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We assume that the random flow is sta-

tistically homogeneous in space and time.

The magnetic field grows from small fluc-

tuations. If the velocity field is short-correlated

in time then it is possible to derive closed

equations for the magnetic induction cor-

relation functions. In the isotropic case

the pair correlation function has been an-

alyzed by Kraichnan and Nagarajan (67)



and Kazantsev (68). The complete sta-

tistical description of the magnetic field

for a short-correlated smooth statistically

isotropic flow has been done by Chertkov,

Falkovich, Kolokolov, Vergassola (99). We

are aiming to analyze a strongly anisotrop-

ic case, in the presence of strong shear.

The flow appears to be effectively two-

dimensional in this case.



colorred The hydrodynamic motion in the

fluid is assumed to be random (turbu-

lent) and the velocity statistics is assumed

to be homogeneous in space and time.

We examine the magnetic field growth

from initial fluctuations distributed sta-

tistically homogeneously in space at the

initial time t = 0. The correlation length

of the initial fluctuations l is assumed



to be smaller than the velocity correla-

tion length η. If we consider hydrodynam-

ic turbulence then a role of the velocity

correlation length is played by the Kol-

mogorov scale. At scales less than η the

velocity field v can be treated as smooth.

The magnetic diffusive length rd is as-

sumed to be much smaller than l.



The magnetic growth (dynamo) can be

characterized by moments of the mag-

netic induction (averaged over space):

〈
|B(t)|2n

〉
∝ exp (γnt) .

The exponential character of the growth

is related to statistical homogeneity of

the flow in space and time and to smooth-

ness of the flow responsible for the growth.



The magnetic field evolution is governed

by the equation

∂tB = (B ·∇)v − (v ·∇)B + κ∇2B.

Lyapunov exponent λ – average logarith-

mic rate of diverging close fluid particles,

characterizes typical gradient of velocity.

Diffusive magnetic length rd =
√
κ/λ.



The initial magnetic field distribution in

space can be thought as an ensemble of

blobs of sizes ∼ l. Then the blobs are

distorted being stretched in one direc-

tion and compressed in another direction.

At the diffusionless stage the magnet-

ic field induction grows like a separation

between close fluid particles. No recon-

nections occur at the stage.



Then the minimal size is stabilized at

rd, whereas the longitudinal size still in-

creases. Due to reconnections the blobs

overlap and as a result of summing a

large number of random quantities an

exponentially decaying in time factor ap-

pears. So the exponents γn at the diffu-

sive stage are smaller than at the diffu-

sionless stage.



The equation for the magnetic field can

be formally solved in terms of Lagrangian

trajectories propagating back in time

B(τ, r) =
⌊
Ŵ (τ)B[R(0)]

⌋
,

∂tR = v(t,R) + ξ, R(τ) = r,

bξi(t1)ξj(t2)c = 2κδijδ(t1 − t2),

where B(r) – initial magnetic field and ξ

– Langevin forces.



The matrix Ŵ (t) is determined by the

following equation

∂tŴ = Σ̂Ŵ , Ŵ (0) = 1,

where the last term represents the bound-

ary condition. The matrix Σ̂(t) is the ve-

locity gradients matrix, Σji = ∂ivj(t), tak-

en at the spacial point R(t). We will call

Ŵ an evolution matrix.



We use the decomposition

Ŵ = ÔLD̂ÔR,

where ÔR,L are orthogonal matrices and

D̂ is a diagonal matrix

D̂ =


eρ1 0 0
0 eρ2 0
0 0 eρ3

 ,

ρ1 +ρ2 +ρ3 = 0 due to incompressibility.



In our case we can take ρ2 = 0, then

D̂ =


eρ 0 0
0 1 0
0 0 e−ρ

 .

The quantity ρ typically linearly grows as

time increases, one can estimate ρ ∼ λt.

Therefore eρ is an exponentially growing

factor at t > λ−1, that explains the dy-

namo effect.



At the diffusionless stage B2 ∝ e2ρ. It

is correct if ρ < ln(l/rd) since an initial

separation between the Lagranginan tra-

jectories is ∼ rdeρ. At the diffusion stage

the main contribution to averaged B2

are associated with events where the tra-

jectories are separated less than l. That

gives an additional small factor e−ρ that

is B2 ∝ eρ at the diffusion stage.



As an example, we consider the steady

hyperbolic two-dimensional flow with vx =

λx, vy = 0, vz = −λz. Then the mag-

netic field blobs are stretched along the

X-direction and compressed along the Z-

direction. The evolution matrix is

Ŵ (t) =


eλt 0 0
0 0 0
0 0 e−λt

 .



We assume that initially, at t = 0, the

magnetic field fluctuations are character-

ized by a pair correlation function Fij(r),

then one obtains 〈Bi(t, r1)Bj(t, r2)〉

=
⌊
WikWjnFkn(e−λtx+ Ux, y + Uy, ze

λt + Uz)
⌋
,

where r = r1 − r2 and

bU2
x c = 2κ/λ, bU2

y c = 4κt, bU2
z c = 2e2λtκ/λ.



Then at the diffusion stage

〈B2
x〉 ∝ eλt, 〈B2

y 〉 ∝ e−λt, 〈B2
z 〉 ∝ e−3λt.

We see the dynamo effect in accordance

with our expectations, though the flow is

two-dimensional. An error of Zel’dovich:

It is impossible to neglect By though it

is exponentially small, since it violates

div B = 0 because of ∂/∂x ∝ e−λt.



We examine the random flow with strong

average shear, that is in the main approx-

imation vx = γ̇y. The smallness of the

velocity fluctuations means γ̇ � λ. In the

situation the only relevant velocity gradi-

ent is ∂xvy. Keeping the term, we pass to

the effectively two-dimensional flow. Of

course, the magnetic field is assumed to

have all three components.



The main assertions, concerning the sit-

uation

• The dynamo effect does exist and is

determined by the exponents γn ∼ λ.

• The principal magnetic field compo-

nent is Bx, and By ∼ (λ/γ̇)Bx.


