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One-particle Localization




>50 years of Anderson Localization

FHYSICAL BEVIEW VOLUME 100, NUMBER 5 MARCH 8, 1958
I ——

Absence of Diffusion in Certain Random Lattices

F. W, AMNpEpsowN
Bell Taeplone Laobormtories, Murray Till, Neaw Sersey

{Received October 10, 1937)

This paper presents a simple model for such processes as spin d&fuslon or conduction in the “impurity
band.™ These processes invalve transport in a lattice which is in some senge random, and in them diffusion
15 expected to take place via quantum jumps between localized sites. In this simple model the essential
rendomness 15 introdeced by requiring the energy to vary mndemly from site to site. It s shown that at low
enpugh densities no diffusion at all can tpke place, and the crterin for transport Lo oocur are gven.

*One quantum
particle

*Random potential
e.g., impurities)
lastic scattering e

...::(»




Einstein (1905): <r2>:Dt

Random walk
n [ diffusion constant

always diffusion
as long as the system has no memory

Anderson(1958): It might be that

For quantum () —==—>const
particles H_0
n —
not always!

Quantum interference = memory



Einstein Relation (1905)




Einstein Relation (1905)

[ Conductivity Density of states ]

Diffusion Constant ]

No diffusion - no conductivity

Localized states - insulator
Extended states - metal

Metal - insulator transition



Localization of single-electron wave-functions:
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Correlations due to Localization in Quantum Eigenfunctions of Disordered Microwave Cavities
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(Received 28 February 2000)

f=3.04 GHz f=7.33 GHz

(b)

(a)
Localized State Extended State
Anderson Insulator Anderson Metal



Localization of cold atoms

Billy et al. “Direct observation of Anderson localization
of matter waves in a controlled disorder”. Nature 453,
891- 894 (2008).

Roati et al. “Anderson localization of a non-interacting
Bose-Einstein condensate®. Nature 453, 895-898 (2008).



An d erson  Lattice - tight binding model
M Odel » Onsite energies 8l - random

* Hopping matrix elements 1 ij

I l and [ are nearest
_ y neighbors
W<e<W

uniformly distributed 0 otherwise

Anderson Transition

I<1 I>1

Insulator Metcil

All eigenstates are localized There appear states extended
Localization length E_' all over the whole system



Why arbitrary 00 o
m weak hopping 1 is ? ®®® e
not sufficient for ®®8 8
O . XXX
the existence of H® ®® 9 e
the diffusion &

Einstein (1905): Marcovian (no memory)
process = diffusion

uantum mechanics is not marcovian
There is memory in quantum propagation s

Why ’7



Hamiltonian
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2 g 1 E,—& &, —& >>1
H=|" EZ—EI:\/(82—51)2+]2 ~ 2 b 72T
I g / E,—& << 1

What about the eigenfunctions ?
d.€:0,.6, < w,E v, E,

E,—& >>1 E,—& << 1
(o7 )
Wi, =@ ,+0 D> 1
\ &2 — €1 ) Wi, RO, T0,,
Off-resonance Resonance
Eigenfunctions are In both eigenstates the
close to the original on- probability is equally

site wave functions shared between the sites
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Anderson insulator Anderson metal

Few isolated resonances There are many resonances

and they overlap

_ Typically each site is in
resonance with some other one




Anderson Transition

I<I

localized and extended

€ never coexist! A
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[+, - mobility edges (one particle)
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Anderson insulator Anderson metal energy _ o _ g.‘

Few isolated resonances There are many resonances mismatch ! J

and they overlap
_ Typically each site is in # of nearest —2/
resonance with some other one neighbors —

A bit more precise:

Logarithm is due to the resonances, which are not nearest neighbors



Condition for Localization:

I, N i 1
W\ 2d Ind
Q:Is it cor'r'ec'r?

