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We assume that the random flow is sta-
tistically homogeneous in space and time.
T he magnetic field grows from small fluc-
tuations. If the velocity field is short-correlated
In time then it is possible to derive closed
equations for the magnetic induction cor-
relation functions. In the isotropic case
the pair correlation function has been an-

alyzed by Kraichnan and Nagarajan (67)



and Kazantsev (68). The complete sta-
tistical description of the magnetic field
for a short-correlated smooth statistically
Isotropic flow has been done by Chertkov,
Falkovich, Kolokolov, Vergassola (99). We
are aiming to analyze a strongly anisotrop-
IC case, in the presence of strong shear.
The flow appears to be effectively two-

dimensional in this case.



colorred The hydrodynamic motion in the
fluid is assumed to be random (turbu-
lent) and the velocity statistics is assumed
to be homogeneous in space and time.
We examine the magnetic field growth
from initial fluctuations distributed sta-
tistically homogeneously in space at the
Initial time t = 0. The correlation length

of the initial fluctuations [ is assumed



to be smaller than the velocity correla-
tion length n. If we consider hydrodynam-
IC turbulence then a role of the velocity
correlation length is played by the Kol-
mogorov scale. At scales less than n the
velocity field v can be treated as smooth.
The magnetic diffusive length r; is as-

sumed to be much smaller than |[.



The magnetic growth (dynamo) can be
characterized by moments of the mag-

netic induction (averaged over space):

(IB()|*") o exp (vnt) -

T he exponential character of the growth
IS related to statistical homogeneity of
the flow in space and time and to smooth-

ness of the flow responsible for the growth.



The magnetic field evolution is governed

by the equation
OB = (B-V)v— (v -V)B+ rkV’B.

Lyapunov exponent A — average logarith-

mic rate of diverging close fluid particles,
characterizes typical gradient of velocity.
Diffusive magnetic length r; = /x/\.



The initial magnetic field distribution in
space can be thought as an ensemble of
blobs of sizes ~ [. Then the blobs are
distorted being stretched in one direc-
tion and compressed in another direction.
At the diffusionless stage the magnet-
IC field induction grows like a separation
between close fluid particles. No recon-

nections occur at the stage.



Then the minimal size is stabilized at
rq, whereas the longitudinal size still in-
creases. Due to reconnections the blobs
overlap and as a result of summing a
large number of random quantities an
exponentially decaying in time factor ap-
pears. SO the exponents ~, at the diffu-
Sive stage are smaller than at the diffu-

sionless stage.



The equation for the magnetic field can
be formally solved in terms of Lagrangian

trajectories propagating back in time
B(r,r) = |W(r)B[R(0)]],
atR — v(ta R) _l_ 57 R(T) — T,
1§ (t1)E€;(t2)] = 2K6;;0(t1 — t2),

where B(r) — initial magnetic field and ¢

— Langevin forces.



The matrix W(t) is determined by the

following equation
W =>W, W) =1,

where the last term represents the bound-
ary condition. The matrix >(t) is the ve-
locity gradients matrix, > ,; = 9;v;(t), tak-
en at the spacial point R(t). We will call

P

W an evolution matrix.



We use the decomposition

P

W — OLDOR,

where OR,L are orthogonal matrices and

N

D is a diagonal matrix

[eP1 O 0O )
D=| 0 e” 0 |,
\O Oep3)

p1+ po>+ p3 = 0 due to incompressibility.



In our case we can take po> = 0, then

[(eP O O )
D=|01 0 |.
\OOe_p)

The quantity p typically linearly grows as
time increases, one can estimate p ~ At.
T herefore ef is an exponentially growing

factor at + > A\~ 1 that explains the dy-
namo effect.



At the diffusionless stage B2 « e2P. It
is correct if p < In(l/ry) since an initial
separation between the Lagranginan tra-
jectories is ~ rjef. At the diffusion stage
the main contribution to averaged B2
are associated with events where the tra-
jectories are separated less than [. That
gives an additional small factor e™” that

is B2 « e at the diffusion stage.



AsS an example, we consider the steady
hyperbolic two-dimensional flow with v, =

Az, vy = 0, vz = —Az. Then the mag-

netic field blobs are stretched along the
X-direction and compressed along the Z-

direction. The evolution matrix is

(e 0 0 )
W) =| 0 0 0 |.
| 0 0 e M



We assume that initially, at ¢t = 0O, the
magnetic field fluctuations are character-
ized by a pair correlation function Fij(r),
then one obtains  (B;(t,r1)B;(t,72))

= {Wiijann(e_/\tw + Uz, y + Uy, ze™ + U2)|,
where r = r1 — ro and

\UZ] =2k/\, |UZ] = 4xt, |UZ| = 2e*Mk/A.



Then at the diffusion stage
(B2) e, (Bg) x e M, (B?) e 3L,

We see the dynamo effect in accordance

with our expectations, though the flow is
two-dimensional. An error of Zel'dovich:
It is impossible to neglect By though it
IS exponentially small, since it violates
div B = 0 because of 9/0x x e .



We examine the random flow with strong
average shear, that isin the main approx-
imation v; = ~y. The smallness of the
velocity fluctuations means v > A. In the
situation the only relevant velocity gradi-
ent is dzvy. Keeping the term, we pass to
the effectively two-dimensional flow. Of
course, the magnetic field is assumed to

have all three components.



The main assertions, concerning the sit-
uation

e [ he dynamo effect does exist and is
determined by the exponents v, ~ A.

e [ he principal magnetic field compo-
nent is By, and By ~ (A/9)Bz.



