_{1}}^{*} c_{m_{2}} c_{m_{3}} e^{i(E_{n}+E_{m_{1}}-E_{m_{2}}-E_{m_{3}})t}$$
Assume
$$\left|c_{m_{1}}^{2}\right| \approx \left|c_{m_{2}}^{2}\right| \approx \left|c_{m_{3}}^{2}\right| \approx \rho \quad \text{initially} \quad \left|c_{n}^{2}\right| \ll \rho$$

$$i\frac{\partial}{\partial t}c_{n} \approx (\dots)f(t) \qquad f(t) \qquad \text{Random uncorrelated}$$

leading to

$$\langle x^2 \rangle \sim t^{1/3}$$

Details

$$i\frac{\partial}{\partial t}c_{n} = \beta \sum_{m_{1},m_{2},m_{3}} V_{n}^{m_{1},m_{2},m_{3}} c_{m_{1}}^{*} c_{m_{2}} c_{m_{3}} e^{i(E_{n}+E_{m_{1}}-E_{m_{2}}-E_{m_{3}})t}$$
Assume
$$|c_{m_{1}}^{2}| \approx |c_{m_{2}}^{2}| \approx |c_{m_{3}}^{2}| \approx \rho \quad \text{initially} \quad |c_{n}^{2}| \ll \rho$$

$$i\frac{\partial}{\partial t}c_{n} \approx P\beta\rho^{3/2}f(t) \qquad f(t) \quad \text{Random uncorrelated}$$
Assume
$$P = A \quad \beta \quad \rho \quad \text{!!!}$$

$$\left\langle |c_{n}^{2}| \right\rangle = P^{2}\beta^{2}\rho^{3}t \qquad \text{Equilibration time}$$

$$\left\langle |c_{n}^{2}| \right\rangle = P^{2}\beta^{2}\rho^{3}t \qquad F_{eq} = \frac{1}{A^{2}\beta^{4}\rho^{4}}$$
Typical size of $V_{n}^{m_{1},m_{2},m_{3}}$?

$$D = \frac{1}{T_{eq}} = A^2 \beta^4 \rho^4$$

$$\frac{1}{\rho^2} \sim m_2 = Dt = A^2 \beta^4 \rho^4 t$$

$$\frac{1}{\rho^2} \sim m_2 = \left\lceil A^2 \beta^4 t \right\rceil^{1/3}$$

Consistent

$$T_{eq} \sim t^{2/3} \ll t$$

Can it go on forever?

What happens when nearly no weight in in localization volume?

Questions

Is f(t) really random?
 What is (f(t) f(t+t))?
 What is the dependence of A on parameters ξ, β?
 Can the process go for ever?

Scaling Properties of Chaos Arkady Pikovsky

Competition

Spreading — amplitude decreases — regularity enhanced

Who wins??

$$i\frac{d}{dt}\psi(x) = -J\left(\psi(x+1) + \psi(x-1)\right) + \varepsilon(x)\psi(x) + \left|\psi(x)\right|^2\psi(x)$$

$$\mathcal{X}$$
 integer $1 \le x \le L$

 $\psi(x)$ Are dynamical variables

Initial data, nearly homogeneous spreading in space

Growth of deviations

Is it possible that chaos disappears?

Divide chain into intervals of length L_0

Number of intervals

 $\frac{-}{L_0}$

Assuming independence, if intervals large enough $\ L_0 \gg \xi$ The probability to be regular:

$$p_{reg}(W, \rho, L) = p_{reg}(W, \rho, L_0)^{L/L_0}$$

Regularity=all orbits regular

density
$$\rho = \frac{1}{L} \sum_{x=1}^{L} |\psi(x)|^2$$

$$\overline{p}_{reg}(W,\rho) \equiv p_{reg}(W,\rho,L)^{1/L} = p_{reg}(W,\rho,L_0)^{1/L_0}$$

independent of L

If no additional singularity in $\,Q\,$

Spreading No chaos Localization ?

