

2162-30

Advanced Workshop on Anderson Localization, Nonlinearity and Turbulence: a Cross-Fertilization

23 August - 3 September, 2010

Anderson Localization of Interacting 1D Bosons (Finite Temperature Transition for 1D Disordered Bosons)

Gora SHLYAPNIKOV

LPTMS, Orsay France and University of Amsterdam The Netherlands

Finite temperature transition for 1D disordered bosons

Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam, The Netherlands

- Introduction.
- Many-body localization-delocalization transition
- Why a transition?
- Classical ansd degenerate bosons
- Phase diagram
- Gedanken expansion experiment
- Prospects

Collaborations I.L. Aleiner, B.L. Altshuler (Columbia University)

Trieste, August 31, 2010

Quantum gases in disorder

One-dimensional disordered bosons at finite temperature

DOGMA → No finite temperature phase transitions in 1D as all spatial correlations decay exponentially

There is a non-conventional phase transition between two distinct states

Fluid and Insulator

How to understand?

All single-particle states are localized at any energy \rightarrow Anderson insulator

Old question

Interacting 1D bosons show one of the two types of behavior "Old question" How does the interparticle interaction influences Anderson localization? Crucial for charge transport in electronic systems Appears in a new light for disordered ultracold bosons Palaiseau, LENS experiments. More underway

BEC in a harmonic + weak random potential $|V(z)| \ll ng \Rightarrow$ small density modulations of the static BEC. Switch off the harmonic trap, but keep the disorder \Rightarrow What happens?

First experiments (Orsay, LENS, Rice)

The expansion stops and BEC gets stacked in between 2 large peaks

Orsay experiment

Single-particle localization

High-energy states ($\epsilon \gg E_*$), low-energy states ($\epsilon \sim E_*$), Lifshitz tail

Many-body localization-delocalization transition

Consider an occupied localized state $|i\rangle$ interacting with a particle in the state $|k\rangle$, which transfers them to the states $|j\rangle$ and $|l\rangle \quad U_{ik,jl} \to U_t$

if $|i\rangle$ and $|k\rangle$ belong to the same localization volume and are neghbors in energy

Typical energy mismatch $\Delta_{ik,jl} = |\epsilon_i + \epsilon_k - \epsilon_j - \epsilon_l| \rightarrow \Delta_t$

 $N_1 \rightarrow$ The number of processes $|i>, |k> \rightarrow |j>, |k>$ involving |i> i.e. the number of channels for decay of a given excitation

 $\Delta_t(T_c) = U_t(T_c)N_1(T_c)$

 $T > T_c \rightarrow$ extended states $T < T_c \rightarrow$ localized states

Why a transition?

For $T < T_c$ the mixing of 1PE to all 3PE is weak. For $T > T_c$, a 1PE is strongly hybridized with at least one 3PE. This means the phase transition, not a crossover

Expand the 3PE connected with the original 1PE into a product of 1PE-s. At $T > T_c$ at least one constituent of 3PE is at resonance. Hence, each 3PE hybridizes with with at least one 5PE Resonant path 1PE \rightarrow 5PE

It is reproduced for the mixing of 2n + 3-particle excitation to 2n + 3-particle excitations $T > T_c \Rightarrow$ Resonant path 1PE $\rightarrow (2n + 1)$ -PE is formed with probability equal to one Many-body states are extended \Rightarrow linear combinations of 1PE's, 3PE,s etc. Fluid behavior

For $T < T_c$ the probability $p_{1\rightarrow 3}$ of hybridization of 1PE to 3PE is less than one.

Then $p_{1\to 2n+1} \simeq (p_{1\to 3})^n \to 0$ for $n \to \infty$ Insulating behavior Aleiner, Basko, Altshuler (2008)

Classical bosons

Weakly interacting regime

$$\gamma = \frac{mg}{\hbar^2 n} = \frac{ng}{T_d} \ll 1; \quad t = \frac{T}{ng}; \quad \kappa = \frac{E_*}{ng}$$

$$\begin{split} T > T_d(t > \gamma^{-1}) \to & \text{High-energy states are occupied. Particle energy} \sim T \\ U_t = g/\zeta(T), \ \Delta_t(T) \sim [\nu(T)\zeta(T)]^{-1}, \ N_1(T) \sim \zeta(T)n \\ \nu(T) = 1/\sqrt{E_*T\zeta_*^2}, \ \zeta(T) = \zeta_*T/E_*, \\ E_c \sim (ng)^{2/3}T^{1/3} \to \kappa_c \sim t^{1/3} \end{split}$$

Degenerate bosons

$$T_d \sqrt{\gamma} < T < T_d (\gamma^{-1/2} < t < \gamma^{-1})$$

High-energy states. Particle energies $\sim T^2/T_d \ll T$. Energy scales T^2/T_d and TConsider atoms with $\epsilon \sim E$ in the energy interval of width $\sim E$

 $\Delta_t(E) \sim [\nu(E)\zeta(E)]^{-1}, \quad N_1(E) \sim E\nu(E)\zeta(E), \quad U_t \sim (g/\zeta(E))(T/E)$

 $E_c \sim (ng)^{1/3} T^{2/3} \gamma^{1/3} \quad \kappa_c \sim t^{2/3} \gamma^{1/3}$

The result is independent of E

 $T \sim T_d \sqrt{\gamma} (t \sim \gamma^{-1/2}) \rightarrow E_c \sim ng(\kappa_c \sim 1)$

Low-temperature regime

 $T < T_D \sqrt{\gamma} (t < \gamma^{-1/2})$

 $T = 0 \Rightarrow$ For $\kappa \gg 1$ the boson density is fragmented. Lake $i \to N_i$ bosons with energy ϵ_i and $\zeta_i \approx \zeta_*$ Energy cost of bringing a boson to lake i is $E_i = \epsilon_i + gN_i/\zeta_* = \mu$. Bosons occupy states with $\epsilon_i < \mu$, and $N_i \approx zeta_*(\mu - \epsilon_i)/g$. Low-energy states if $\mu < E_*$. DoS $\to \nu_* = 1/E_*\zeta_*$, and $n = \mu^2/2gE_*$ $\to \mu = E_*/\sqrt{\kappa} < E_*$ for $\kappa > 1$. Small fraction ($\sim \mu/E_*$) of low-energy states is occupied Distance between neighboring lakes $l(\kappa) \sim \zeta_*\sqrt{\kappa}$. Lake size $\sim \zeta_*$, and $N_i \sim n\zeta_*\sqrt{\kappa} \sim 1/\sqrt{\gamma}$

 $\frac{l(\kappa)}{\zeta} *$

 $l(\kappa) \gg \zeta_*$ for $\kappa \gg 1 \Rightarrow$ Insulator

 $\kappa \to 1 \ \Rightarrow$ the interlake coupling drives the system to superfluid state

Critical value $\kappa_c \sim 1$ (KTT, Altman et al (2008), Falco et al (2009)) Also for $T \sim T_d \sqrt{\gamma}$ we have $\kappa_c \sim 1$. So, $\kappa_c \sim 1$ for all $T < T_d \sqrt{\gamma} (t < \gamma^{-1/2})$

Phase diagram

 $\kappa = E_*/ng$

How to identify?

Expansion experiment

Slow diffusive expansion near the fluid-insulator transition $au \sim 1~{
m s}$

Prospects

- Strongly interacting bosons in 1D
- ID interacting fermions
- Bosons and fermions in 2D and 3D
- Dynamics of expansion
- Critical regime

Example

In 3D this is not a phase transition but a crossover