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I. Introduction.

We study nonlinear Schrödinger equations on the torus in arbitrary
dimensions d :

−i u̇ = −∆u + |u|2pu + h.o.t., p ∈ N arbitrary,

where the h.o.t. are analytic and could have x dependence, which
break translation invariance. As is well known the nonlinear terms
correspond to interaction among particles.

The above equation can be put in the infinite dimension
Hamiltonian form:

i u̇ = −
∂H

∂ū
,

with u, ū as canonical variables.



Unlike linear (time independent) equations, the solutions to
nonlinear equations do not always exist. In fact this is the central
issue in nonlinear PDE. Generally speaking for linear equations, we
work in L2. The space where quantum mechanics take place and
there is global (in time) existence.

For nonlinear equations, we cannot always work in L2. We have to
work in more restricted spaces, the Sobolev spaces Hs . For
example, H1 means that we also require the function to have 1
derivative (in the appropriate sense). Since NLS is Hamiltonian, it
has 2 conserved quantities, namely mass and energy. So the L2

and H1 norms of the solution are conserved.



It is well known that for d ≥ 3 and p large enough, p > 2
d−2 , NLS

is energy supercritical. For example, in d = 5, the cubic NLS is
supercritical, i.e., the local well-posedness is in a Sobolev space Hs

for s > 1, above the Hamiltonian H1 topology, where there is a
conservation law.

So there is no a priori global existence, not even for small data
because the equations are non dispersive, i. e., the L∞ norms of
the eigenfunctions do not tend to 0 as the eigenvalues tend to
infinity and the L∞ norms of the solutions do not tend to 0 as
t →∞.



We want to remark that there is a correspondence between
renormalizability of quantum field theory and global existence of
NLS. Specializing to the cubic NLS and φ4, we know that in d = 2
and 3, cubic NLS has a priori global existence from energy
conservation; while φ4 is super-renormalizable. In d = 4, the cubic
NLS is energy critical, global existence is expected but not proven
at this writing; while φ4 is renormalizable. For d ≥ 5, cubic NLS is
energy supercritical, global existence unknown; φ4 is not
renormalizable.



The main purpose of this talk is to present a theory on
supercritical NLS. In the last part of the talk we will also make
connections with discrete NLS with random potential.

This nonlinear theory is constructive, i.e., existence is via explicit
construction. This is in contrast with the known PDE theory,
which relies on conservation laws and therefore can only deal with
subcritical or critical NLS, i.e. the corresponding field theory is
either super-renormalizable or renormalizable.

This new theory has both a geometric and an analytic part. It
develops fine analysis of the resonance geometry given by algebraic
equations to establish a spectral gap in order to construct
quasi-periodic solutions (of arbitrary number of frequencies) and
consequently deduce almost global existence for Cauchy problems
for supercritical NLS.



We note that for subcritical (or critical) NLS, one linearizies about
the Laplacian and uses Lp estimates of the eigenfunction solutions
(Strichartz). Here we go one step further and linearize about
appropriate approximate quasi-periodic solutions.

We note that since Hs (s > 1) cannot be controlled by H1, the
general problematics here is very different from obtaining global
existence in H1 for critical NLS or for subcritical NLS in Hs for
s < 1 (infinite energy solutions), which are locally controlled by H1

[B].

Remark. The main new ingredient here is geometric. It is about
dealing with a manifold of singularities, instead of isolated ones,
which is the usual case in dynamical systems approach, cf. [BG,
B,...]. The equations in these papers are essentially well posed in
L2 and therefore global existence.



The main difficulty for establishing the spectral gap is the lack of
convexity due to the presence of the first order operator i∂/∂t.
The work is therefore to bypass that and ensure “effective
convexity” using the algebra afforded by the translation invariance
over the integers Z

d .



II. Quasi-Periodic Solutions and Almost Global

Existence for Supercritical NLS

The solutions to the linear Schrödinger equation on the d-torus:

−i u̇ = −∆u,

are provided by spectral theory. They are linear combinations of
the eigenfunction solutions:

u = e−iωj te ij ·x .

Since ωj = j2, e. v. of the Laplacian, they are time periodic. In
general, they are time quasi-periodic with several frequencies.
When the amplitude of u is small, it is therefore natural to ask
about the persistence of such solutions under nonlinear
perturbations (stability issue). These solutions play a related role
in the nonlinear setting by providing a basis for the (smooth) flow.



