

2162-26

Advanced Workshop on Anderson Localization, Nonlinearity and Turbulence: a Cross-Fertilization

23 August - 3 September, 2010

Chaos in space? The case of glasses. (Chaos / Glasses)

> Jorge KURCHAN PMMH-ESPCI Paris France

chaos / glasses

Jorge Kurchan

PMMH-ESPCI, Paris

jorge@pmmh.espci.fr
http://www.pmmh.espci.fr/~jorge

trieste

E versus T – or V versus 1/P.

Solidification: a magic trick of crystallisation

Bragg peaks

$$\bar{\rho}(x) = \tau^{-1} \int_0^\tau dt \; \rho(x,t) \; = \frac{1}{N\tau} \int_0^\tau dt \; \Sigma_a \; \delta[x_a(t) - x]$$

$$C(t, t_w) = V^{-1} \int dx \, \left[\rho(x, t) \rho(x, t_w) - \rho_o^2 \right]$$

Soft (and even hard) particles may rearrange

It is a conspiracy of soft constituents that makes a solid

How to make a hard building with soft bricks

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

entropic

Jammed non-thermodynamc solidity

Glassy solid: a trick without a magician?

J. Kurchan (PMMH-ESPCI)

(less and less) transient density profiles

The α scale, in and out of equilibrium

If $\tau_{\alpha} = \infty$ we have true states

Density functional theory \leftrightarrow **Random First Order**

a mean-field free energy

$$F[\rho(\mathbf{x})] = \int d^3 \mathbf{x} \ \rho[\ln \rho(\mathbf{x}) - 1] - \frac{1}{2} \int d^3 \mathbf{x} \ d^3 \mathbf{x}' \ [\rho(\mathbf{x}) - \rho_o] C(\mathbf{x} - \mathbf{x}') [\rho(\mathbf{x}') - \rho_o]$$

has many local minima, solutions of

$$\frac{\delta F[\rho(\mathbf{x})]}{\delta \mathbf{x}} = \ln \rho(\mathbf{x}) - 1 - \int d^d \mathbf{x}' \ C(\mathbf{x} - \mathbf{x}', \rho_o)[\rho(\mathbf{x}') - \rho_o] = 0$$

liquid – crystal + many amorphous

Two nucleation arguments show that it is impossible to have

stable states with free energy density higher than equilibrium

or

exponential in number

$$r^* = \frac{(2)\sigma}{3(f_a - f_b)} \quad \rightarrow \quad f(r^*) \propto \frac{\sigma^3}{(f_a - f_b)^2}$$

J. Kurchan (PMMH-ESPCI)

Entropic pressure: multiplication of possibilities helps climb high mountains

$$V_{eff} = V(r) - T(d-1)\ln r$$

Complexity measurable from pattern repetition in $\rho(x)$

 $D \sim e^{\ell^d / \Sigma}$

 $\Sigma = 0$ implies patterns of all sizes repeat often (more later)

Analogy with dynamic systems Ruelle + Aubry-Mather theory

$ \rho(x) = \rho_o \text{liquid} $	\rightarrow	fixed point
crystal	\rightarrow	periodic solution
amorphous	\rightarrow	chaotic solution

Are glasses then chaotic solutions in space?

yes and no!

Because we are looking for solutions that are global minima of the free energy, the analogue is to look for trajectories that have globally minimal action $S = \int dt L(q, \dot{q})$, or are extrema of some functional $\mathcal{A} = \int dt A(q, \dot{q})$

The baker's map

... is as chaotic as you can be.

And yet, orbits minimising a 'free energy' function, e.g. $A \equiv \int dt \ (q(t) - q_*)^2$

are periodic or quasiperiodic

Hunt and Ott — Khan-Dang Nguyen Thu Lam, JK , D Levine

Period versus q^*

Density functional theory reduced to the essential

$$F[\rho(\mathbf{x})] = \int d^{3}\mathbf{x} \ \rho[\ln\rho(\mathbf{x}) - 1] - \frac{1}{2} \int d^{3}\mathbf{x} \ d^{3}\mathbf{x}' \ [\rho(\mathbf{x}) - \rho_{o}] C(\mathbf{x} - \mathbf{x}')[\rho(\mathbf{x}') - \rho_{o}]$$

$$\downarrow$$

$$F[\rho(\mathbf{x})] = \int d^{3}\mathbf{x} \ V(\rho) - \frac{1}{2} \int d^{3}\mathbf{x} \ \rho(\mathbf{x})(a_{o} + a_{1}\nabla^{2} + a_{2}\nabla^{4} + ...)\rho(\mathbf{x})$$

$$F[\rho(\mathbf{x})] = \int d^{3}\mathbf{x} \ V(\rho) - \frac{1}{2} \int d^{3}\mathbf{x} \ (a_{o}\rho^{2} - a_{1}(\nabla\rho)^{2} + a_{2}(\nabla^{2}\rho)^{2} + ...)$$

J. Kurchan (PMMH-ESPCI)

What are then the stationary solutions of

$$F[\rho(\mathbf{x})] = \int d^3 \mathbf{x} \ V(\rho) - \frac{1}{2} \int d^3 \mathbf{x} \ (a_o \rho^2 - a_1 (\nabla \rho)^2 + a_2 (\nabla^2 \rho)^2)$$

and, in particular, its ground state?

One dimension

$$F[\rho(\mathbf{t})] = \int d\mathbf{t} \ V(\rho) - \frac{1}{2} \int d\mathbf{t} \ (a_o \rho^2 - a_1(\dot{\rho})^2 + a_2(\ddot{\rho})^2)$$

ad nauseam Legendre transform $(\rho, \hat{\rho})$ and (w, \hat{w})

$$\mathcal{H} = V(\rho) + \frac{1}{2}a_o\rho^2 - \frac{1}{2}a_1w^2 + w\hat{\rho} - \frac{1}{2}\hat{w}^2$$

a non-linear, unbounded, Hamiltonian with more than one degree of freedom

Chaos allows to have amorphous solutions

Unboundedness allows to have isolated periodic solutions

J. Kurchan (PMMH-ESPCI)

Density functional theory in higher dimension:

Chaos with several variables and three dimensional time...

The ideal glass state might well be periodic or quasiperiodic

...what matters is whether it is *isolated* or not.

glasses <-> spatio-temporal chaotic scattering