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Nonlinear Optics
Bose Einstein Condensates (BECS)
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Nonlinearity a Fundamental Question
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The Nonlinear Schroedinger (NLS)
Equation
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Hoy (X) = —(y (X +1) +y (x=1)) + e(Qy (X)

1D continuum version
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H oy (X) = > (X) +e(X)w (X)
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£ =0= localization

Does Localization Survive the
Nonlinearity???



Does Localization Survive the
Nonlinearity???

1. Yes, If there Is spreading the magnitude
of the nonlinear term decreases and
localization takes over.

2. No, may depend on realizations or on /5
found In numerical calculations.

3. No, the NLSE Is a chaotic dynamical
system. Will it remain chaotic for all
densities??

4. No?, but localization asymptotically

preserved beyond some front that Is
logarithmic in time



Point 4, conjectured by Wang and Zhang in the limit of strong disorder:

given EZhOpping —I—ﬂ o0>0 A>0

tail beyond JO of weight < )

there exist C, E(A), K> A2
O ) _a
So that for all '[S(Ejé‘ ,8<8(A)

tail beyond jO -+ Kof weight < 25
Logarithmic front jO + K

Perturbation theory supports this conjecture for any disorder



Numerical Simulations

In regimes relevant for experiments looks that
localization takes place

Spreading for long time (Shepelyansky, Pikovsky,
Mulansky, Molina,

Flach, Kopidakis, Komineas, Krimer, Laptyeva, Bodyfelt)
We do not know the relevant space and time scales

All results in Split-Step

No control (but may be correct in some range)
Supported by various heuristic arguments



Pikovsky, Sheplyansky
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FIG. 2: {color onhine) Probability distribution w,, over lattice
sites noat W =4 for @ =1, t = 10° (top blue/salid curve)
and t = 10° (middle red/gray curve); 5 = 0,t = 10° (bottom
black curve; the order of the curves 15 given at = = 500).
At 3 =0 afit lnw, = —(v|n| + ) gives v = 0.3, v = 4.
The values of log,, w, are averaged over the same disorder
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FIG. 3: (color online) Same as in Fig. 2 but with W = 2.
At 3 =0a fit lnw, = —(v|n| + x) gives v = 0.06, y ==
—3. The values of Inw,, are averaged over the same disorder
realizations as n Fig. 1.

Slope does not change (contrary to Fermi-Ulam-Pasta)



Pikovsky, Shepelyansky S.Flach, D.Krimer and S.Skokos
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Effective Noise Theories

 D. Shepeyansky and A. Pikovsky

e S. Flach, Ch. Skokos, D.O. Krimer, S.
Komineas
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Assume Cril ~ Criz ~ Crig 0, initially Cﬁ <P
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|—C, = () f (t) f (t) Random uncorrelated
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Detaills .....



" 8 m;,m,,m * I(E,+En _Emz_Em )t
¢, =4 >, V,"™™c ‘¢, c.e 3
My ,M, , My
Assume Cril R Criz R Crig 0, initially Cﬁ <P
0 f
|—Cn ~ Pﬂp f(t) (t) Random uncorrelated
ot
Assume P — A ﬂ /0 Il
21\ _ D2 p2 .3 Equilibration time
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Equilibrium <C§ >:,0 T = 1
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Typical size of V™2 ?
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Can it go on forever?

t?° <« t

What happens when nearly no
weight in in localization volume?



Questions

1. 1s f(t) really random?

2. Whatis (f(t)f(t+t)) 2

3. What is the dependence of A on
parameters & 5 ?

4. Can the process go for ever?




Scaling Properties of Chaos
Arkady Pikovsky

Competition

Spreading =)y cffective number of degrees of freedom increases

chaos enhanced

Spreading_ ==ap amplitude decreases — regularity enhanced

Who wins??



d

v ()=- (W (x+D) +w (x=1)+ (Xw (X) +|w ()| w(x)

X integer 1< X<L

/4 (X) Are dynamical variables

Initial data, nearly homogeneous spreading in space

Growth of deviations

5'7” (t) - 5'7” (t — O)elt l Largest Lyapunov exponent
ﬂ > O > Chaos

Is it possible that chaos disappears?




