

2162-18

Advanced Workshop on Anderson Localization, Nonlinearity and Turbulence: a Cross-Fertilization

23 August - 3 September, 2010

Weakly Interacting Bose Gas in Disordered Environment

Thomas NATTERMANN Univ. zu Koln, Institut fuer Theoretische Physik Cologne Germany

Weakly interacting Bose gas in disordered environment*

G.M. Falco and <u>T. Nattermann</u> University of Cologne, Germany

V.L. Pokrovsky, TAMU, TX, USA & Landau Institute, Moscow

Acknowledgements: DOE, grant DE-FG02-06ER 46278, DFG project NA222/5-2 and SFB 608 PRL 100, 060402 (2008) EPL 85, 30002 (2009) PR B 80, 104515 (2009) 1

Outline

Introduction

Interacting Bose gas in weak random potential

Strong disorder

Bosons in traps

Bosons in lower dimensions

Introduction

- **BEC**: finite part of atoms in the state with minimal energy.
- **Examples:** Superfluid ⁴He, laser cooled atoms in a trap, SCs, excitons in semiconductors, BEC of spin waves
- Disorder: Superfluid He in porous media (J.D. Reppy et al '92) Cold atoms in speckle potential (R.G. Hulet et al. '08) Disordered superconducting films (V.F. Gantmakher '09)

Breakdown of superfluidity at strong disorder

Bosons in disordered environment:

No Disorder

$\frac{\text{Ideal 3d Bose gas in random potential}}{2m} \nabla^2 \psi + (E - U(\mathbf{x}))\psi = \mathbf{0} \quad \langle U(\mathbf{x})U(\mathbf{x}')\rangle = \kappa^2 \delta(\mathbf{x} - \mathbf{x}')$

<u>Single particle density of states DOS</u> $E \rightarrow -\infty$

$$\nu(E) = \int \mathcal{D}\mathcal{U}(\mathbf{r}) \operatorname{Tr}\delta(E - \hat{H}) e^{-\int d^2 \mathbf{r} U^2(\mathbf{r})/2\kappa^2} - E[U]$$

Consider potential fluctuation of depth U and width ${\sf R}$

probability
$$W[U] \sim \exp[-U^2 R^d/2\kappa^2]$$

→ localized state of energy $E \sim \hbar^2/(2mR^2) - U$

Contribution of DOS at energy E -> max W[E- $\hbar^2/(2mR^2)$]

Maximize W with respect to $R \Rightarrow R=L_c(E_c/|E|)^{1/2}$

$$E = -E_c \frac{L_c^2}{R^2} \quad \Rightarrow \quad$$

$$v \sim exp \{-(|E|/E_c)^{(4-d)/2}\}$$

a=0: Density of states, search for the optimal fluctuation of random potential

$$\begin{split} \nu(E) &= \int DU \ Tr \ \delta(E - \hat{H}) e^{-\int d^3 r U^2 / 2\kappa^2} \\ &\sim \exp\left[-\int d^3 r U^2 / 2\kappa^2 + \lambda(E - min_\Psi \langle \Psi | H | \Psi \rangle)\right] \\ &\rightarrow U(\mathbf{r}) = -\lambda \kappa^2 |\Psi|^2 \\ &\rightarrow \hat{H} \Psi = E \Psi \quad \rightarrow \Psi \end{split} \qquad \text{non-linear Schroedinger equation} \qquad \begin{matrix} \text{I.M. Lifshind Zittartz and Halperin and Cardy '78} \end{matrix}$$

non-linear Schroedinger equation

tz '66, Zittartz and Langer '66, Halperin and Lax, '66 Cardy '78

 $\langle \Psi | \hat{H} | \Psi \rangle(R, \lambda) = E \longrightarrow \lambda(E, R)$ simplification $\Psi({f r})\sim e^{-r^2/2R^2}$

$$\int d^3r \frac{U^2}{2\kappa^2} = \Phi(R,\lambda(E,R)) \quad \rightarrow \min_R \rightarrow E = E(R)$$

$$\stackrel{\tilde{h}^2}{\xrightarrow{h^2}{2mR^2}}, \quad U \sim E_b e^{-r^2/R^2}, \quad \nu \sim e^{-L_c/R} \quad \stackrel{\stackrel{10}{\longrightarrow} \stackrel{-5}{\xrightarrow{l^2}{2mR^2}} \stackrel{10}{\xrightarrow{h^2}{2mR^2}} \quad \qquad \rightarrow \nu(E) \sim e^{-\Phi(R)}$$

$$33$$

Ideal Bose gas in random potential

DOS for E << - E_c dominated by wells of width $R \sim \hbar/\sqrt{m|E|} \ll L_c$

