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Decaying Burgers Turbulence:

• The problem of analysis of solutions of the (unforced) Burgers equation

∂tv + (v∇)v = ν∇2v, v(x, t = 0) = −∇Ψ0(x), ν > 0

with random initial condition, usually assumed to be Gaussian and specified in terms
of the two-point correlation function v(x, 0)v(x′, 0), or alternatively Ψ0(x)Ψ0(x′).
General reference: Bec & Khanin Physics Reports 447 (2007), 1

• The problem appears as an important reference model not only in fluid dynamics,
but also in such diverse physical contexts as statistics of growing interfaces
(Kardar, Parisi, Zhang ’95), statistical mechanics of systems with quenched
disorder Balents, Bouchaud, Mezard ’95; Le Doussal ’08), and formation of large
scale structures in cosmology (Gurbatov, Saichev, Shandarin ’89; Vergassola,
Dubrulle, Frish, Noullez ’94) . In particular, the cosmological applications
stimulated interest in dBt for vanishing viscosity ν → 0 and scale-free power-law
random initial conditions:

v(x, 0)v(x′, 0) ∼ |x− x′|−n−1 at large distances



Cole-Hopf solution, mapping to Statistical Mechanics:

Exact solution to unforced Burgers Equation with any (sufficiently fast decaying) initial
condition can be written in terms of the "effective potential"

Hx(y) = Ψ0(y) +
1
2t

(x− y)2

as

v(x, t) = −2ν∇x ln Z, Z(x, t) =
∫

e−
1
2νHx(y) dy

(4πνt)d/2

Obviously Z can be interpreted as the partition function emerging in Statistical
Mechanics of a particle equilibrated in the energy potential Hx(y) at effective
temperature T = 2ν. In the inviscid (= zero temperature) limit finding the velocity
profile thus amounts to solving the minimization problem

v(x, t) = ∇x

[
min

y
Hx(y)

]
=

1
t
[x− ymin(x, t)]

which generically leads to formation of shock patterns - surfaces of discontinuities
in the velocity field. Nothing interesting is generally expected to happen for finite
viscosity ν > 0.



Scale-free energy spectrum in 1D:

scale-free power-law random initial conditions:

v(x, 0)v(x′, 0) ∼ |x− x′|−n−1 at large distances

It is conventional characterize the velocity field v(x, t) via the "energy spectrum"

E(k, t) =
1
2π

∫
v(x, t)v(0, t) exp ikx dx.

The scale-free random initial conditions for v(x, 0) = ∂xΨ0(x) imply for the initial
energy spectrum E(k, 0) ∼ |k|n, k → 0 and falls off quickly for k À 1. For n > 1 the
corresponding potential Ψ0(x) is a random stationary function with finite variance

[Ψ0(x)]2 =
∫

E(k, 0)dk
k2 < ∞ ("short-ranged" disorder). For −1 < n < 1 ("long-

ranged" disorder) Ψ0(x) has stationary increments: [Ψ0(x)−Ψ0(x′)]
2

< ∞. For
n < −1 only the initial velocity field v(x, 0) may have stationary increments (e.g
Brownian-motion type velocity).



The picture of decaying Burgers turbulence in d = 1:

Self-similar initial conditions: Ψ0(x)Ψ0(x′) ∼ |x− x′|−n+1, Inviscid limit ν = 0.

Exactly solvable cases:
(i) Brownian-motion initial potential (n = 0) ( Burgers ’74) . (ii) Delta-correlated initial potential
(n = 2) (Kida ’79). (iii) Brownian-motion type initial velocity (n = −2) ( Sinai ’92).

For general n it is commonly accepted that:
(i) one-point p.d.f. for the velocity v(x, t) is always Gaussian
(ii) the energy decay E(t) = v(x, t)2 =

∫
E(k, t), dk is governed by the self-similar

evolution E(k, t) = L3(t)
t2

Ẽ [kL(t)] with the characteristic lengthscale L(t).

General qualitative arguments ( see Gurbatov et al. ’91;’97)) yield that in the long-
ranged case n < 1 the lengthscale evolves as L(t) ∼ t2/(3+n) so that E(t) =

v(x, t)2 ∼ L̇2 ∼ t−
2(n+1)

n+3 . In the the short-ranged potential n > 1 we have, in
contrast, the Kida’s decay laws: L(t) ∼ t1/2/(ln t)1/4 and the energy decay E(t) ∼
1/t
√

ln t. Some subtle violation of self-similarity occurs for 1 < n < 2.
The limiting case n = 1 has not been studied yet and is our main object of interest.