Al o Is exact on the Cayley tree

W is the
[ = , K branching
KInK number




J. Phvs, C: Sohd State Phys, Vol 6, 1973, Printed in Grear Britain. © 1973

Anderson Model on a Cayley tree

A selfconsistent theory of localization

R Abou-Chacrat, P W Andersonis and D ] Thoulesst
t Depariment of Mathematical Physics, University of Birmingham, Birmmgham, B15 2TT

1 Cavendish Laboratory, Cambridge, England and Bell Laboratories, Murray Hill, New
Jersey, 07974, TISA

Becewved 12 January 1973

Abstract. A new basis has been found for the theory of localization of elecirons m disorderaed
svsterns, The method 15 based on a sélfconsistent solution of the eguation for the self energy
in second order perturbation theory, whose solution may be purely real almost everywhere
(localized statesd or complex evervwhere {nonlocalized stares), The equations used are
exact for a Bethe lattice. The selfconsistency condition grees o nonlinear integral equation
in two variables for the probability distribution of the real and imaginary parts of the self
energy, A simple approxmmation for the stability limit of localized states gives Anderson's
‘upper limit approximation’. Exact solution of the stability problem in a special case gives
resulis very close (o Anderson’s best estimate, A general and simple formula for the stabality
Lirmit 15 dertved,; this formula should be valid for smooth distribution of st energies away
from the hand edge. Results of Monte Carle calculations of the sslfconsistency problem
are described which confism and 2o beyond the analytical results, The relation of this
theory to the old Anderson theory 15 exammed, and # 15 con<luded that the present theory
1% similar but better.



Condition for Localization:

I, (1 1
W\ 2d Ind
Q:Is it cor'r'ec'r?

Al « Is exact on the Cayley tree

14 is the
[ = : K branching
KInK number

A 1 . « Is a good approximation at high dimensions.
Is qualitatively correct for d >3



Anderson’s recipe:

-

1. take descrete spectrum E, of H,,
2. Add an infinitesimal Im partinto E

3. Evaluate Im“?'lLl

insulator

. |

n

[ImGii(E+is)]

lim

- i ?
@ .

e -

= )

: E @
AT JL»JUUL 1) N >

m

E

limits 2) 7 —0

~~

4. take limit 7 >0 but only after N — oog? metal

5. “What we really need to know is the e ~———_—

probability distribution of ImZ2, not
its average...” o £




Probability Distribution of /=Im X

7 is an infinitesimal width (/m
part of the self-energy due to
metal a coupling with a bath) of
one-electron eigenstates

x 1/n

Look for:
> 0;  metal
lim lim P(T" > 0) = {

N0 oo 0; insulator



Condition for Localization:

Q:Is it correct?

Al « Is exact on the Cayley tree

14 is the
[ = : K branching
KInK number

A 1 . « Is a good approximation at high dimensions.
Is qualitatively correct for d =3

AZ . For low dimensions - NO./ =o0 for d =1,2
* All states are localized. Reason - loop trajectories



1D Localization

Exactly solved: Gertsenshtein & Vasil'ev,
all states are localized 1959

Conjectured: Mott & Twose, 1961



Condition for Localization:

I, (1 1
W\ 2d Ind
Q:Is it correcf?

A2: For low dimensions - NO.J/ =oo for d =1,2
* All states are localized. Reason - loop trajectories

The particle
can go around
the loop in
two directions

@ = § pdr

Phase accumulated
when traveling
along the loop




Einstein: there is no diffusion at too short
scales - there is memory, i.e.,
the process is not marcovian.

Due to the localization effects diffusion
description fails at large scales.
Quantum interference = Memory

Large scales are important s diffusion
constant depends on the system size



Einstein relation for
the conductivity O

e D

—\VL ) —
G=clL™ = — h J
for a cubic sample g\i)

of the size L

hD/I? Thouless energy ~ Rimensionless
L)= = Thoule
s(2) 1/vI?|  meanlevel spacing . :‘: c‘iiu Cizn ce




Scaling theory of Localization

(Abrahams, Anderson, Licciardello and Ramakrishnan
1979)

g=E, /5, Omralslols o= Ghfe
L=2L=4L=8L....