Divide chain into intervals of length LO Number of intervals —

Assuming independence, if intervals large enough | >> 5
- _ 0
The probability to be regular:

Preg W, 0, L) = Preg W, p, L)™'

Regularity=all orbits regular

1
density O = EZ;l ‘W(X)‘Z

Preg W, 0) = Py W, p, L)' = p,,, W, p, L))"

independent of L
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glyap disorder 10
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glyap density 0.01 glyap density 0.01 - scaled
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| _ Py 1
Define Q = 1— ﬁreg — preg 1+1/Q
1L (P
Scaling function — b 1
caling functio Wa q(ij P:EZ!Z:l‘W(X)‘Z
X singular
Q ( ) Z!Z:l ‘W(X)‘Z conserved

Ereg = . zl—izl_pz'%
1+1/Q Q /

D- N 2.25 ~1.25
preg — preg — In preg =LIn preg ~|_p ~ L

In the limit | —> o0 In preg —>0-> preg =1
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If no additional singularity in Q

Spreading

No chaos

!
| ocalization ?



Perturbation Theory

The nonlinear Schroedinger Equation on a Lattice in 1D

0

2
|~V = Hoyw+Blw| w

Hoy (X) =—(y (X+1) +y (x=1)) + e(X)y (x)

E ( X) random  s———p 7[0 Anderson Model
Eigenstates j—[oum (X) — E (X)
ZC = t X)



Perturbation theory steps

Expansion in nonlinearity

Removal of secular terms

Control of denominators
Probabilistic bound on general term
Control of remainder

Use perturbation theory to obtain a
numerical solution that is controlled a
posteriori
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Overlap Vnml’mz’ms = Z u, (X)um1 (X)um2 (X)um3 (X)

of the range of the localization length S

perturbation expansion

Cn (t) — Cn(O) +ﬁcn(1) +ﬂ2Cn(2) + """ +ﬁN_1Cn(N_1) +ﬁNQN (n)

)

. . |
lterative calculation of Cn(

start at Cr(]O) — Cn (t = O) = 5n0
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Log power

Log power
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The Bound on the remainder

‘IBNQN (n)‘ < A(N | 7),8Nte_7|xn| _ Ae(lnt_N|ln’B|_7|X”|)

X, Localization center of state N

For fixed order and time
i 51Qu ()
Im 1
£—0 ﬂ

One can show that for strong disorder A(N , 7/) >0

Y0

= (0 Expansion Asymptotic

Looks that A ~ exp(—y) Difficulties in the calculation of A

1

Front logarithmicintime X oc—|Nt  For limited time

/4

Localization for ‘X‘ > X



Bound on error

Solve linear equation for the remainder of
order N

If bounded to time to perturbation
theory accurate to that time.

Order of magnitude estimate 8 & ~1 if
asymptotic p"'N!'~1  hence t,~ NI
for optimal order (up to constants).

t, =" validity time of perturbation
theory
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Summary Perturbation Theory

A perturbation expansion in g was developed
Secular terms were removed
A bound on the general term was derived

Perturbation theory was used to obtain a
controlled numerical solution

A bound on the remainder was obtained,
Indicating that the series is asymptotic.

For limited time tending to infinity for small
nonlinearity, front logarithmic in time X o Int

Improved for strong disorder



Emerging Picture

 For small nonlinearity initially no spreading
e For strong nonlinearity some part does not spread
 For some nonlinearity wide regime of sub-diffusion

« Asymptotic spreading at most logarithmic (shown for limited time):
a. perturbation theory

b. rigorous results in the limit of strong disorder

« Unlikely that sub-diffusion continues forever:

a. scaling theory showing that as result of spreading system becomes
regular

b. Effective noise “theories” indicate that as a result of spreading noise
decays.

Coherent picture for various regimes?