Logarithmically-correlated random potential and freezing:

For n = 1 the initial velocity decays as < v(x, 0)v(x′, 0) >∼ |x−x′|−2 which implies
for the potential

Ψ0(x)Ψ0(x′) = −2 ln [|x− x′|/L] , ε < |x− x′| < L

where L À 1 and ε ¿ 1 are the infrared and ultraviolet cutoff scales. We further
assume Ψ0(x)Ψ0(x′) = 2 ln L/ε for |x − x′| ≤ ε and Ψ0(x)Ψ0(x′) = 0 for
|x− x′| ≥ L.
Statistical mechanics of a single particle in random logarithmically correlated
landscape was recently under intensive investigation (Chamon, Mudry et al. ’96;’97
Carpentier & Le Doussal ’01; YVF & Bouchaud ’08) which provided evidences in
favour of existence of a freezing transition at the temperature T = Tc = 1.
A pecular mechanism for such freezing was revealed by YVF, Le Doussal &
Rosso ’09 : it was conjectured that all thermodynamic quantities which in the high-
temperature phase T > Tc happen to be invariant with respect to the duality
transformation T → 1/T freeze at the self-dual point Tc = 1, that is retain down
to zero temperature the value they acquired at the critical point T = Tc.



Statistical mechanics in random potential and Burgers velocity:

In the language of statistical mechanics with T = 2ν the velocity p.d.f. is given by

P(v) = δ

(
v +

1
t
≺ y ÂT

)
where ≺ O ÂT= Z−1

∫
dy√
2πTt

O(y)e−H0(y)/T

whereH0(y) = Ψ0(y)+ y2

2t and we set x = 0 in view of the translational invariance
of the disorder. To understand better thermodynamics of our system and the nature
of the anticipated freezing transition it turns out to be instructive to consider also a
different object:

PY (Y ) = ≺ δ(Y − y) ÂT =
1
Z

e−H0(Y )/T

interpreted as the averaged p.d.f. of the coordinate of a particle equilibrated at
a given temperature T in the random energy landscape H0(Y ). At T → 0 the
thermal average is obviously dominated by the deepest minimum of the landscape
whose position Ymin fluctuates from one realization of disorder to the other. This
mechanism immediately implies for velocity p.d.f. in zero viscosity (= T → 0) limit
the relation

P(v)|T=0 = tPY (vt)|T=0



Statistical mechanics in random potential and λ- Hermite ensemble:

The disorder averaging procedure for PY (Y ) can be performed via the standard
replica trick after representing Z−1 = Zn−1|n→0 and using the Gaussian nature of
the random potential Ψ0(y) by employing Ψ0(y)Ψ0(y′) = −2 ln [|y − y′|/L]. One
finds

PY (Y ) = lim
n→0

〈
1
n

n∑

j=1

δ
(
Y − zj

√
Tt

)〉

n,−γ

where γ = 1/T 2 > 0 and we have defined for 1 ≤ n < 1/γ

〈. . .〉n,λ =
1

Sn(λ)

∫ ∞

−∞
(. . .)

n∏

i<j

|zi − zj|2λ
n∏

j=1

dzj√
2π

e−
z2
j
2 ,

with Sn(λ) =
∏j=n

j=1 [Γ(1 + jλ)/Γ(1 + λ)] being the famous Selberg integral. For
finite integer n ≥ 1 and λ > 0 the above expression is nothing else but the mean
density of the so-called λ-Hermite ensemble of n × n random matrices introduced
by Dumitriu & Edelman ’02 .
Note that the corresponding random matrix-like integrals are still convergent for
λ = −γ as long as 0 < γ < 1. The replica limit implies n → 0.



Statistical mechanics in random potential and λ- Hermite ensemble:

Although a closed-form expression for the eigenvalue density for λ-Hermite
ensemble does not seem to be available Dumitriu & Edelman ’02,’06 developed
analytic tools allowing one to calculate a few lower moments of that density.
Performing the analytical continuation n → 0 and λ → −γ we obtained the lower
nonvanishing moments M2q =

∫ PY (Y )Y 2qdY up to 2q = 16. We present below
the corresponding cumulants C2q:

C2 = t
(
T + T−1

)
, C4 = −t2, C6 = 2t3

(
T + T−1

)

C8 = −t4
[
26 + 6

(
T 2 + T−2

)]
, C10 = t5

[
300

(
T + T−1

)
+ 24

(
T 3 + T−3

)]

and similar but longer expressions for C2q, q = 6, 7, 8.

