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• Background: 

summary of Aleiner’s talk; 

the “phase diagram” and some numerical evidence 

for quantum many-body localization

• Classical many-body localization?

• Physical properties of non-Anderson insulators



Summary of Aleiner’s talk (Basko etal 2006)

• Start with strong disorder Uj and ZERO 

interactions, 

• At low temperature there only a few localized 

particle-hole excitations – and these remainparticle-hole excitations – and these remain

localized for WEAK interactions for T<Tc !

• Or, equivalently, there is a mobility edge “at”

• For a typical configuration with



MIT phase diagram

TThe infinite T trajectory

(V.O., Huse)

Tc(V)

PRB 75, 155111 (2007)

Vc

Can think of localization as a consequence of phase space restriction  

for delocalization of excitations by temperature OR bandwidth
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σ=0

(V.O., Huse)
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Many-body localization can survive at infinite (!) 

”temperature”, there is a critical interaction strength
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No thermodynamic signatures near infinite 

temperature

The many-body localization 
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β=0 Vc

Free energy is analytic

The many-body localization 

transition is a purely dynamic 

phenomenon!!!
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A general comment 

re: lattice models and T>0

• Quite generally, asymptotic low frequency and 
small q behavior at ANY finite T (even small T) is 
better represented by INCREASING T rather than 
T � 0, e.g. hydrodynamic behavior is easiest to 
observe when all other scales have been made 
very short.
observe when all other scales have been made 
very short.

• Signal-to-noise ratio is maximized by sampling 
over all configurations and/or eigenstates, i.e. at 
infinite T

• Lattice models often afford easier and higher 
quality simulations (at the expense of not 
capturing some important physics of real 
experiments �)



Numerical evidence of the many-body 

localization transition

By analogy with Anderson transition we can 

study:

a) single state properties – density of states, 

participation ratios and entanglementparticipation ratios and entanglement

or 

b) two level properties, e.g. conductivity and 

level statistics



“One parameter” finite size scaling for 

level statistics
Universality of gap 

statistics:

consider δn=En+1-En
and 

r = <δ2>/<δ>2

1/L

Wc
W

RMT Poisson

r=4/π r=2

Can be used

like a Binder

cumulant

e.g. in 

Monte Carlo 

of 3D Ising model

Wc

“Data collapse” across 3D Anderson (B. Shklovskii etal PRB ’93, I.Zharekheshev 80’s)

Upshot:

No phase transition in finite volume,

yet finite size corrections to 

universal level statistics 

can be used to find and study

the critical point



We used two-gap distribution function

• Instead consider a dimensionless number constructed from two

adjacent gaps: 

rn=min (δn, δn+1)/max (δn, δn+1)

• Two universal distributions of r can be identified corresponding to 

Wigner-Dyson and Poisson stats

PRB 75, 155111 (2007)

Metal

Insulator

•More simply <r> = 2 log 2 -1 in the insulator, 

while <r>~ 0.53 in the diffusive phase, <r>c=?

p(r)=2/(1+r)2

Critical 

distribution?

PRB 75, 155111 (2007)



L=16

L=8

Crossover sharpens (but drifts southeast)

RMT value  r ~ 0.53

L=8

PRB 75, 155111 (2007)

Poisson value <r>= 2 log 2 -1

Critical stats?



Can also look at finite freq. conductivity vs. size

Weak disorder �

 stronger disorder

ω

 stronger disorder

yet stronger disorder �

Preliminary comments: 

• non-Mott AC behavior

• stronger finite size effects than either clean interacting model or Anderson insulator

• decent statistics/self-averaging of finite frequency response – events are not rare

• is it nonlinear hydrodynamics similar to clean interacting model? PRB 73, 035113 (2006)

ω

ω



Upshot of quantum numerics

• Good news – crossover sharpens with system size, 
indicative of a phase transition

• Bad news – no straightforward fit to simple one 
parameter scaling, leaving room for other, non-critical 
interpretations...e.g. breakdown of the insulator.interpretations...e.g. breakdown of the insulator.

• Quite generally, some theoretical expectation is 
needed to interpret numerics, e.g. one parameter 
scaling, expected non-Mott AC law

• How can one study and ”prove” existence of many-
body insulator numerically without studying criticality?

See also, Pal/Huse arXiv:1003.2613



The other $10^6 question:

Is quantum mechanics REQURED 

for many-body localization?

• Lore: macroscopic, hydrodynamic phenomena can be 
consistently understood by coarse-graining quantum 
dynamics into effective classical models (usually with 
diffusion and noise terms)

• Many-body exceptions: superconductors and 
superfluidssuperfluids

• Anderson/Thouless/Basko etal: as one coarsegrains, 
the effective D(L) is reduced to zero and conventional 
classical description fails

• Is many-body localization transition an intrinsically 
quantum phase transition (at infinite T?!) or can one 
find and use effective classical models to study this 
phenomenon more efficiently?



Any classical many-body localization?

• Finite temperature transport in all quantum models can usually 
be discussed in terms of classical diffusive models (possibly even 
strongly non-linear, e.g. PRB 73, 035113 (2006) )….