without quantum corrections

E oL’ 6 acL”




Universal, i.e., material
independent

But
IB — function 1S 1 depends on the global

symmetries, e.qg., it is
different with and
without T-invariance (in
orthogonal and unitary

Limi tS' ensembles)
>0 d>2
g>1 goc L' ﬁ(g):(d—2)+0(l) 7 d=2
) k0 d<?2

g<<l goe™ pB(g)=logg <0



. dlogg
[ - function dloz L = p(g)

Metal - insulator transition in 3D
All states are localized for d=1,2



RG approach

Effective Field Theory of Localization -
Nonlinear & - model



. dlogg
[ - function dloz L = p(g)




e vdt' S
P(t)=7id lj(gir)dﬂ ?gzp(zmax)

5g 7& Vi L2 - 2Av L
—° x log — YF 1og 2
*D D o]

‘ 4 [

g =vDnh ﬂ(g)——— Universal !!!



For d=1,2 all states are localized.

The particle
can qo around
the loop in
two directions

@ =¢$ pdr

Phase accumulated
when traveling
along the loop

Weak Localization:

The localization length & can be large

Inelastic processes lead to dephasing, which is
characterized by the dephasing length L¢

If ¢ >> ng , then only small corrections to a
conventional metallic behavior



T, 18 AKypnga sexcnepusenrarstod u reoperuseckol dusuxu.  Beg
1948 3

0F H3IMEHEHHH IEKTPHYECKOIO COIPOTHBJIEHHA TEJIYPA
B MATHHTHOM MNOJIE NNPH HH3KHX TEMIEPATYPAX |

"P. A. Yeugos

R.A. Chentsov “On the variation of electrical resistivity of tellurium in
magnetic field at low temperatures”, Zh. Exp. Theor. Fiz. v.18, 375-385, (1948).

Tabaunwna 2

A 10F
YMeHnbmeHHe CONPOTHENENHS Teaaypa f
B MarHHTHOM noJde
A W . Y N U u — EJ’
Ofpazen TE'";’.’:':WN }'HEHEI-:-“;::EH:;:I-W'
THHAZEIENER J
|

Te-1 2,13 ' 0.7 - 1061 A

Te-2 2,18 | 1,0- 107

Te-4 1,96 | 1,1.107 T

Te-5 1,9 | 05107 ' Pec. 2




Magnetoresistance

O

No magnetic field With magnetic field H
= —_ = /¥
P, =@, @ —@=2%2n O/O,



Length Scales
L, = (hc/eH)'"”

Magnetic length

Dephasing length

/
§g(H)=fd

\

Ly
Lco

Q

Y

L¢ — m (0)1/2

Universal
functions

Magnetoresistance measurements allow to study inelastic
collisions of electrons with phonons and other electrons



Negative

Magnetoresistance gEg:it)

Chentsov

Aharonov-Bohm effect

Theory

B.A., Aronov & Spivak (1981)

7y

Experiment
Sharvin & Sharvin (1981)

I 1 L)

-0.01+ |

AR (D)

-0.02|-
-0.0%
| | | 1 | | |
0O 10 20 30 40 50 €0 70
H (Oe)
FIG. 8. Longitudinal magnetoresistance AR (H) at T=1.1 K

for a cylindrical lithium film evaporated onto a l-cm-long
quartz filament. R4;=2 ki), Ryn/R4;=2.8. Solid line: aver-
aged from four experimental curves. Dashed line: calculated
for L ,=2.2 um, 7,/7,=0, filament diameter d=1.31 pm,
film thickness 127 nm. Filament diameter measured with scan-
ning electron microscope yields d =1.30+0.03 um (Altshuler
et al., 1982; Sharvin, 1984).