The main feature apparent from the above (and proved in full generality) is that all
the cumulants (and hence the whole function PY (Y )) are invariant with respect to
the duality transformation T → 1/T . Employing the freezing conjecture we thus
predict that the whole probability distribution PY (Y ) freezes at the critical point
T = Tc = 1 providing a vivid picture of what freezing entails.



Freezing scenario vs. numerics for zero viscosity velocity moments:

If this scenario were correct, the values of the above cumulants evaluated at
T = 1 should immediately provide, in view of the discussed zero-temperature
correspondence, the cumulants of the velocity p.d.f. in zero viscosity limit:

v2|ν=0 = 2
t , v4

c
=

[
v4 − 3v2

2
]
|ν=0 = − 1

t2
, etc.
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Figure 1: Numerical evaluation of v2 and v4
c

in the inviscid limit ν = 0 for discretized Burgers
equation (number of points M = 210, 214, 218) with periodic version of the logarithmically
correlated initial potential compared with the theoretical prediction at t = 1 (averaging is
peformed over 106 samples). Small oscillations are observed in v4

c
when periodic boundary

conditions cannot be neglected, and disappear with increase of M .



Freezing scenario vs. numerics for second moment at all temperatures:

Moreover, by employing the exact relation ≺ y2 ÂT = t2≺ y Â2
T + Tt valid at any

temperature due to statistical translational invariance of the random potential
Ψ0(x) the above results predict v2 = ≺ y Â2

T = 1
t(2 − T ) in the whole low-

temperature phase T < Tc = 1.
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Figure 2: The top solid line is the analytical prediction for≺ y2 ÂT (from C2 in the text, with
t = 1), and the bottom solid line v2 = ≺ y2 ÂT − T . Circles are simulations with M = 214

points, triangles are simulations with M = 218 points, (averaged over 5× 104 samples).



Freezing manifestations in p.d.f. of local velocities:

We expect that the freezing transition induces changes in the shape of the p.d.f. for
velocity v(x, t) = −2ν∂x ln Z(x, t) at finite critical viscosity νc(≡ Tc/2) > 0.
Consider the generating function calculated via a variant of the replica trick:

G(q) = ln [1− iq∂x lnZ(x, t)] = limn→0
1
n(Wn(q)−Wn(0))

where for any integer n ≥ 1

Wn(q) =
∑n

k=0

(
n
k

)
(iqT )k(∂xZ)k

Zn−k

Following the same steps as before we arrive at the identity

Wn(q)

Ln2γ(
√

Tt)−n(n−1)γSn(−γ)
=

〈∏n
j=1(iq

√
T
t zj + 1)

〉
n,−γ

, γ = 1/T 2

To continue to n = 0 we exploit a duality relation for λ- Hermite ensemble
〈∏n

j=1(zj + τ)
〉

n,λ
=

∫∞
−∞

dw√
2π

e−
w2

2

(
τ + i

√
λw

)n

where τ is an arbitrary parameter. Though originally proved by Dumitriu & Edelman ’02 for
integer n ≥ 1 and λ > 0, we analytically continue λ = −γ with 0 < γ < 1 and perform
n → 0. In this way we recover the velocity p.d.f. P(v) which turns out to be a simple Gaussian
with zero mean and variance v2 = 1/Tt. Such a calculation is valid only for T > Tc = 1.



Freezing is equivalent to the spontaneous breakdown of replica symmetry:

It turns out that freezing in the low-temperature phase T < Tc = 1 can
be successfully accounted for by incorporating the mechanism of spontaneouus
replica symmetry breaking (RSB). In doing this we adopt to the continuum model
the scheme of incorporating one-step RSB mechanisms proposed in Bouchaud &
Mezard ’97 for the simplest case of discrete Random Energy Model without spatial
correlations.