We seek q-p solutions with b frequencies to

−i u̇ = −∆u + |u|2pu + h.o.t., p ∈ N arbitrary,

in the form

u =
∑

û(n, j)e in·ωte ij ·x , (n, j) ∈ Z
b+d ,

where h.o.t. is analytic and depends on both u and x and ω is to
be determined. This is the so called amplitude-frequency
modulation, fundamental to nonlinear equations. For linear
equations, ω are the eigenvalues, they are fixed once and for all. In
this language, a solution u(0) to the linear equation can be written
as

u(0) =
∑

j

û(ej , j)e
−iω

(0)
j

t
e ij ·x , (n, j) ∈ Z

b+d ,

where ej is a basis vector in Z
b and ω

(0)
j = ej · ω

(0) = j2.



Theorem 1. [W] For any b, there exists a set Ω ⊂ (Rd)b of
codimension 1. Assume j = {jk}

b
k=1 ∈ (Rd)b\Ω and

u(0) =
∑b

k=1 ake−ij2
k
te ijk ·x a solution to the linear equation with b

frequencies and a = {ak} ∈ (0, δ]b. There exist C , c > 0, such
that for all ǫ ∈ (0, 1), there exists δ0 > 0 and for all δ ∈ (0, δ0) a
Cantor set G with

meas {G ∩ B(0, δ)}/δb ≥ 1− Cǫc .

For all a ∈ G, there is a quasi-periodic solution of b frequencies to
the nonlinear Schrödinger equation

u(t, x) =
∑

ake−iωk te ijk ·x +O(δ3),

with basic frequencies ω = {ωk} satisfying

ωk = j2k +O(δ2p).

The remainder O(δ3) is in an appropriate analytic norm on T
b
+d

.



To state the almost global existence result for Cauchy problems, it
is convenient to write the nonlinear equation as

−i u̇ = −∆u + δ|u|2pu, p ∈ N arbitrary, (∗)

on T
d and consider initial data of size 1. (The same construction

works with higher order terms which can have explicit x

dependence.) We say an entire function is generic if its Fourier
support is in Ωc . We note that it is the same good geometry as in
Theorem 1.



Theorem 2. [W] Let u0 = u1 + u2. Assume u1 is generic and
‖u2‖ = O(δ), where ‖ · ‖ is an analytic norm on T

d . Then there
exists an open set A ⊂ B(0, 1) of positive measure, such that for
all A > 1, there exists δ0, such that for all δ ∈ (0, δ0), if {û1} ∈ A,
then (*) has a unique solution u(t) for |t| ≤ δ−A satisfying
u(t = 0) = u0 and ‖u(t)‖ ≤ ‖u0‖+O(δ), meas A → 1 as δ → 0.



We note that the above result holds in arbitrary dimension d and
for arbitrary nonlinearity p. Recall that for d ≥ 3 and p > 2

d−2 , the
nonlinear Schrödinger is energy supercritical and there is no a priori
global existence. Theorem 1. is global, although the solutions are
not for fixed initial data. Theorem 2. is the Cauchy consequence of
Theorem 1. This is reasonable as the known invariant measure for
smooth flow is supported by KAM tori.



III. Semi-Classical Corollaries

We have the following semi-classical analogues, which reveal
further the geometric nature of this construction.

Corollary 1. [W] Assume

u(0)(t, x) =

b∑

k=1

ake−ij2
k
te ijk ·x ,

a solution to the linear equation is generic with {jk}
b
k=1 ∈ [KZ

d ]b,
K ∈ N

+ and a = {ak} ∈ (0, 1]b = B(0, 1). There exist C , c > 0,
such that for all ǫ ∈ (0, 1), there exists K0 > 0 and for all K > K0

a Cantor set G with

meas {G ∩ B(0, 1)} ≥ 1− Cǫc .



For all a ∈ G, there is a quasi-periodic solution of b frequencies to
the nonlinear Schrödinger equation:

u(t, x) =
∑

ake−iωk te ijk ·x +O(1/K 2),

with basic frequencies ω = {ωk} satisfying

ωk = j2k +O(1).

The remainder O(1/K 2) is in an analytic norm about a strip of
width O(1) in t and O(1/K ) in x on T

b+d .



Corollary 2. [W] Assume u0 is generic with frequencies
{jk}

b
k=1 ∈ [KZ

d ]b, K ∈ N
+. Let B(0, 1) = (0, 1]b. Then there

exists an open set A ⊂ B(0, 1) of positive measure, such that for
all A > 1, there exists K0 > 0, such that for all K > K0, if
{|û0|} ∈ A, then the nonlinear Schrödinger equation has a unique
solution u(t) for |t| ≤ K−A satisfying u(t = 0) = u0 and
‖u(t)‖ ≤ ‖u0‖+O(1/K 2), where ‖ · ‖ is an analytic norm (about a
strip of width O(1/K )) on T

d , moreover meas A → 1 as K →∞.

