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Random Conformal Curves in 2D in and out-of Equilibrium



Random conformal curves in 2D 
in and out-of equilibrium

-- Random curves. Conformal invariance?
-- Dynamics of static curves. Schramm’s theorem (SLE).
-- Equilibrium SLE: (Applications). Open questions.
-- Out-of-equilibrium: 2D turbulence (?)

with M. Bauer
K. Kytola, L. Cantini, T. Kennedy, C. Hagendorf

with A. Celani, G. Boffetta, G. Falkovich, 



Conformal transformations:
planar transformations preserving angles,

i.e. local rotations and dilatations,

Mercator world map Nova et Aucta Orbis Terrae 
Descriptio ad Usum Navigatium Emendate (1569)



Conformally invariant random curves

• The simplest example: 2D Brownian motion

Xt −Xs � Xt−s

Why conformal invariance?
by cut and paste property (Levy)

Gaussian
Rotation and scaling
I.I.D. increments

scaling limit of random walks

< X2
t >= t

t → Xt

Xμ2 t � μ Xt

Concatenation of increments:
Conformal transformation 
= Time reparametrization

Scale invariance + locality => conformal invariance



Critical interfaces at equilibrium
Interfaces in 2D critical systems, or geometrical curves,

in planar domain with boundary conditions

Percolation 2D Ising

The measure? Boltzmann rules

But non-local object (local Boltzmann weights, difficult in field theory)

What is the continuum limit?

Self avoiding walks (SAW)
Polymers (dilute phase)

Non intersecting walks with weights:

Wγ = y
||γ||
c with fugacity yc



What is conformal invariance? (Schramm)

Conformal Transport
Comparing two measures in two different domains.

Conformal 
map

The image of any sample should be distributed as a sample in the image space

PD[γ ⊂ U ] = Pf(D)[γ ⊂ f(U)]

But (almost) a tautology......

Conformal invariance for random curves, in planar domains, with 
marked points (originating from geometry or stat. mech. models)



Interlude: remembering the past (boundary)

Harmonic explorer (Shramm-Scheffield) Boundary explorer

After N step,  a random walker RW is send from the hexagon on the tip of the curves, the 
color of the hexagon is assigned to be that of the boundary hit by RW.

On a hexagonal lattice, with red/blue  boundary, 
a line is drawn on the frontier between blues and reds

conformally  invariant Not conformally invariant

Transparent 
boundaries

Impermeable
boundary



Domain Markov property

Comparing conditioning and cutting the domain.

Two possible setups with data: 

D, x0, x∞, γ[0,s]

What is conformal invariance? (Schramm) 

Domain Markov property + Conformal Transport

determine the measure par iteration

D \ γ[0,s]D

γ[0,s]

PD[· · · |γ[0,s]] ≡ PD\γ[0,s]
[· · · ]

--- How to code the evolution of curves?

Enough to specify the statistics of the germs of the curves

Curves coded into a conformal maps 
 which satisfy Loewner equation with source:

dgt(z)
dt

=
2

gt(z)− ξt



Schramm-Loewner Evolutions (SLE).
Conformally invariant measure on curve in planar domains

Conformal transport + 
domain Markov properrty

«Schramm’s theorem»:

= 1D Brownian motion 

I.I.D. of the Brownian motion increments translates into 
the domain Markov property (conformal invariance)

In practice:  knowledge on 1D brownian motion  
= knowledge on the curves

�� �

� �(t ) (t )

< 40 < 4 < < 8 > 8

K
Kt

t

t → ξt =
√

κ Bt

Classification of conformal invariant curves with properties

One parameter: κ
Different phases:



Relation with statistical mechanics

How is the SLE one-parameter of family of curves related to in 2D stat. models?

What do we learn from the math? Reorganize the statistical Boltzmann sums...

2D critical systems are classified by CFT (central charge c, etc...)

«Correspondence»  (DB, MB)

Thm: Correlation functions of 
CFT with appropriate central 

charge and boundary operators 
in the cut domain are martingales 

for SLE(K).

Mt ≡ t →< ψ∞Oψγ(t) >D\γ[0,t]

E[< ψ∞Oψγ(t) >D\γ[0,t]
] =< ψ∞Oψo >D

SLE  probabilities CFT data

...a long list...



A few samples of results
Schramm, Lawler, Werner, and others...

Basics properties of the curves
fractal dimension
continuum scaling limits
specific properties
natural parametrization
etc....

Brownian exponants
Proof of CFT prediction
Proof of Mandelbrot’s conjecture:
dim(ext. perimeter)=4/3
link with Gaussian free field
etc...

A few open questions:  
-- more on the relation with random fluctuating surfaces
-- limits of discrete models and off-criticality.
-- (multi) loop measure...



Interfaces in the scaling limit near criticality

Ising: 
Percolation: 

-- How to describe the off-critical measures? 
-- What are the Loewner driving processes?
(a.s.) known for LERW and GFF (Smirnov-Makarov, DB-MB)

-- Is the off-critical measure singular w.r.t to the critical one?
Yes for percolation (Nolin-Werner), 
No for LERW or GFF  (description of the off critical drift, DB-MB)

Length of SLE curves (natural parametrization)
with fugacity  yS.A.W.