Ideal Bose gas in random potential

-1/3

Spatial density $n_W(R)$ of wells with radius < R-- $h^2/(2mR^2)$ -- E_c (E -- $h^2/(2mR^2)$ -- E_c)

$$n_w(R) = \int_{-\infty}^{-\frac{\hbar^2}{2mR^2}} dE \ \nu(E) \sim \frac{L_c}{R^4} e^{-L_c/R}$$

Tunneling amplitude t(R) between wells with radius < R :

$$t(R) = \exp\left(-\frac{1}{\hbar}\int |p|dl\right)$$

$$\frac{1}{\hbar} \int |p| dl \approx n_w^{-1/3} / R \sim e^{L_c/3R}$$

$$t(R) \sim e^{-(\frac{R}{L_c}e^{L_c/R})^{1/3}}$$

Strong Disorder + Interaction

Assume that all potential wells with radii up to R are filled:

 \Rightarrow number of particles per well of size R : $N_w(R) = n/n_w(R) >> 1$

- \Rightarrow repulsion energy per particle: $E_q(R) \approx g N_w/R^3 \sim g n e^{L_c/R}$
- \Rightarrow total energy per particle: $\mu(R) = -\hbar^2/(2mR^2) + E_g(R)$ 17

Weakly repulsive bosons in a random potential

- \Rightarrow number of particles per well of size R : N_w(R) = n/n_w(R) >> 1
- \Rightarrow repulsion energy per particle: $E_q(R) \approx g N_w/R^3 \sim g n e^{L_c/R}$
- \Rightarrow total energy per particle: $\mu(R) = -\hbar^2/(2mR^2) + E_q(R)$

Mininization over R: \Rightarrow R(n)=L_c/ln(n_c/n),

 $n \ll n_c \approx 1/(3L_c^2 a)$

(non-interacting Fermions: Ioffe-Regel $a \rightarrow L_c$)

$$\mu(n) = -\frac{\hbar^2}{2mR^2(n)} = -\frac{1}{2}E_c(\ln\frac{n_c}{n})^2$$

$$\frac{n_c}{n} \approx \frac{\xi^2}{L_c^2} \approx \frac{E_c}{gn}$$

Babichenko & Babichenko 09

Variable hopping conductivity:

Absence of interaction: probability that two localized states have the same energy is zero.

Switch on interaction: energy levels split by amount $gn_p.$ If $n \ll n_c$ wave function is still localized .

 $\rightarrow\,$ T=0 conductivity (response to external force) in Bose-glass is still zero.

Tunneling probability between wells of distance L is $\sim \exp\{-2L/R\}$

 \rightarrow hopping probability P(T) $\sim \exp\{-2L/R-\Delta E/T\}$

 Δ E v(E) $L^3 {\approx}\,1$, use relation R(n) and maximize P(T) with respect to hopping distance L \Rightarrow

$$\sigma(T) \sim e^{-C[E_c n_c/(Tn)]^{1/4}}$$

Preliminary conclusions

 \Rightarrow At n < n_c Bose gas decays into fragments, particle density in fragments each of density n_c \sim 1/(aL_c²)