• Are all generic classical models diffusive?

Two extreme regimes: 

• J=0 – each spin precesses in it’s own random field hj (orientation and 

magnitude) – no transport, but the model is “integrable” and not generic

• hj=0 – spin and energy diffusion (e.g. numerics D. Landau et.al.)

• How are these regimes “connected”?

• I.e. what is (energy) conductivity/diffusion constant 

as a function of J/|h|, esp. as J ���� 0?



The answer Clean limit,

good diffusion

• Surprise: 

an ENORMOUS suppression of diffusion already for moderate disorder

• Conjectures -- no transition, results are not dimension specific.  



How to measure diffusion near 

equilibrium: current or density?
• Definition via slow density relaxation:

• Often easier obtained via conductivity (Kubo+Einstein), by 
integrating “fast” current relaxationintegrating “fast” current relaxation

• Localization -- the integral vanishes!

• The challenge – accurately compute the long-time tail of <jj>

• Will use an “exact simulation” with discrete time steps (local 
map?) – highly efficient for going to long times and only 
accumulating roundoff errors



Optical conductivity vs. J

κ/J2
uncorrelated spins

ω

ω* ~ J

Correlated 

few spin contribution



Optical conductivity vs. J

κ/J2

ω/J

Low freq. DC limit? 

powerlaws?



Localization and long time tails: 



Extrapolation past long time tails: diffusion

Appear robust w.r.t. to changes in disorder strength or type

A very strong violation of mode-coupling prediction (Ernst etal 1973–90’s) 

which has been confirmed for a wide range of disordered stochastic systems

What is different here? – strong nonlinearity, apparently

(1+t J)-0.25



Are these small numbers 

real or computer artifacts?

Stability w.r.t. roundoff errors can be studied in detail – these numbers are real.



Is this really diffusion? finite size/time effects?

J=0.4,0.32,0.17

Red data – finite size effects in small rings (10~20 spins)

Interestingly, C=10 throughout, despite large changes in D and inverse RC times



Microscopics of the insulating regime

Define a sample specific semilocal Kubo conductivity

Useful facts:

•positive definite for all t

•short times – computable analytically, “follows” disorder (i.i.d. etc)

•Intermediate times??????

• “infinite” time, DC – uniform (follows from energy conservation), 

the magnitude specifies sample specific DC conductivity



Semilocal Kubo: localized “noise”

r
r



Longer time tails and approach to diffusion

r r



New (?) classical phenomena

• Very strong suppression of diffusion already at infinite 
temperature 

• this phenomenon is clearly unrelated to anything 
thermodynamic – the free energy is trivial

• Strong non-analytic corrections to diffusion at finite frequency –• Strong non-analytic corrections to diffusion at finite frequency –
at odds with existing (and otherwise successful) theory; also 
accompanied with coarsening like spatial current-current 
correlations

• A sort of localized chaos originates from isolated resonances of 
2~3 spins at short times but ultimately leaks out into detuned 
bulk of sample. Mechanism? Effective model/description?



Physical properties of non-Anderson 

insulators

• Anderson insulators are relatively well 
understood, e.g. Mott AC law, infinite lifetimes 
for local excitations. Are interacting insulators 
(beyond Efros-Shklovskii) the same?

• Analogy: Fermi gas is distinguishable from Fermi • Analogy: Fermi gas is distinguishable from Fermi 
liquid (via FL parameters, zero sound, transport)

• Some thoughts/examples: 

(i) current bi-stability near Tc (Basko etal); 

(ii) non-Mott AC behavior

(iii) dephasing by Hartree



Examples of non-Mott AC laws

• If                              then  

• Many linear/single particle examples with 0<x<1:

Quantum Hall effect (Meden/Sinova/Girvin): 
delocalized states at a single energy (a set of measure 
zero), at finite T zero), at finite T 

also long range hopping problems; random classical 
transmission lines with broad disorder distributions

• Sub-diffusive spreading in non-linear problems – talks 
over past 5 days (including experiments?)

• Numerical evidence from earlier in this talk



Dephasing by Hartree

• Consider a very simple many-body Hamiltonian

with interactions rapidly decaying in space (e.g. with interactions rapidly decaying in space (e.g. 

exponentially).  Single site correlations computed with 

generic initial configuration show rapid dephasing – a 

large number of larmor frequencies originating from 

non-dynamic eigenstate-specific shifts via interactions 

(see also Linden et.al. PRE 79, 061103 (2009))



Broad conclusions and outlook

• Numerical studies of dynamics with strong disorder 
and interactions are not only feasible but they tend to 
produce interesting and often surprising results, 
quantitatively AND qualitatively, especially, if effort is 
taken to shrink intermediate scales, e.g. by going to 
high temperaturehigh temperature

• Presented examples: disordered spinless fermions and 
classical spins

• Some thoughts towards experimental search for non-
Anderson (interacting) insulators: anomalous low 
frequency current dynamics and state dependent 
dephasing of local excitations


