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The Nonlinear Schroedinger (NLS) 
Equation
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Does Localization Survive the
Nonlinearity???

0β = ⇒ localization



Does Localization Survive the 
Nonlinearity???

1. Yes, if there is spreading the magnitude 
of the nonlinear term decreases and 
localization takes over.

2. No, may  depend on realizations or on    
found in numerical calculations.

3. No, the NLSE is a chaotic dynamical 
system. Will it remain chaotic for all 
densities??

4. No?, but localization asymptotically 
preserved beyond some front that is 
logarithmic in time 

β



Point 4, conjectured by Wang and Zhang in the limit of strong disorder:

0jtail beyond of weight < δ

there exist ( ) 2, ,C A K Aε >

So that for all ( ),At A
C
δ ε ε ε−⎛ ⎞≤ <⎜ ⎟

⎝ ⎠

tail beyond 0j K+ of weight < 2δ

hoppingε β= + 0, 0Aδ > >given

Logarithmic front 0j K+
Perturbation theory supports this conjecture for any disorder



Numerical Simulations
• In regimes relevant for experiments looks that 

localization takes place
• Spreading for long time (Shepelyansky, Pikovsky, 

Mulansky,  Molina, 
Flach, Kopidakis, Komineas, Krimer, Laptyeva, Bodyfelt)

• We do not know the relevant space and time scales
• All results in Split-Step
• No control (but may be correct in some range)
• Supported by various heuristic arguments



Pikovsky,  Sheplyansky

Slope does not change (contrary to Fermi-Ulam-Pasta) 



S.Flach, D.Krimer and S.SkokosPikovsky,  Shepelyansky
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Effective Noise Theories

• D. Shepeyansky and A. Pikovsky
• S. Flach, Ch. Skokos, D.O. Krimer, S. 

Komineas
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Questions

1. Is         really random? 
2. What is                         ?
3. What is the dependence of        on       

parameters             ?
4. Can the process go for ever?
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Scaling Properties of Chaos
Arkady Pikovsky

Competition
Spreading effective number  of degrees of freedom  increases

Spreading amplitude decreases regularity  enhanced

chaos  enhanced

Who wins??
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( ) ( 0) tt t eλδψ δψ =∼ λ Largest Lyapunov exponent

0λ > Chaos
Is it possible that chaos disappears?

Growth of deviations

Initial data, nearly homogeneous spreading  in space   



Divide chain into intervals of length 0L Number of intervals
0

L
L

Assuming independence, if intervals large enough 
The probability to be regular:
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Scaling
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Spreading

No chaos

Localization ?

If no additional singularity in Q



Perturbation Theory
The nonlinear Schroedinger Equation on a Lattice in 1D
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Perturbation theory steps

• Expansion in nonlinearity
• Removal of secular terms
• Control of denominators
• Probabilistic bound on general term
• Control of remainder 
• Use perturbation theory to obtain a 

numerical solution that is controlled a 
posteriori
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4th order, W=4, J=1

Linear
full

………
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Empirical criterion for bootstrap to hold



The Bound on the remainder
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Bound on error

• Solve linear equation for the remainder of 
order 

• If bounded to time              perturbation 
theory accurate to that time.

• Order of magnitude estimate                    if 
asymptotic                   hence                    
for optimal order (up to constants).

• validity time of perturbation 
theory  
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Summary Perturbation Theory
1. A perturbation expansion in     was developed
2. Secular terms were removed
3. A bound on the general term was derived 
4. Perturbation theory was used to obtain a 

controlled numerical solution
5. A bound on the remainder was obtained, 

indicating that the series is asymptotic.
6. For limited time tending to infinity for small 

nonlinearity, front logarithmic in time                   
7. Improved for strong disorder

β

lnx t∝



Emerging Picture
• For small  nonlinearity initially no spreading
• For strong nonlinearity some part does not spread
• For some nonlinearity wide regime of sub-diffusion
• Asymptotic spreading at most logarithmic (shown for limited time):
a. perturbation theory
b. rigorous results in the limit of strong disorder
• Unlikely that sub-diffusion continues forever: 
a. scaling theory showing that as result of spreading system becomes 

regular
b. Effective noise “theories” indicate that as a result of spreading noise 
decays. 

Coherent picture for various regimes?        