 \Rightarrow tunneling exponentially suppressed: t(n)~ e^{-c(n_c/n)^{1/3}}

- \Rightarrow particle number in fragments $\sim L_c/a \gg 1$ well defined
- \Rightarrow phase uncertain, no phase coherence \Rightarrow no superfluidity
- \Rightarrow finite compressibility $\frac{\partial n}{\partial \mu} = \frac{n}{E_c} \ln(n_c/n)$ "Bose glass"
- \Rightarrow charged bosons VRH

$$R(T) \sim e^{(T_0/T)^{1/4}}\,, \quad T_0 = E_c n_c/n$$

For $n{\approx}~n_c~$ i.e. fragments merge \rightarrow transition to superfluid

<u>Correlated disorder</u>

$$\langle U(\mathbf{x})U(\mathbf{x}')\rangle = \frac{U_0^2}{b^3}e^{-|\mathbf{x}-\mathbf{x}'|/b}$$

b >> B
$$\Rightarrow$$
 new results
$$\frac{L_c}{b} = \frac{B^4}{b^4}$$

$$\mu(b,n)pprox -U_0\sqrt{2\ln(rac{n_c}{n})}$$
n << n_c \sim 1/(B²a)

$$\Rightarrow$$
 2 length scales b , B=($\hbar^2/(mU_0)$)^{1/2}

 $b \mathrel{\mathrel{\scriptstyle{\checkmark}}} B \Rightarrow \hspace{0.1 in } uncorrelated \hspace{0.1 in } disorder$

$$\nu(E) \sim |E|^3 \exp(-E^2/2U_0^2)$$

Keldysh & Proshko '63 Kane '63 Shklovskii and Efros '70 John & Stephen '84

 $n_w(E)=b^{-3}exp\{E^2/2U_0^2\}$

Percolation at E=-0.9U

Strong Disorder + Interaction + Trap

<u>Ideal quantum gas in a harmonic trap</u> oscillator length $\ell = (\hbar/m\omega)^{1/2}$ (≈ 1000 nm), $\hbar\omega \approx nK$ <u>Bosons:</u> T=0: all particles in ground state T_c : $\lambda_T^3 n \sim \lambda_T^3 N/R^3 \approx 1$ $\mathsf{T}_{c0} \sim \hbar \omega \; \mathsf{N}^{1/3}$ $\lambda_{T} = (h^{2} / Tm)^{1/2}$ U(x) $- - m\omega^2 R^2 \approx T N \approx 10^3 ... 10^8$ **<u>Fermions</u>**: $\epsilon_{F} \sim T_{c0}$ r -3 -2 - 1 3 2 $R_{F} \approx N^{1/6} \ell$ X

Weakly interacting bosons in a harmonic trap

Bosons in traps (uncorrelated disorder)

Bosons in traps (uncorrelated disorder)

Bosons in traps (correlated disorder, d=3)

Generalization to d<3 dimensions

What is different?

DOS,

 $a \rightarrow a_d^{d-2} = a r_{\perp}^{d-3}$

 ξ , L_c, E_c

 $n/n_c \sim n/L_c^2 a_d^{d-2}$

Bose gas in 1 dimensions: parabolic trap

Uncorrelated disorder

Correlated disorder

Prediction which could be tested

- 1. Cloud size as function of these parameters in fragmented state?
- 2. Cross-over from non-ergodic to ergodic state at critical n $N_c=L_c/3a$, $N_c=b^3/(3aB^2)$, number of particles in fragments?
- 3. Time of flight spectroscopy, $\Delta p \sim \hbar/R$, fragmented state should be visible.
- 4. Ground state reachable? According to our estimates (L_c \approx 1 μ m) relaxation time \approx 0.06s. Easier in lower dimension.

Changeable parameter: N, ω , a, U₀, b

Conclusions

- Semi-quantitative analysis of the phase states of a weakly interacting strongly diluted Bose gas in a random Gaussian potential.
- The system is charcterized by the mean free path $L_{\rm c}$ and the scattering length a (or $a,\,U_0\,$ and B for correlated disorder)
- At particle density n << $n_c \approx 1/(aL_c^2)$ the Bose particles occupy deep potential wells and exponentially weakly tunnel to other wells. The number of particles in each well is defined, but phases are uncertain.
- At average particle density $n \approx n_{\rm c}$ the transition to the superfluid proceeds.
- In a trap the oscillator length I appears as a new length scale. Four different regimes are found, depending on the mutual strength of L_c , aN and I, respectively.
- All results can be extended to lower dimensions and to correlated disorder.