Renormalised length 

Number of steps:

Scaling limit: 

Wγ = y||γ|| ||γ|| � a−dκ �D(γ)

(y − yc) � −ρ adκ

Off-critical measure = generating function for the probability 
                                 distribution of the renormalised length

ZD =
∑

γ Wγ = ESLE [ e−ρ �D(γ) ]

Asymmetry >> Fluctuations

a3/4 a−dκ � a−dκ/2

p− pc � a3/4

T − Tc � a

AAsymmetry >> Fluctuationnss

aa

AAssymmetry >> Fluctuatiioonnss

a3/4 a−dκ � a−dκ/2

AAssymmetry >> Fluctuatioonnss

aa



Conformal welding, Liouville and SLE (?)

h : S1 → S1

Diffeomorphism of the circle

factorized into holomorphic maps

h = F−1
− ◦ F+ on S1

Similarly for half lines and curves drawn on the sphere

Conjectured measure:
(Jones) h(θ) ∝ ∫ eiθ

0
du e

√
κϕ(u)/2

with ϕ(u) Gaussian free field

Interpretation: identify points at equal Euclidean and Liouville lengths from 0

Is a simple «regular» curve in Liouville geometry is an SLE 
like curve in Euclidean geometry ??

KPZ formula (relating fractal dim. measure with 
Euclidean or Liouville balls) (KPZ ... DS) x = Δ + κ

4 Δ(Δ− 1)
dH = 2− 2x, dQ

H = 2− 2Δ

for dQ
H = 1, dH = 1 + κ/8Is a Liouville geodesic a SLE-like curve?

d

x = Δ + κ
4 Δ(Δ− 1)

dH = 2− 2x, dQ
H = 2− 2Δ

for dQ
H = 1, dH = 1 + κ/8

d Δ
(David)



Is there conformal invariance in 2D Turbulence?

an example of conformally invariant curves out-of-equilibrium
(non-locality and strongly interacting systems....)

The double cascade picture

E(k) � k−3 , E(k) � k−5/3

Direct cascade: enstrophy flux

Inverse cascade:  energy flux

Inertial range:
scaling
possibly anomalous

Inertial range
scaling
folklore: non anomalous

Fluid dynamics: Navier-Stokes equations (at high Re)

Linj � �� ldiss

LIR � �� linj

u� � ζ1/3�

u� � ε1/3�1/3

Kraichnan (1967)

Soap film/electrolyte cell turbulence
Geophysical flows

∂tω + u · ∇ω − ν∇2ω + ω/τ = F



Energy spectrum 
in the inverse 

energy cascade.

Aim: analyze vorticity clusters in the scale 
domain of the energy cascade.

N dx ν α urms �f �d εI εν εα

2048 4.9× 10−4 2× 10−5 0.015 0.26 0.01 2.4× 10−3 3.9× 10−3 1.8× 10−3 2.1× 10−3 3
4096 2.4× 10−4 5× 10−6 0.024 0.26 0.01 1.2× 10−3 3.9× 10−3 0.7× 10−3 3.2× 10−3 3
8192 1.2× 10−4 2× 10−6 0.025 0.27 0.01 7.8× 10−4 3.9× 10−3 0.3× 10−3 3.6× 10−3 3
16384 0.6× 10−4 1× 10−6 0.0 0.24 0.01 5.5× 10−4 3.8× 10−3 0.2× 10−3 3.6× 10−3 3

E(k) � k−5/3

G. Boffetta, A. Celani

Kolmogorov spectrum

N: spatial resolution, dx: grid 
spacing, v: viscosity; a: friction,....



Fluid clusters (IR... Inverse cascade)

Numerical simulations



Vorticity clusters and their perimeters
Vorticity cluster:  connected component of set of points with positive vorticity

Cluster boundary: macroscopic zero-isovorticity lines

A large vorticity cluster
(with filled holes)

Frontier and external perimeter 
(without fjords) of a cluster



Fractal dimension of vorticity clusters
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Dim of the frontier = 7/4  (as SLE(6))
Dim ext. perimeter= 4/3 (as SLE(8/3))

Dim of fjords = 3/4 (as percolation)
using KK inverse cascade scaling 

u� � ε1/3�1/3

Macroscopic cluster size L

Γ ≡
∫

d2xω � ωLL2 ∝ L4/3

Γ ≡
∮

u · dl � NLinj
uLinj

Linj ∝ P

A naive argument:

P ∝ L4/3

Traces of conformal sym in the 2D inverse cascade 
Idem as conformal predictions for percolating clusters



Reconstructing (discrete) SLE in turbulence 

ii) code the discretized curves into discrete 
Loewner equations via iteration of maps G(n) = gn ◦G(n−1)

i) Extract curves from sample of turbulent flowsHow to:

iii) Extract and analyze the Loewner source
eg : gn(z) =

√
(z − an)2 + b2

n + an
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Statistics of  the Loewner source is close to that of 1D brownian motion ..... SLE(6)

More test (ok),  other models (ok)... but no analytical understanding

Zero iso-vorticity lines are (probably) conformally invariant



.........................

MERCI !
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More SLE test in 2D turbulence

-- Cardy formula (blue): probability for a cluster to cross a rectangle
-- Watts formula (red): probability of a 4-legged cluster 
-- Schramm formula (insert): probability of left passage



More SLE test in 2D turbulence

-- Non Gaussianity: randomized phase

Identical 2-point function (but not pdf):
Loewner source in not a 1D Brownian

No conformal invariance

ω̂(r) =
∫

d2k eikrωk eiφk

-- Harris criteria (Long range correlations) 
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Long range correlation for sin(vorticity)



Conformal invariance in SQG turbulence

∂tθ + u · ∇θ − ν∇2θ = F

uj = εji∂iψ, ψk = |k|−α θkwith

(here  alpha=1)

Scalar zero isolines and clusters

(a) mass versus radius; (b) length versus 
radius [D=3/2]; (c) number clusters versus 
radius; (d) number of loops versus length; 

(e) number of loops versus radius



Conformal invariance in SQG turbulence

x0 x�

(a)

The scalar isolines  are (potentially) conformally invariant... SLE(4)



Comparing with 2D direct cascade