The basic idea behind this scheme is that for T < Tc and 0 < n < 1 the configurations
which give the leading-order contributions to the random-matrix integral over z1, . . . , zn are
obtained by grouping n replica indices into k = n/m groups of m replica each, and assuming
that all coordinates zi for the replica indices i1, . . . , im inside the same group are "frozen"
around the common value, i.e. approximately equal: zi1

≈ zi2
≈ . . . ≈ zim. At the same

time k coordinates of the centres of masses of different groups play the role of new effective
degrees of freedom and can take any values. Integrating out the "frozen" coordinates and
taking into account the number of ways we can built the groups we find that the expression
becomes proportional to the m− dependent large factor exp−

[
n

(
1
m + m

T2

)
ln ε

]
. The

parameter m is then found from extremizing (in fact, minimizing) this factor, which selects
m = T as long as T < Tc = 1.



Up to factors tending to unity in the replica limit n → 0 we arrive at the relation

Wn(q) ∼
〈

k∏

l=1

(
1 + iq

√
tzl

)m
〉

k=n
T ,−γm2=−1

, m = T (1)

Finally, we notice that one can perform the replica limit n → 0 by exploiting one more, rather
non-trivial, duality relation for λ−Hermite RMT ensemble discovered by Desrosiers ’09 for
k, m positive integer, λ > 0 and any complex s:〈∏k

l=1 (zl + s)
−mλ

〉
k,λ

=
〈∏m

l=1 (zl + s)
−kλ

〉
m,λ

We conjecture that the relation remains valid if continued to λ → −1 and furthermore to
0 < k, m < 1.
This allows to perform straightforwardly the replica limit n → 0 leading to the
expression of the velocity p.d.f

P(v) = limm→T limλ→−1

〈
δ(v + z1√

t
)
〉

m,λ

as eigenvalue density in the λ−Hermite ensemble. As a consequence, at T = 0
it indeed simply relates to the corresponding limit of the distribution PY (Y ) in full
agreement with the freezing scenario.



At any 0 ≤ T ≤ 1 we then can find a few low velocity cumulants explicitly. In particular

v2|T<1 = 1
t(2− T ),

[
v4 − 3v2

2
]
|T<1 = − 1

t2
(1− T )2

which fully agrees with the zero-viscosity limit and also matches the high-temperature phase
moments at the transition point Tc = 1. These results are in agreement with numerics, and
show that the velocity p.d.f. P(v) is non-Gaussian everywhere in the low-viscosity phase. The
shape is consistent with a negative kurtosis and the difference increases at low temperature.
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Figure 3: Non-Gaussian character of the rescaled velocity ṽ = v/
√

v2 below
the freezing temperature, as shown by the difference between their cumulative
distributions. Simulations are performed over 106 samples of M = 218 points and
a = 0.002. Circles are data at T = 0, Squares are data at T = 0.5 < Tc.



Conclusions & Discussion:

• Combining the methods of statistical mechanics with insights from the random matrix
theory we reveal a phase transition with decreasing viscosity ν at finite ν = νc > 0

in one-dimensional decaying Burgers turbulence with a power-law correlated random
profile of Gaussian-distributed initial velocities v(x, 0)v(x′, 0) ∼ |x − x′|−2. The
low-viscosity phase exhibits non-Gaussian one-point probability density of velocities,
reflecting a spontaneous one step replica symmetry breaking (RSB) in the associated
statistical mechanics problem. We obtain the low orders cumulants analytically which
favourably agree with numerical simulations.

• RSB mechanisms in Burgers turbulence were exploited earlier by Bouchaud and Mezard,
’96’97 in their mean-field treatment of the short-ranged correlated Kida model in zero-
viscosity limit. Our model (and results) are essentially non mean-field in nature. In
particular, the shock size distribution computed numerically is found to be different from
the Kida model. We also got some analytical insights for the finite viscosity ν > 0

behaviour of the velocities in the Kida model (velocity distribution, energy decay) and reveal
some freezing-like crossover. For example for the energy decay the approach gives

v2 = 1
t((

σ
ln(2πt/ρ))

1/2 − 2ν) as long as t < tc = 1
4πνe

σ
4ν2 , and v = 0 for t > tc

Here ρ = m/2ν satisfies σρ2 = 1 + ln(2πt/ρ), and m must be in the interval [0, 1]



Our method was based on a few assumptions, most importantly
(i) freezing scenario and its manifestation via replica symmetry breaking
(ii) ability to analytically continue random matrix duality identities beyond their
conventional range.

Although we believe numerics convincingly confirms validity of our analytical results
it remains a challenge to justify those steps by bona fide mathematical methods.

work in progress:
Statistics of shocks in decaying Burgers turbulence with correlated initial conditions
< v(x)v(x′) >∼ |x− x′|−2.