Temperature dependence of the conductivity
one-electron picture




Temperature dependence of the conductivity

one-electron picture

Assume that all the
states
are localized;

e.g.d=1,2




Inelastic processes
transitions between localized states

S B — | energy
___________ ——— =" 5 T §3 — §a mismatch
o —0—
_'_ _'_

T=0 —= o=(  @nymechanism)



Phonon-assisted hopping

Variable Range o(T) x exp |— % .
Hopping T
N.F. Mott (1968) : -
Mechanism-dependent Optimized
prefactor phase volume

Any bath with a continuous spectrum of delocalized
excitations down to @ = 0 will give the same exponential



Spectral statistics and
Localization




RANDOM MATRIX THEORY

ensemble of Hermitian matrices
NxN

with random matrix element N — o
E, - spectrum (set of eigenvalues)
— _ - mean level spacing,
0 = <Ea+1 Ea> determines the density of states
< ...... > - ensemble averaging
g = E,.—-E, - spacing between nearest
- S neighbors
1
P(s) - distribution function of nearest

neighbors spacing between

Spectral Rigidity BLEENET

AR S P(s <<1)cs?  p=1,2,4



P(s)
08t Poisson
0.6 }
0.4 F

0.2

ngner-Dyson GOE

0 L L L
0 0.5 1 1.5

Poisson - comple’re|¥
uncorrelated
levels

N
o

Pl(s)
[ [ L] [

I =

] o] W= e los] = ] i=S
T T T T T T

Gaussian
Orthogonal
Ensemble

Orthogonal
p=1

Unitary
p=2

Slmplectlc




An d erson  Lattice - tight binding model
M Qdel » Onsite energies 8l - random

* Hopping matrix elements 1 ij

uniformly distributed

Is there much in common between Random Matrices
and Hamiltonians with random potential ?

Q e What are the spectral statistics ()

e of afinite size Anderson model



Anderson Transition

Weak disorder

Strong disorder
I<I

Insulator
All eigenstates are localized

Localization length E_,

The eigenstates, which are

localized at different places
will not repel each other

J

Poisson spectral statistics

I>1
Metal

There appear states extended
all over the whole system

Any two extended
eigenstates repel each other

J

Wigner — Dyson spectral statistics



erson Localization anc
Spectral Statistics

Localized states Extended states
Insulator Metal ﬂ
=
Poisson spectral Wigner-Dyson °

statistics spectral statistics



Extended Level repulsion, anticrossings,
states: Wigner-Dyson spectral statistics

Localized

.~ Poisson spectral statistics
states:

Invariant (basis independent) definition

In general:
Localization in the space of quantum numbers.
KAM tori <= localized states.



Classical Quantum
Integrable Integrable
H,=H,(7) ﬁoZ;Eu\ﬂXﬂ» ) =|1)
KAM Localized
Ergodic - distributed all
over the energy shell Extended ?

Chaotic




Many-Body
Localization

BA, Gefen, Kamenev & Levitov, 1997
Basko, Aleiner & BA, 2005




Example: Random Ising model in the perpendicular field

Will not discuss today in detail

Perpend icular']

Random Ising model field
in a parallel field

O, - Pauli matrices, o7 =+
i=1,2,.,N; N>>I

1
2

Without perpendicular field all O,
commute with the Hamiltonian, i.e.
they are integrals of motion



H = ZB Y J 660+ i =H +1§:&f

l?f]

Per'pendlculﬂ
Random Ising model field
in a parallel field

= : Without, perpendicular field
O; - Pauli matrices all IO' ; commuTehW|Th the
: , Hamiltonian, i.e. they are
i=L2,.,N; N>>1 integrals of motion

Anderson Model on
N-dimensional cube
H, ({Gi }) 0'=0 +0

hoping between
onsite energy nearest neighbors

{GZ.Z} determines a site



N

H=)B6& +) J,6:6°+1 i ;Eﬁoui&;

i=1 i#] i=1 i=1

Anderson Model on N-dimensional cube
Usually: Here:

# of dimensions d — const # of dimensions d=N — o0

system linear size [ — « system linear size L =1



9-dimensional cube
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6-dimensional cube

\



Anderson Model on N-dimensional cube

Localization: :No relaxation
‘No equipartition
‘No temperature
‘No thermodynamics

Glass 77