Perturbation Theory

The nonlinear Schroedinger Equation on a Lattice in 1D

$$i \frac{\partial}{\partial t} \psi = \mathcal{H}_{o} \psi + \beta |\psi|^{2} \psi$$
$$\mathcal{H}_{0} \psi(x) = -(\psi(x+1) + \psi(x-1)) + \mathcal{E}(x)\psi(x)$$
$$\mathcal{E}(x) \text{ random} \longrightarrow \mathcal{H}_{0} \text{ Anderson Model}$$
$$\text{Eigenstates} \quad \mathcal{H}_{0} u_{m}(x) = E_{m} u_{m}(x)$$
$$\psi(x,t) = \sum_{m} c_{m}(t) e^{-iE_{m}t} u_{m}(x)$$

Perturbation theory steps

- Expansion in nonlinearity
- Removal of secular terms
- Control of denominators
- Probabilistic bound on general term
- Control of remainder
- Use perturbation theory to obtain a numerical solution that is controlled a posteriori

$$i\frac{\partial}{\partial t}c_{n} = \beta \sum_{m_{1},m_{2},m_{3}} V_{n}^{m_{1},m_{2},m_{3}} c_{m_{1}}^{*} c_{m_{2}} c_{m_{3}} e^{i(E_{n}+E_{m_{1}}-E_{m_{2}}-E_{m_{3}})t}$$

Overlap
$$V_n^{m_1,m_2,m_3} = \sum_x u_n(x)u_{m_1}(x)u_{m_2}(x)u_{m_3}(x)$$

of the range of the localization length ξ

perturbation expansion

$$c_{n}(t) = c_{n}^{(o)} + \beta c_{n}^{(1)} + \beta^{2} c_{n}^{(2)} + \dots + \beta^{N-1} c_{n}^{(N-1)} + \beta^{N} Q_{N}(n)$$

Iterative calculation of $c_{n}^{(l)}$
start at $c_{n}^{(0)} = c_{n}(t=0) = \delta_{n0}$

An example of a graph that is used to construct the general term. The graph describes an 8-th order term, $\zeta_n^{m_1m_2m_3}\zeta_{m_1}^{000}\zeta_{m_3}^{000}\zeta_{m_4}^{m_50}\zeta_{m_6}^{m_600}\zeta_{m_5}^{m_700}\zeta_{m_6}^{000}\zeta_{m_7}^{000}$.

The Bound on the remainder

$$\left|\beta^{N}Q_{N}(n)\right| \leq A(N,\gamma)\beta^{N}te^{-\gamma|x_{n}|} = Ae^{\left(\ln t - N\left|\ln\beta\right| - \gamma|x_{n}|\right)}$$

 X_n Localization center of state \mathcal{N}

For fixed order and time

$\lim_{\beta \to 0} \frac{\beta^N Q_N(n)}{\beta^{N-1}} = 0$ Expansion Asymptotic

One can show that for strong disorder

$$A(N,\gamma) \xrightarrow[\gamma \to \infty]{} 0$$

Looks that $A \sim \exp(-\gamma)$ Difficulties in the calculation of AFront logarithmic in time $\overline{x} \propto \frac{1}{\gamma} \ln t$ For limited time Localization for $|x| > \overline{x}$

Bound on error

- Solve linear equation for the remainder of order N
- If bounded to time t_0 perturbation theory accurate to that time.
- Order of magnitude estimate $\beta^N t_0 \sim 1$ if asymptotic $\beta^N N! \sim 1$ hence $t_0 \sim N!$ for optimal order (up to constants).
- $t_0 = \beta^{-1/\beta}$ validity time of perturbation theory

Summary Perturbation Theory

- 1. A perturbation expansion in β was developed
- 2. Secular terms were removed
- 3. A bound on the general term was derived
- 4. Perturbation theory was used to obtain a controlled numerical solution
- 5. A bound on the remainder was obtained, indicating that the series is asymptotic.
- 6. For limited time tending to infinity for small nonlinearity, front logarithmic in time $\overline{x} \propto \ln t$
- 7. Improved for strong disorder

Emerging Picture

- For small nonlinearity initially no spreading
- For strong nonlinearity some part does not spread
- For some nonlinearity wide regime of sub-diffusion
- Asymptotic spreading at most logarithmic (shown for limited time):
- a. perturbation theory
- b. rigorous results in the limit of strong disorder
- Unlikely that sub-diffusion continues forever:
- a. scaling theory showing that as result of spreading system becomes regular
- b. Effective noise "theories" indicate that as a result of spreading noise decays.

Coherent picture for various regimes?