Remark. In the above two corollaries, the small parameter is
extracted from the geometry of the bi-characteristics. Corollary 1
is new to the KAM context.



Corollaries 1 and 2 construct quantitative large kinetic energy
solutions, which are of relevance to the quantum Euler equations
(BE condensation) after transformation to action, angle
(hydrodynamic) representation of NLS. They could provide global
or almost global singular solutions.



IV. Proof of Theorems 1 and 2.

The proof of the theorems uses a Newton scheme and relies on
analyzing connected sets on the bi-characteristics

C = {(n, j)| ± n · ω(0) + j2 = 0},

in order to achieve amplitude-frequency modulation. The main
difficulty is that the Hamiltonian is in infinite dimensions and the
Kolmogorov non-degeneracy condition (or its weaker versions) are
completely violated. This is why we first need to do a geometric
selection (excluding Ω) to ensure a spectral gap in order to have
convergence of the Newton scheme.



1d periodic, manifold of singularities:



The new ingredient is a fine analysis of the resonances. This is
made possible by studying systems of polynomial equations and
obtaining separation property by avoiding flat pieces so that the
connected (by convolution) sets on C are of sizes
≤ max (d+2, 2b). Algebraically this is a dimension reduction
argument reducing to polynomials in 1 variable, which generically
have separated zeroes. The spectral gap here is brought on by
algebraically avoiding the non-convex directions.

Remark. In fact, requiring the resultants to be non-zero gives the
main part of the genericity conditions on u(0) or u1.

We conclude the talk by making a few remarks on the discrete NLS
with disorder and putting it under the same roof as NLS on torus.



V. NLS with Random Potential.

We consider the lattice nonlinear random Schrödinger equation in
d = 1:

i q̇j = vjqj + ǫ1(∆q)j + ǫ2|qj |
2qj , j ∈ Z

d ,

where V = {vj} is a family of independent identically distributed
(i.i.d.) random variables in [0, 1] with uniform distribution,
0 < ǫ1, ǫ2 ≪ 1.
Theorem 3. (with Zhifei Zhang, 2008) Given A > 1 and δ > 0,
for all initial datum q(0) ∈ ℓ2, let j0 be such that

∑

|j |>j0

|qj(0)|2 < δ,

(which is always possible by choosing j0 large enough), then for all
t < ǫ−A and 0 < ǫ < ǫ(A),

∑

|j |>j0+A2

|qj(t)|
2 < 2δ,



with probability ≥ 1− exp(− j0
A2 e

−2A2
ǫ

1
CA ).

So there is Anderson localization for arbitrary long time for
arbitrary ℓ2 datum. If one views the linear Schrödinger equation as
an approximation, then Theorem 3 validates the utility of (linear)
Anderson localization theory.

There has been quite a bit of reaction to the above result since.
One of the persistent questions regards the small parameter ǫ1,
which was not needed for the linear theory in d = 1 due to the
Furstenburg theorem. Here I want to make a comment on this. It
is in fact related to the last remark about the resultant.

Furstenburg theorem or more generally linear Anderson localization
requires that appropriate pairs of eigenvalues are not too close. It
is a condition on linear combination of 2 eigenvalues only, which
can be expressed in terms of the resultant of 2 polynomials.
Therefore this is essentially an algebraic property and does not
require information on eigenfunctions.



On the other hand, nonlinear localization needs bounds on more
general linear combinations of eigenvalues, which requires detailed
information on the support of the eigenfunctions. Furstenburg or
linear Anderson localization only gives that the eigenfunctions are
localized, but the localization is not uniform with respect to energy.
This does not suffice to have the necessary eigenvalue bounds to
start nonlinear localization. Hence the raison d’être of small ǫ1.

Finally we note that NLS on the torus is elliptic, while lattice NLS
with random potential is not. The randomness replaces ellipticity,
but there is lack of uniformilty, which is also present for elliptic
problems in d ≥ 2 due to degeneracy. In the elliptic case, we
overcame the difficulty by appealing to geometry and algebra. In
the non-elliptic case, we believe the difficulty lies in dealing with
highly (singular) dependent random variables. Afterwards the
mechanism is akin to the elliptic case in Theorems 1 and 2.


